
HAL Id: hal-02361463
https://hal.science/hal-02361463

Submitted on 13 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transsynaptic Binding of Orphan Receptor GPR179 to
Dystroglycan-Pikachurin Complex Is Essential for the

Synaptic Organization of Photoreceptors
Cesare Orlandi, Yoshihiro Omori, Yuchen Wang, Yan Cao, Akiko Ueno,

Michel Roux, Giuseppe Condomitti, Joris de Wit, Motoi Kanagawa, Takahisa
Furukawa, et al.

To cite this version:
Cesare Orlandi, Yoshihiro Omori, Yuchen Wang, Yan Cao, Akiko Ueno, et al.. Transsynaptic Binding
of Orphan Receptor GPR179 to Dystroglycan-Pikachurin Complex Is Essential for the Synaptic Or-
ganization of Photoreceptors. Cell Reports, 2018, 25 (1), pp.130 - 145. �10.1016/j.celrep.2018.08.068�.
�hal-02361463�

https://hal.science/hal-02361463
https://hal.archives-ouvertes.fr


Article
Transsynaptic Binding of O
rphan Receptor GPR179
to Dystroglycan-Pikachurin Complex Is Essential for
the Synaptic Organization of Photoreceptors
Graphical Abstract
Highlights
d Orphan receptors GPR158 and GPR179 are membrane

partners for HSPGs

d Pikachurin is the endogenous HSPG interacting with GPR179

in photoreceptor synapses

d Loss of Pikachurin disrupts post-synaptic properties via

GPR179

d Pikachurin-GPR179 complex assembly is controlled by pre-

synaptic dystroglycan complex
Orlandi et al., 2018, Cell Reports 25, 130–145
October 2, 2018 ª 2018 The Author(s).
https://doi.org/10.1016/j.celrep.2018.08.068
Authors

Cesare Orlandi, Yoshihiro Omori,

Yuchen Wang, ..., Motoi Kanagawa,

Takahisa Furukawa, Kirill A.Martemyanov

Correspondence
kirill@scripps.edu

In Brief

Orlandi et al. identify transsynaptic

assembly at photoreceptor synapses

involving pre-synaptic dystrophin-

dystroglycan complex and the post-

synaptic orphan receptor GPR179

bridged by HSPG protein Pikachurin in

the cleft and demonstrate its role in

shaping transmission of photoreceptor

signals.

mailto:kirill@scripps.edu
https://doi.org/10.1016/j.celrep.2018.08.068
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.08.068&domain=pdf


Cell Reports

Article
Transsynaptic Binding of Orphan Receptor GPR179
to Dystroglycan-Pikachurin Complex Is Essential
for the Synaptic Organization of Photoreceptors
Cesare Orlandi,1 Yoshihiro Omori,2 Yuchen Wang,1 Yan Cao,1 Akiko Ueno,2 Michel J. Roux,3 Giuseppe Condomitti,4,5

Joris de Wit,4,5 Motoi Kanagawa,6 Takahisa Furukawa,2 and Kirill A. Martemyanov1,7,*
1Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
2Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
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SUMMARY

Establishing synaptic contacts between neurons is
paramount for nervous system function. This process
involves transsynaptic interactions between a host of
cell adhesion molecules that act in cooperation with
the proteins of the extracellular matrix to specify
uniquephysiological properties of individual synaptic
connections. However, understanding of themolecu-
lar mechanisms that generate functional diversity in
an input-specific fashion is limited. In this study, we
identify that major components of the extracellular
matrix proteins present in the synaptic cleft—mem-
bers of the heparan sulfate proteoglycan (HSPG) fam-
ily—associate with the GPR158/179 group of orphan
receptors. Using the mammalian retina as a model
system, we demonstrate that the HSPG member
Pikachurin, released by photoreceptors, recruits a
key post-synaptic signaling complex of downstream
ON-bipolar neurons in coordination with the pre-
synaptic dystroglycan glycoprotein complex. We
further demonstrate that this transsynaptic assembly
plays an essential role in synaptic transmission of
photoreceptor signals.

INTRODUCTION

Precise synaptic connectivity is one of the defining properties

of the CNS. The ability of neurons to form synapses with an

extremely defined spatial and temporal resolution is essential

to establish functional neuronal circuits, but themolecular mech-

anisms involved in neuronal wiring specificity are still poorly

understood. To establish proper connections, a network of trans-

synaptic interactions among membrane receptors, secreted

ligands, and synaptic cell adhesion molecules coordinates pre-

and post-synaptic assembly (Chia et al., 2013; Sanes and Yama-
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gata, 2009; Siddiqui and Craig, 2011). Beyond a structural role,

several components of the extracellular matrix (ECM) have

been shown to play an active role in the formation and mainte-

nance of correct synaptic connectivity (de Wit et al., 2013; Ditya-

tev et al., 2010; Nitkin et al., 1987).

Members of the G protein-coupled receptor (GPCR) family are

among themost common resident proteins present at synapses.

A wide variety of extracellular domains allows this large receptor

family to sense a range of changes in the extracellular environ-

ment, including detection of all known neurotransmitters (Rose-

nbaum et al., 2009). Traditionally, GPCRs have been considered

powerful modulators of neurotransmission that shape properties

of neuronal circuits (Bargmann andMarder, 2013;Marder, 2012).

However, emerging proteomic studies increasingly point to their

involvement in transsynapticmacromolecular complexes and in-

teractions with ECMcomponents (Bolliger et al., 2011; Cao et al.,

2015; Kakegawa et al., 2015; Lanoue et al., 2013; Luo et al.,

2011; O’Sullivan et al., 2012). Such effects were primarily shown

for the subfamily of ‘‘adhesion’’ receptors, and the scope of this

involvement and extent of conservation across the GPCR super-

family are yet to be explored.

Functional roles and signal transductionmechanismsof a large

portion of the GPCR family remain poorly understood, with many

receptors still ‘‘orphan’’ of endogenous ligands. Nonetheless,

genomic studies in humans and the use of knockout animal

models suggest a crucial role for the largely unexplored biology

of orphan receptors in fundamental neuronal processes (Ahmad

et al., 2015; Kroeze et al., 2015). Our progress in de-orphanizing

these receptors and understanding their physiology has been

slow, likely because of their unusual biology, which may deviate

from the traditional role of GPCRs as mediators of neurotrans-

mitter signaling.

One of the classical models for studying synaptic organization

whereby traditional and orphan GPCRs cooperate is offered by

the first visual synapse of vertebrate photoreceptors. In the

dark, photoreceptors tonically release the neurotransmitter

glutamate, which is sensed by the mGluR6 receptor on the

post-synaptic neuron: the ON-bipolar cell (ON-BC). The mGluR6
.
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initiates a prototypic GPCR cascade that activates the G protein

Gao to keep the effector channel TRPM1 inhibited (Koike et al.,

2010; Morgans et al., 2009; Shen et al., 2009). Suppression of

the glutamate release by light leads to TRPM1 opening and

requires rapid inactivation of Gao. This is achieved by the action

of the GTPase activating protein (GAP) complex, which involves

coordinated action of several proteins, including catalytic sub-

units RGS7 and RGS11 (Martemyanov and Sampath, 2017;

Vardi and Dhingra, 2014). The abundance and subcellular local-

ization of the GAP complex have a major impact on the synaptic

transmission of light signal from photoreceptors to ON-BC and

tuning the circuits for daylight and dim vision (Cao et al., 2009;

Sarria et al., 2015). A critical role in this process belongs to the

orphan receptor GPR179, which has been identified as a compo-

nent of the GAP complex serving in a non-traditional capacity as

membrane anchor for RGS proteins at the ON-BC post-synaptic

site (Orlandi et al., 2012). Knockout of GPR179 prevents post-

synaptic accumulation of RGS proteins and severely compro-

mises synaptic communication with photoreceptors (Orlandi

et al., 2012; Peachey et al., 2012), indicating that it is required

for achieving temporal resolution needed for a rapid transduction

of visual stimuli. However, the mechanisms of synaptic targeting

of GPR179 and its integration into the synaptic architecture

remain unknown. Although GPR179 is largely retina specific,

its close homolog GPR158 is enriched in the brain, where it like-

wise plays a role in organizing RGS complexes (Orlandi et al.,

2012; Orlandi et al., 2015). Both proteins feature large extracel-

lular segments, suggesting that theymay be involved in the inter-

actions with the ECM (Orlandi et al., 2012; Patel et al., 2013). In

fact, ECM plays an essential role in the organization of the first

visual synapse. One of themost prominent examples is provided

by the complex of a/b-dystroglycan-dystrophins (DGCs) with

the ECM protein Pikachurin, which is required for proper devel-

opment and neurotransmission at the synapse (Omori et al.,

2012; Sato et al., 2008). Notably, ablation of Pikachurin in

mice results in ultrastructural abnormalities of the photoreceptor

synapse and deficits in synaptic transmission. However, it is

unclear how the photoreceptor Pikachurin-DGC complex en-

gages ON-BCs andwhat its post-synaptic molecular targets are.

Here we identify ECM components heparan sulfate proteogly-

cans (HSPGs) as interaction partners of the orphan GPCRs,

GPR179 and GPR158, and demonstrate an essential role of

these interactions in synaptic targeting. Using the first visual

synapse as a model, we provide evidence that the photore-

ceptor-released HSPG Pikachurin dictates the post-synaptic

organization of the GAP complex by anchoring GPR179-RGS

at the dendritic tips of ON-BCs. We further show that this func-

tion involves transsynaptic interactionwith theDGCat the axonal

terminals and that its disruption alters synaptic neurotransmis-

sion of photoreceptors in a process that involves RGS protein

recruitment.

RESULTS

HSPGs Are Extracellular Binding Partners of GPR158
and GPR179 Receptors
Orphan receptors GPR158 and GPR179 contain large extracel-

lular segments that feature an EGF-like Ca2+-binding domain
and a leucine repeat sequence (Orlandi et al., 2012; Patel

et al., 2013), suggesting their possible role in association with

ECMproteins. To test this possibility, we conducted an unbiased

proteomics search for their extracellular binding partners

(Figure 1A) in HEK293 cells known to express a wide range of re-

ceptors, cell adhesion molecules, and matrix proteins (Geiger

et al., 2012; Lin et al., 2014; Thomas and Smart, 2005). Given

high sequence homology between GPR158 and GPR179

(Figure S1A), our initial experiments were conducted with the

N-terminal ectodomain of GPR158 fused to a human IgG Fc

fragment (ecto-GPR158-Fc) directing its secretion to the me-

dium. Following transfection of HEK293 cells with the ecto-

GPR158-Fc, secreted proteins were purified using protein

G beads that captured Fc fragments. In parallel, the same exper-

iment was conducted with Fc construct alone and used as

a negative control to assess non-specific binding. Mass spec-

trometric identification of the proteins eluted from the beads

identified 129 proteins specifically co-isolated with the ecto-

GPR158-Fc but not with the Fc fragment (Figure 1A). A Gene

Ontology analysis of the data revealed that about half of these

proteins were classified as secreted, with the largest group

(21.71%) constituting ECM components. Remarkably, the

most abundant proteins in this group belonged to a family of pro-

teoglycans post-translationally modified by HS, classified as

HSPGs (Bishop et al., 2007). In total, we found 12 different

HSPGs specifically co-purified with GPR158 ectodomain (Fig-

ures 1B and S1B).

To confirm the interactions, we studied binding of several

representative HSPG members to full-length GPR158 by co-

immunoprecipitation upon co-expression in HEK293 cells (Fig-

ure 1C). We found a robust pull-down of all tested HSPGs by

GPR158. This interaction was specific, as no binding was de-

tected upon omitting the bait protein from the transfection.

Reciprocal experiments similarly revealed effective and specific

pull-down of GPR158 when HSPGs were used as baits

(Figure S1C).

We next tested whether GPR179 could also bind to HSPGs

given considerable sequence conservation between the extra-

cellular domains of GPR158 and GPR179 (Figure S1A). These

experiments were designed similarly, and the interaction was

first studied upon co-transfection of epitope-tagged full-length

GPR179 and candidate HSPGs into HEK293 cells. Again, we

found that immunoprecipitation of GPR179 specifically pulled

down all of the HSPGs tested (Figure 1D). The binding was

further confirmed in the reverse direction where HSPGs were

also able to pull down GPR179 (Figure S1D).

The ubiquitous nature of GPR158/179 interactions with

various HSPG members, which do not share extensive homol-

ogy in their amino acid sequences, prompted us to evaluate the

role of HS chains in binding. In these experiments, we used

beads directly conjugated to heparin, a highly sulfated form of

HS often used in affinity chromatography to isolate HS-binding

proteins (Ori et al., 2011). Indeed, we found that heparin beads

were able to effectively pull down native GPR158 from a mem-

brane-enriched brain lysate. The interaction was specific, as in-

clusion of excess free unbound heparin prevented GPR158

retention by the beads. We further examined the role of divalent

cations in the interaction, given their role in regulating many
Cell Reports 25, 130–145, October 2, 2018 131
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Figure 1. Unbiased Identification of GPR158 and GPR179 as Membrane Receptors for Heparan Sulfate Proteoglycans

(A and B) HEK293 cells were transfected with ecto-GPR158-Fc or Fc as negative control (A). The Fc proteins released in the media were isolated by incubation

with protein G beads and analyzed using liquid chromatography tandemmass spectrometry (LC-MS/MS). The graph represents the interacting proteins identified

specifically in the ecto-GPR-Fc pull-down experiment. DAVID analysis of the full set of identified proteins revealed the presence of 45% of secreted proteins, half

of which are ECM components. The family of HSPGs is highlighted because enriched by the pull-down, and the identified members are listed in the table (B).

(C and D) In vitro co-immunoprecipitation of GPR158 (C) and GPR179 (D) with representative HSPGs: GPC1, GPC5, and SDC4. HEK293 cells were transfected

with the indicated myc- or HA-tagged constructs. Immunoprecipitated proteins were detected by western blotting using specific antibodies. Cells transfected

with only HSPGs served as a control for non-specific binding.

(E) Heparin-Sepharose pull-down from brain extract and western blot detection using a GPR158-specific antibody. Divalent cations or EDTA did not affect the

pull-down. An excess of heparin (5%) was used as negative control.

(F) Heparin-Sepharose pull-down from retina extract and western blot of GPR179. Divalent cations or EDTA did not affect the pull-down. An excess of heparin

(5%) was used as negative control.
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Figure 2. Characterization of Interactions between GPR179 and the Photoreceptor-Released HSPG Pikachurin In Vitro

(A) Scheme of the pre-synaptic compartment at the first visual synapse.

(B) In vitro co-immunoprecipitation of GPR179with Pikachurin in HEK293 cells transfectedwith the indicatedmyc- or HA-tagged constructs. Immunoprecipitated

proteins were detected by western blotting using specific antibodies.

(legend continued on next page)
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extracellular interactions (Maurer and Hohenester, 1997) and

the presence of the putative Ca2+-binding motif in GPR158/

179 (Orlandi et al., 2012; Patel et al., 2013). We found that

retention of GPR158 by heparin beads was insensitive to either

addition of excess Ca2+/Mg2+ or their chelation by EDTA (Fig-

ure 1E). Native GPR179 exhibited similar behavior, suggesting

that divalent cations may not be involved in modulating

this interaction (Figure 1F). Together, these results establish

HSPGs as extracellular binding partners of GPR158/179 orphan

receptors and reveal sufficiency of HS side chains for the

interaction.

Pikachurin Is the Endogenous HSPGClient of GPR179 in
Photoreceptor Synapses
To explore physiological relevance of the GPR158/179-HSPG

interactions in the context of native neuronal circuits, we turned

our attention to one particular candidate HSPG identified in the

screen: an Agrin-like protein, Pikachurin, one of the least charac-

terizedmembers of the family (Manabe et al., 2008). Pikachurin is

specifically expressed in the retina by both rod and cone photo-

receptors and released in the synaptic cleft, where it has been

identified as a ligand for the pre-synaptic DGC (Sato et al.,

2008) (Figure 2A). Intriguingly, the function of photoreceptor syn-

apses requires the presence of GPR179, expressed by the post-

synaptic ON-BC and targeted to the dendritic tips in apposition

to pre-synaptic release sites of both rods and cones (Audo et al.,

2012; Peachey et al., 2012). In contrast, brain-enriched GPR158

is not detected in either photoreceptors or ON-BC (Sarin et al.,

2018; Shekhar et al., 2016), making GPR179 at this synapse

non-redundant. First, we confirmed the interaction between

GPR179 and Pikachurin in transfected HEK293 cells, where we

detected robust and specific co-immunoprecipitation of both

proteins in both forward and reverse directions (Figure 2B). We

further established that the binding is mediated by the ectodo-

main of GPR179 using an overlay approach. A live staining of

Pikachurin upon transfection in HEK293 cells revealed its pre-

dominant extracellular localization within the ECM (Figure 2C).

These Pikachurin-positive patches were stained by application

of ecto-GPR179-Fc (Figure 2C). The interaction of the ecto-

GPR179 and Pikachurin in the ECM was specific, as no staining

was observed when Fc carrier alone was used or when Pika-

churin was omitted from the transfection, indicating low expres-

sion of endogenous Pikachurin in HEK293 cells, which was

nevertheless detectable by mass spectrometry in our proteomic

screen. Because HS side chains were sufficient for interaction

with GPR158/179 (Figure 1E), we next asked a converse ques-
(C) Live staining of Pikachurin (red) in transfected HEK293 cells shows a predom

media of HEK293 cells expressing the ecto-GPR179-Fc (green) shows co-loca

transfected with empty vector (pcDNA3.1) or incubated with Fc fragment. DAPI

(D) Heparan sulfate modification of Pikachurin is not required for the interacti

transfected HEK293 cells. GPR179-conjugated beads were mixed with conditio

heparinase III or buffer. Cells transfected with empty vector were used as immun

(E) Multiple amino acid sequence alignment of pikachurin from 197 species. Iden

(below).

(F) Schematics of Pikachurin structural domains and deletion constructs genera

mCherry at its C terminus. Amino acid numbers are shown at the bottom of each

(G) Pull-down of Pikachurin-derived mutants from HEK293 cell lysates by GPR17

controls.
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tion: whether HS modification of Pikachurin is the sole require-

ment for GPR179 binding. Enzymatic treatment with heparinase

III resulted in a clear mobility shift of Pikachurin isolated from

HEK293medium, confirming itsmodification with HS side chains

(Figure 2D). However, Pikachurin stripped from HS still effec-

tively co-immunoprecipitated with GPR179, indicating the

involvement of additional binding sites on Pikachurin for the

interaction with GPR179 (Figure 2D). Like other secreted mem-

bers of the HSPG family, Pikachurin contains several conserved

structural domains (Sato et al., 2008) that can possibly be

involved in HS-independent binding to GPR179. Multiple

sequence alignment across 197 species revealed a high degree

of amino acid conservation across the three laminin G and the

two EGF-like domains in the C terminus of the protein, with the

highest similarity (55.5%) in the third laminin G domain (Fig-

ure 2E). Accordingly, we generated several deletion constructs

lacking various conserved domains of Pikachurin (Figure 2F). In

these experiments, we used cell lysates in which HS modifica-

tion does not occur to specifically analyze contribution of protein

moiety to binding. Pull-down experiments with ecto-GPR179-Fc

as a bait and the Fc carrier as negative control revealed that the

C-terminal 251 amino acids (Pika-LG3) were both necessary and

sufficient for the interaction with GPR179 (Figure 2G). Thus, we

conclude that Pikachurin, when secreted in the ECM, specifically

interacts with the ectodomain of GPR179 receptor via multiple

sites including the HS side chains and the LG3 domain of the

protein core.

We next examined GPR179 and Pikachurin expression and

interaction in vivo, in the mouse retina. First, we confirmed the

ability of the ectodomain of GPR179 to interact with endogenous

Pikachurin in a pull-down experiment with mouse retina lysates

(Figure 3A). Western blot analysis revealed robust capture of

retina-derived Pikachurin by the beads coated with ecto-

GPR179-Fc protein but not by the control Fc beads, indicating

that the binding was specific. Second, we examined immunohis-

tochemical staining of retina cross-sections and found extensive

colocalization of Pikachurin and GPR179 in the outer plexiform

layer (OPL), where both proteins showed characteristic punctate

staining at photoreceptor synapses (Figure 3B). Third, we tested

their interaction in situ, using a proximity ligation assay (PLA).

Using this approach, we found numerous positive signals gener-

ated by the antibodies against Pikachurin and GPR179

intersecting at the complex (Figure 3C). The staining pattern

corresponded to characteristic synaptic puncta and was

confined to the OPL. The puncta predominantly decorated den-

dritic tips of PKCa-positive rod ON-BC but were also present in
inant localization within the extracellular matrix. Incubation with conditioned

lization with the anti-HA antibody staining (red). Negative controls are cells

in blue.

on with GPR179. GPR179-myc was immunoprecipitated from cell lysate of

ned media from cells transfected with Pikachurin-mCherry and treated with

oprecipitation (IP) specificity control.

tical amino acids are highlighted in orange and aligned with domain topology

ted to study binding determinants to GPR179. Each construct is fused with

construct.

9 ectodomain fused to an Fc fragment. Fc and mCherry are used as negative
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Figure 3. Analysis of GPR179-Pikachurin Complex Formation in the Retina

(A) Scheme of the experimental paradigm (left). Pull-down assay of endogenous Pikachurin from retina lysates using affinity-purified ecto-GPR179-Fc expressed

in transfected HEK293 cells. Fc fragment was used as negative control.

(B) Confocal images of retina sections show co-localization of Pikachurin (green) and GPR179 (red) in the retina OPL. DAPI in blue.

(C and D) Detection of the complex GPR179/Pikachurin (red) using proximity ligation assay (PLA) in retina cross-sections fromwild-typemice. Primary antibodies

were co-incubated with conditioned media of HEK293 cells expressing either the Fc fragment (C) or the ecto-GPR179-Fc as negative control (D). Dashed-line

boxes indicate the region of the merged image reported with a higher magnification. PKCa (green) was used as a marker of ON-BC, and nuclei were labeled by

DAPI (blue).

(legend continued on next page)
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PKCa-negative sites, indicating Pikachurin-GPR179 complex

formation at both rod and cone synapses. This signal was nearly

completely abolished by pre-incubation of sections with purified

ecto-GPR179-Fc, a dominant-negative protein competing for

Pikachurin binding, indicating specificity of the complex detec-

tion strategy (Figure 3D). A quantification of the PLA particles

further confirmed the interaction specificity and demonstrated

that the complex formation is confined to the photoreceptor syn-

apses in OPL (Figure 3E).

Notably, we found the expression of GPR179 and Pikachurin

to be highly regulated during retina development. Being unde-

tectable until P11, both proteins are massively induced at the

onset of photoreceptor synapse development (P11–P14), peak-

ing with maturation (P21) (Figures 3F and 3G). This induction was

accompanied by their accumulation in photoreceptor synapses,

reaching maximum at P14 (Figures 3H and 3I). Intriguingly, our

quantitative analysis reveals that during early stages synaptic

accumulation of Pikachurin precedes that of GPR179, despite

trailing it in expression induction (Figures 3F–3I), suggesting

that Pikachurin may localize to synapses in a manner indepen-

dent fromGPR179. To test this model, we evaluated the localiza-

tion of Pikachurin in retinas from Gpr179nob5 mice. This mouse

model contains a well-characterized loss-of-function mutation

in Gpr179 that abolishes its protein expression, with no effects

on localization of key signaling molecules mGluR6 and TRPM1

(Peachey et al., 2012; Ray et al., 2014). Indeed, we observed

normal punctate synaptic accumulation of Pikachurin in

Gpr179nob5 retinas (Figure 3H, bottom). This suggests that

GPR179-Pikachurin complex assembly at synapses occurs

sequentially, with Pikachurin occupying the pre-synaptic site

before GPR179 is recruited post-synaptically. In summary, these

results establish specific association of GPR179 with the ECM

protein Pikachurin at the photoreceptor synapses and show a

hierarchical nature of their synaptic targeting initiated by Pika-

churin, which accumulates at synapses independently from

GPR179.

Knockout of Pikachurin Disrupts Stability and Post-
synaptic Targeting of GPR179
To probe the role of Pikachurin association with GPR179, we

analyzed the consequences of eliminating Pikachurin. We found

that knockout of Pikachurin in mice (Pika�/�) had no effect on the

expression of mGluR6 or TRPM1 (Figures 4A and 4B). Strikingly,

we found substantial downregulation in GPR179 expression

(Figures 4A and 4B). We further detected significant decrease

in the levels of RGS11 and to a lesser extent RGS7 (not statisti-

cally significant), which both form a complex with GPR179 (Fig-

ures 4A and 4B). This cannot be explained by downregulation of

gene expression, as mRNA levels for Gpr179 and Rgs7 and

Rgs11 in Pika�/� retinas were unchanged (Figure 4C), suggest-
(E) Quantification of PLA particles in the OPL or inner nuclear layer (INL) (negat

(n = 5–7, ***p < 0.001, Student’s t test).

(F andG) Representative western blots (F) and quantification (G) of Pikachurin and

amounts of total protein were loaded on a single gel, and specific antibodies we

(H) Immunohistochemistry (IHC) of WT retinas showing expression pattern of Pi

nostaining of adult Gpr179nob5 retina (bottom) shows similar Pikachurin accumul

(I) Quantification of GPR179- and Pikachurin-positive puncta at the OPL during re

t test).
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ing a role for Pikachurin in the stabilization of the GPR179-RGS

protein complex.

Analysis of synaptic accumulation of proteins by immuno-

staining of retina sections further revealed deficits in Pika�/�

mice. We found that despite normal localization of mGluR6 (Fig-

ures 4D and 4E) originally reported by Omori et al. (2012) and

Sato et al. (2008), targeting of GPR179 to the dendritic tips of

ON-BC was compromised, as evidenced by substantial reduc-

tion in the GPR179-positive synaptic puncta in the OPL (Figures

4D and 4E). Because GPR179 was previously shown to be indis-

pensable for anchoring RGS proteins at the post-synaptic sites

(Orlandi et al., 2012), we further examined the localization of

RGS7 and RGS11. Consistent with the loss of GPR179 accumu-

lation, we found a significant reduction in the levels of both RGS

proteins in the photoreceptor synapses of Pika�/� retinas (Fig-

ures 4D and 4E). To confirm the role of Pikachurin in GPR179

synaptic targeting, we performed a series of rescue, overexpres-

sion, and dominant-negative blockade experiments. First, we

restored Pikachurin expression selectively in rod photoreceptors

of Pika�/� mice by in vivo electroporation delivering HA-tagged

full-length Pikachurin directed by rhodopsin promoter (Fig-

ure 4F). In photoreceptors expressing the construct, identified

by enhanced yellow fluorescent protein (EYFP) fluorescence,

ectopic Pikachurin accumulated at synapses recapitulating

localization pattern of the native Pikachurin (Figures 4G–4I).

Importantly, re-expression of Pikachurin restored synaptic accu-

mulation of GPR179 and RGS11 solely in the positively electro-

porated regions as confirmed by quantitative analysis (Figures

4J and 4K), indicating that expression of Pikachurin in rods is

sufficient in driving post-synaptic accumulation of GPR179-

RGS7/11 complex. Next, we studied consequences of overex-

pressing Pikachurin in wild-type mice, adopting the same in vivo

electroporation strategy (Figures 5A and 5B). We found that

increasing Pikachurin expression resulted in increased synaptic

accumulation of GPR179 and RGS11 (Figures 5C and 5D),

consistent with the model that Pikachurin is a limiting factor

determining synaptic targeting of GPR179-RGS complex. We

further tested this model by disrupting GPR179-Pikachurin inter-

action by a dominant-negative strategy expressing the ectodo-

main of GPR179 in ON-BC to compete with endogenous

GPR179 for Pikachurin binding (Figure 5E). The expression of

ecto-GPR179 driven by mGluR6 promoter was indeed confined

to the ON-BC in electroporated retinas (Figure 5F). Strikingly, we

observed a significant reduction in synaptic accumulation of

both GPR179 and RGS11 at the dendritic tips of EYFP-positive

ON-BC expressing ecto-GPR179 (Figures 5G and 5H), further

supporting a critical role of Pikachurin binding in the localization

of GPR179 complex.

We next explored selectivity of Pikachurin effects on the orga-

nization of transsynaptic complexes given previously reported
ive control) of retina cross-sections in each condition. Data are mean ± SEM

GPR179 protein levels in retina lysates at different developmental stages. Equal

re used to detect indicated proteins (n = 3).

kachurin (green) and GPR179 (red) at different developmental stages. Immu-

ation at synaptic sites.

tina development in WTmice. Data are mean ± SEM (n = 3, *p < 0.05, Student’s
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Figure 4. Role of Pikachurin in the Targeting of the Post-synaptic Complex GPR179-RGS Proteins

(A and B) Western blot analysis of the indicated signaling molecules in retina samples from WT and Pika�/� mice (A) and quantification normalized to GAPDH

expression and reported as a percentage of WT (n = 8 WT, n = 5 Pika�/�) (B).
(C) qRT-PCR of the indicated genes in WT and Pika�/� retinas (n = 5 mice/genotype).

(D and E) Representative immunohistochemistry of retina sections fromWT andPika�/�mice using antibodies against mGluR6 (red), GPR179, RGS7, and RGS11

(green) (D) and related quantification (E) (n = 3).

(F) In vivo retina electroporation experiments. Pika�/� mice were electroporated at P0 with the outlined photoreceptor-specific construct for Pikachurin over-

expression, and the retinas were harvested after 3 weeks and prepared for IHC.

(G) Representative confocal image of an individual electroporated retina immunostained with anti-HA (red) and anti-EYFP (green) antibodies. EYFP-negative

regions (left) were used as control for quantification, while EYFP-positive regions (right) represent a successful electroporation.

(H and I) Representative confocal images (H) and quantification (I) of synaptic accumulation of overexpressed Pikachurin-HA in control versus electroporated

regions. Five to ten different regions of retina from three different mice were used.

(J and K) Representative IHC in control and electroporated retina regions inPika�/� (J) and quantification of synaptic accumulation (K) of GPR179 (left) and RGS11

(right). DAPI in blue. Five to ten different regions of retina from three different mice were used. Data are mean ± SEM (*p < 0.05, **p < 0.01, ***p < 0.001, and

****p < 0.0001, Student’s t test).
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(A) Schematics of the construct used for in vivo retina electroporation in WT mice.

(B) IHC of WT retinas overexpressing Pikachurin-HA in photoreceptors using antibodies against HA (red) or EYFP (green). DAPI in blue.

(C and D) IHC of control and electroporated regions in WT mice (C) and quantification of synaptic accumulation (D) of GPR179 (left) and RGS11 (right). DAPI in

blue. Five to ten different regions of retina from three different mice were used.

(E) Schematics of the dominant-negative construct expressing ectoGPR179myc under control of ON-BC-specific mGluR6 promoter used for in vivo electro-

poration of WT retinas.

(F) IHC using antibodies against EYFP (green) and myc (red).

(G and H) Representative IHC in control and electroporated retina regions in WT mice (G) and quantification of synaptic accumulation (H) of GPR179 (left) and

RGS11 (right). DAPI in blue. Five to ten different regions of retina from three different mice were used.

(I) IHC of mGluR6 (green) and ELFN1 (red) in retina cross-sections of WT and Pika�/�.
(J) IHC of mGluR6 and ELFN1 at a higher magnification.

(K) CoIP of ELFN1 and mGluR6 in retina samples fromWT and Pika�/� mice. Retinas frommGluR6�/� mice were used as a control for antibody specificity. Data

are mean ± SEM (*p < 0.05 and ***p < 0.001, Student’s t test).
structural abnormalities of photoreceptor contacts with ON-BC

inPika�/� retina (Sato et al., 2008). In these studies, we examined

the binding and localization of mGluR6-ELFN1 complexes that

bridge the synapse via direct interaction (Cao et al., 2015). In

Pika�/� retinas, both ELFN1 and mGluR6 were concentrated at
138 Cell Reports 25, 130–145, October 2, 2018
photoreceptor synapses, where they tightly co-localized in a

manner indistinguishable from wild-type retinas. (Figures 5I

and 5J). Moreover, mGluR6 and ELFN1 robustly co-immunopre-

cipitated from Pika�/� retinas, indicating their preserved interac-

tion (Figure 5K). Thus, we conclude that the effects of Pikachurin
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on synaptic targeting of GPR179 are specific and unlikely

caused by structural perturbations that largely preserve molecu-

lar environment and interactions at the synaptic cleft. Taken

together, these studies indicate that association with Pikachurin

plays an essential role in synaptic targeting of GPR179 and as-

sembly of the post-synaptic GAP complex in ON-BC neurons.

Localization and Function of Pikachurin-GPR179
Assembly Is Controlled by Pre-synaptic DG Complex in
Photoreceptors
In the synaptic cleft, Pikachurin is associated with the compo-

nents of the pre-synaptic DGC in photoreceptors that contain

extracellular a-DG, transmembrane b-DG, and intracellular

cytosolic dystrophins (Sato et al., 2008). Therefore, we next

evaluated the role of these pre-synaptic interactions that tether

Pikachurin in the cleft in controlling post-synaptic GPR179 com-

plex. We began our studies by examining Dmdmdx-4Cv and

Dmdmdx-3Cv mouse models with a partial loss of function in dys-

trophins compromising the expression of the longest isoforms in

photoreceptors (Dp427, Dp260, and Dp140) (Im et al., 1996;

Wersinger et al., 2011) and rather mild visual phenotypes (Pillers

et al., 1999b; Tsai et al., 2016). Analysis of protein expression

by western blotting revealed significantly reduced levels of

Pikachurin (20.5 ± 3.2%), GPR179 (57.9 ± 4.4%), and RGS11

(55.4 ±10.0%) in Dmdmdx-4Cv, with a smaller effect on RGS7,

which did not reach the level of statistical significance (Figure 6A).

A lack of decrease in the corresponding mRNA levels suggests

that the observed downregulation is likely caused by destabiliza-

tion of proteins at the synapse (Figure S2A), similar to findings in

Pika�/� retinas (Figure 4C). We next confirmed downregulation

of dystrophins and the previously observed effect on pre-synap-

tic b-DG inDmdmdx-4Cv retinas at photoreceptor synapses by im-

munostaining (Figure S2B). Strikingly, post-synaptic targeting of

GPR179 and associated RGS proteins was substantially

compromised (Figures 6C and 6D). We observed no changes

in synaptic accumulation of mGluR6 or TRPM1 in Dmdmdx-4Cv

(Figure 6B), again suggesting selective nature of synaptic distur-

bance. We further detected a significant reduction in the synap-

tic content of Pikachurin (Figures 6C and S2B), suggesting that

the localization deficits are driven by the loss of Pikachurin.

Importantly, using in situ PLA method, we found that GPR179-

Pikachurin interaction at the photoreceptor synapses was

severely disrupted in Dmdmdx-4Cv retinas (Figures S2C and
Figure 6. Disruption of the Pre-synaptic DGC Affects Post-synaptic GP

(A) Representative western blots and quantification of the indicated proteins

(n = 5 mice/genotype, *p < 0.05 and ***p < 0.001, Student’s t test).

(B) Confocal images of retina sections from WT and Dmdmdx-4Cv mice stained wi

(C) Representative confocal images of WT and Dmdmdx-4Cv mice stained with an

(D) Quantification of mGluR6, GPR179, RGS7, RGS11, and Pikachurin accumulat

are mean ± SEM (n = 3 mice/genotype, *p < 0.05, Student’s t test).

(E) Representative IHC of retina sections from WT and DG cKO mice using antib

(F) Quantification of synaptic accumulation of the indicated proteins in WT and

**p < 0.01, Student’s t test).

(G–I) Representative traces of ERG responses of dark-adapted WT (black) and (G

and n = 3 Pika�/�), and (I) DG cKO (orange; n = 3 WT and n = 3 DG cKO) mice a

(J) Correlation between level of RGS protein accumulation (average of RGS7 and R

F) at the dendritic tips of ON-BCs and delay in b-wave implicit time (quantified a

(K) Schematic model of the transsynaptic macromolecular complex of DGC-Pika
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S2D). Similar reduction in post-synaptic targeting of GPR179

and RGS proteins was also observed in another model with par-

tial loss in dystrophins, Dmdmdx-3Cv (Figure S2E), further vali-

dating our findings.

To further test the role of transsynaptic interactions, we used a

more severe disruption of DGC by ablation of DG using photore-

ceptor-specific conditional knockout (DG cKO) (Omori et al.,

2012). DG cKO features a nearly complete loss of synaptic Pika-

churin (Figures 6E and 6F) amid intact TRPM1 andmGluR6 local-

ization (Omori et al., 2012). Consistent with greater effect on

Pikachurin in this model, we found dramatic reduction in the

synaptic accumulation of GPR179 (29.0 ± 8.7%), RGS7 (30.4 ±

8.6%), and RGS11 (28.7 ± 7.4%) (Figures 6E and 6F). Together,

these observations in Dmdmdx-4Cv, Dmdmdx-3Cv, and DG cKO

with disruptions in various components of the DGC support the

idea that the pre-synaptic DGC is involved in transsynaptic

recruitment of post-synaptic GPR179 complex via Pikachurin.

To obtain insight into possible functional consequences of dis-

rupting transsynaptic interactions between DGC and GPR179

complexes, we evaluated synaptic transmission between photo-

receptors and ON-BC by electroretinography (ERG) directly

comparing functional effects in Dmdmdx-4Cv, Pika�/�, and DG

cKO models and correlating them with quantitative changes in

cytochemical synaptic organization. Specifically, we assessed

kinetics of b-wave generation that reflects ON-BC depolarization

in response to bright photopic flashes that suppress transmitter

release by both rod and cone photoreceptors. The GPR179-

RGS complex plays an essential role in speeding up the inactiva-

tion of Gao, thus accelerating the depolarizing light response in

ON-BCs. Consequently, a reduction in RGS levels at the den-

dritic tips is well known to result in a progressive slowing of the

b-wave onset (Sarria et al., 2015; Shim et al., 2012; Zhang

et al., 2010). This suggests that slowing in b-wave kinetics

seen upon DGC disruption (Omori et al., 2012; Pillers et al.,

1999b; Sato et al., 2008) may be driven by RGS insufficiency. If

this were the case, one would expect to observe a correlation

between reduction in synaptic RGS content and b-wave deceler-

ation. To test this hypothesis we quantified RGS levels in all three

DGC mutants and measured the onset kinetics of b waves side

by side using the same ERG paradigm. Indeed, we found that

the difference in the implicit times for the b-wave onset tightly

correlated with the post-synaptic RGS content: the kinetics

were fastest in wild-type (WT) retinas with intact RGS levels
R179-RGS Complex Stability and Targeting

in retina samples from WT and Dmdmdx-4Cv mice. Data are mean ± SEM

th mGluR6 (red) and TRPM1 (green).

tibodies against mGluR6, GPR179, RGS7, RGS11, and Pikachurin.

ion at the dendritic tips of ON-BCs. Nuclei were stained with DAPI (blue). Data

odies against mGluR6 (red) and GPR179 or RGS7 or RGS11 (green).

DG cKO mice. Data are mean ± SEM (n = 3 mice/genotype, *p < 0.05 and

) Dmdmdx-4Cv (blue; n = 6 WT and n = 7 Dmdmdx-4Cv), (H) Pika�/� (red; n = 3 WT

t 1 cd $ s/m2.

GS11 content quantified from experiments presented in Figure 4E and in D and

nd averaged from experiments presented in G–I).

churin and GPR179-RGS proteins.



and slower inDmdmdx-4Cvmice with mild RGS reduction; a larger

delay was observed in Pika�/� mice with a greater reduction in

RGS accumulation; and the greatest delay was detected in the

DG cKO model, in which the synaptic RGS levels were lowest

(Figures 6G–6I). In fact, a regression analysis revealed a nearly

perfect exponential correlation between these parameters (Fig-

ure 6J), strongly supporting our hypothesis. Thus, considering

the sum of these observations, we suggest that the transsynap-

tic coordination between DGC and the major GAP complex of

ON-BC is mediated by the Pikachurin-GPR179 complex, which

is involved in optimizing the temporal aspects of the synaptic

transmission.

DISCUSSION

In this study, we discover a transsynaptic molecular contact that

involves association of DGC with the orphan receptor GPR179.

We show that this interaction occurs at the specific synapse

between photoreceptors and ON-bipolar neurons and is medi-

ated by the ECM protein Pikachurin. We further demonstrate

that Pikachurin recruits the post-synaptic GAP complex,

composed of GPR179 and RGS7/11 proteins. Finally, we show

that this organization contributes to temporal characteristics of

the synaptic transmission. On the basis of our observations,

we propose a model in which the HSPG protein Pikachurin,

through its C-terminal EGF-like, laminin G domain and HS side

chains, acts as a transsynaptic bridge connecting the pre-

synaptic DGC with the extracellular domain of GPR179 on the

post-synaptic site. In turn, GPR179 recruits cytoplasmic RGS

proteins to control timing of mGluR6 inactivation and therefore

the speed of the post-synaptic response to light (Figure 6K).

This DGC-Pikachurin-GPR179 complex is a second example

of the transsynaptic link at photoreceptor synapses in addition

to previously described interaction of mGluR6 with ELFN1

(Cao et al., 2015).

With the tremendous cell-type diversity, one of the key chal-

lenges in the nervous system is establishing and maintaining

uniqueness of their synaptic communication channels that often

require input-specific precision for performing appropriate

computations. It is thought that such synaptic specification

requires establishing selective transsynaptic contacts involving

distinct molecular factors, but this process remains poorly

understood, in particular with relevance to functional identity

and its heterogeneity (de Wit and Ghosh, 2016). Our findings

provide an illustration of a molecular mechanism for specifying

unique properties of individual synaptic contacts between

well-defined neurons in the retina. Prior studies have demon-

strated that molecular interactions between pre-synaptic release

apparatus involving CaV1.4 channel complex in photorecep-

tors and post-synaptic mGluR6 receptor in ON-BC are essential

for physical synaptic wiring between these neurons (Cao et al.,

2015; Wang et al., 2017). The transsynaptic DGC-GAP bridge

reported in this study provides a second channel for the coordi-

nation between photoreceptors and ON-BCs. Although it does

not play a role in the establishment of physical synaptic con-

tacts of photoreceptors, the DGC-GAP complex specifies the

functional properties of this synapse by modulating GPCR

signaling.
The Pikachurin-DG complex localized at photoreceptor termi-

nals has been suggested to be involved in visual deficits

observed in muscular dystrophy patients (Omori et al., 2012;

Sato et al., 2008). In particular, visual deficits affect patients

with Duchenne muscular dystrophy with dysfunction in DGC

(Fitzgerald et al., 1994; Pillers et al., 1993). These deficits are

partially recapitulated in mouse models of the disease carrying

mutations in dystrophin gene and prominently include delays in

the b-wave onset and visual sensitivity changes (Pillers et al.,

1999a, 1999b; Ricotti et al., 2016). Prior studies suggested that

deficits in the photoreceptor to ON-bipolar synaptic transmis-

sion may be responsible for the phenotype, but the exact molec-

ular mechanisms remained elusive (Green et al., 2004; Omori

et al., 2012; Sato et al., 2008; Tsai et al., 2016). Our observations

suggest that these synaptic transmission deficits are explained,

at least in part, by the dysregulation of the GAP complex consist-

ing of GPR179 and RGS proteins. The levels of RGS protein

accumulation at the dendritic tips of ON-bipolar neurons deter-

mine the kinetics and sensitivity of their response to changes

in photoreceptor inputs (Sarria et al., 2015). Furthermore, com-

plete elimination of RGS7/11 (Cao et al., 2012; Shim et al.,

2012) or GPR179 (Audo et al., 2012; Peachey et al., 2012) abol-

ishes the synaptic communication of photoreceptors with

ON-bipolar neurons altogether. Our observations show that the

DGC is essential for the recruitment of the GAP complex, thus

suggesting that the synaptic deficits in Duchenne patients and

mouse models originate from disruption in the modulation of

the mGluR6 cascade by RGS proteins. In support of this model,

we found a strong correlation between varying extent of reduc-

tion in GPR179-RGS accumulation at synapses of several DGC

deficient models, including Pika�/�, DmdMdx-3cv, DmdMdx-4cv,

and DG cKO, and temporal effects on synaptic transmission.

Therefore, we think that reduction in GPR179-RGS synaptic

accumulation would be sufficient to decelerate synaptic trans-

mission and cause visual deficits in conditions associated with

the DGC dysfunction. Nevertheless, it is possible that visual phe-

notypes in patients with Duchenne muscular dystrophy and

related mouse models are not explained solely by the GAP com-

plex disruption. It should be also noted that disruption of DG

(Omori et al., 2012) and Pikachurin (Sato et al., 2008) also causes

ultrastructural deficits in the organization of the first visual syn-

apse. Thus, it is likely that DGC complex further shapes synaptic

transmission and causes functional alterations in photoreceptor

communication with ON-bipolar neurons via its effects on struc-

ture. However, given that there is no good correlation between

the degree of b-wave slowing and structural changes (e.g.,

loss of RGS or GPR179 severely compromises depolarizing

response generation of ON-BC with intact morphology) amid

normal molecular architecture of the synaptic cleft (intact

TRPM1 and transsynaptic mGluR6-ELFN1 assembly), we think

that such changes may play a secondary role in influencing the

kinetics of depolarizing response to light and rather affect other

aspects of the synaptic transmission. We would like to further

note that the severity of the synaptic transmission deficits

depends strongly on which component of the pre- or post-syn-

aptic complex is affected, from a mildly delayed b wave with

normal amplitude (Dmdmdx-4Cv) to a missing b wave (Gpr179nob5)

(Peachey et al., 2012), and intermediate phenotypes for Pika�/�
Cell Reports 25, 130–145, October 2, 2018 141



and DG cKO mice, making it possible that other components of

DGC further shape this process (Grady et al., 1997).

One of the central observations in this study is the demonstra-

tion that orphan receptors GPR158 and GPR179 are direct bind-

ing partners of HSPGs. HSPGs form a heterogeneous family of

secreted, membrane-bound, and transmembrane components

of the ECM that are ubiquitously expressed and regulate a range

of biological processes (Bishop et al., 2007; Sarrazin et al., 2011).

Importantly, HSPGs have been well documented to play an

essential role in the formation and maintenance of synaptic

contacts (de Wit et al., 2013; Kamimura et al., 2013; Siddiqui

et al., 2013). Thus, the specific case of GPR179-Pikachurin

that we evaluated in depth in this study could reflect a more uni-

versal mechanism that would generally involve pairing of

GPR158/179 with HSPG family members across synaptic con-

tacts in the nervous system. In agreement with this notion, our

accompanying study (Condomitti et al., 2018) presents evidence

for the role of another such pair GPC4-GPR158 in specifying

input-specific synaptic properties in developing hippocampal

CA3 pyramidal neurons. We think that further examples on this

theme abound and will be of interest to explore in future studies.

It will be further interesting to define whether additional elements

are present in the HSPG-GPR158/179 complexes. The modular

composition of HSPGs and their particular glycosylation pattern

are critical in creating a meshwork of transsynaptic protein-

protein interactions responsible for creating gradients of mor-

phogens and growth factors (Baeg et al., 2001; Sudhalter

et al., 1996; Yan and Lin, 2009). The interaction with HSPGs pre-

vents these molecules from degradation and diffusion, concen-

trating them at specific sites (Rosengart et al., 1988; Saksela

et al., 1988). Thus, we think it is possible that HSPGs may in

fact be co-receptors for GPR158/179 rather than their ligands

and act by creating ternary complexes required for further acti-

vation of signaling cascades initiated by these receptors.

By establishing extracellular binding partners for the poorly

characterized group of orphan receptors GPR158 and GPR179,

our study adds to a growing repertoire of such interactions. Most

of the known examples come from the ‘‘adhesion GPCR’’ class,

which in thenervoussystemestablish interactionwithsurfacemol-

ecules to coordinate synaptic development and function (Langen-

han et al., 2016). However, members of the class C receptors that

feature large ectodomains have also been shown to bind to extra-

cellular proteins (Cao et al., 2015; Tomioka et al., 2014). Our find-

ingsexpand the rangeof these interactionsandsuggest that asso-

ciationwithECMmaybeageneral feature involved incoordinating

GPCR function and/or exerting additional regulatory influence.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Sheep anti-GPR179 Orlandi et al., 2013 N/A

Rabbit anti-RGS11 Cao et al., 2009 N/A

Sheep anti-TRPM1 Cao et al., 2011 N/A

Sheep anti-mGluR6 Cao et al., 2011 N/A

Guinea Pig anti-mGluR6 Koike et al., 2010 N/A

Rabbit anti-RGS7 Gift from Dr. William Simonds

(Rojkova et al., 2003)

N/A

Rabbit anti-Dystrophin H4 Gift from Dr. Dominique Mornet

(Royuela et al., 2003)

N/A

Rabbit anti-ELFN1 Cao et al., 2015 N/A

Mouse anti-b-DG Novocastra Cat# B-DG-CE

Rabbit anti-Pikachurin Wako Cat#011-22631

Mouse anti-GAPDH Millipore Cat#AB2302; RRID:AB_11211911

Rabbit anti-c-myc GenScript Cat#A00172; RRID:AB_914457

Goat anti-Human-Fc-Alexa488 Life Technologies Cat#A11013

Mouse anti-Human-Fc Invitrogen Cat#MA1-10378

Mouse anti-PKCa Abcam Cat#ab11723; RRID:AB_298510

Mouse anti-GPR179 Yomics-Primm Biotech Cat#Ab887; RRID:AB_10792445

Rat anti-HA Roche Cat# 11867423001

Rabbit anti-RGS7 Upstate Biotechnology Cat#07-237

Sheep anti-RGS11 Cao et al., 2009 N/A

Rabbit anti-RFP Rockland Cat#600-401-379

Chicken anti-RFP Rockland Cat#600-901-379

Chicken anti-GFP Genscript Cat#A01694

Chemicals, Peptides, and Recombinant Proteins

Lipofectamine LTX Invitrogen Cat# 15338100

Protein G Sepharose GE Healthcare Cat# 17061801

HiTrap Heparin Sepharose GE Healthcare Cat# 17-0407-01

Heparinase III SIGMA Cat# H8891

Heparin BEANTOWN CHEMICAL Cat# 139975

Critical Commercial Assays

In-Fusion� HD Cloning kit Takara Bio USA Cat# 638910

pcDNA3.1/V5-His TOPO� TA Expression Kit Life Technologies Cat# K480001

Experimental Models: Cell Lines

HEK293T ATCC Cat# CRL-3216, RRID:CVCL_0063

Experimental Models: Organisms/Strains

Mouse: Pikachurin KO Sato et al., 2008 N/A

Mouse: Dmd(mdx-3Cv) (Chapman et al., 1989; Im et al., 1996 N/A

Mouse: Dmd(mdx-4Cv) Chapman et al., 1989; Im et al., 1996 N/A

Mouse: DG conditional KO Omori et al., 2012 N/A

Mouse: mGluR6 KO Riken Bioresource Center Cat# RBRC05552, RRID:IMSR_RBRC05552

Recombinant DNA

Full-length GPR158-myc in pcDNA3.1 Orlandi et al., 2012 N/A

Full-length GPR179-myc in pcDNA3.1 Orlandi et al., 2012 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Fc Cao et al., 2015 N/A

Ecto-GPR158-Fc This paper N/A

Ecto-GPR179-Fc This paper N/A

GPC1-HA in pcDNA3.1 This paper N/A

GPC5-HA in pcDNA3.1 This paper N/A

SDC4-HA in pcDNA3.1 This paper N/A

Pikachurin-HA in pcDNA3.1 This paper N/A

pCAG-PikachurinFL-mCherry Omori et al., 2012 N/A

pCAG-PikachurinLG1-3-mCherry Omori et al., 2012 N/A

pCAG-PikachurinLG2-3-mCherry Omori et al., 2012 N/A

pCAG-PikachurinFN-LG2-3-mCherry Omori et al., 2012 N/A

pCAG-PikachurinFN-mCherry Omori et al., 2012 N/A

pCAG-PikachurinFN-LG1-2-mCherry This paper N/A

pCAG-PikachurinLG3-mCherry Omori et al., 2012 N/A

pCAG-PikachurinSP-mCherry Omori et al., 2012 N/A

pRho-Pikachurin-HA-P2A-EYFP This paper N/A

pGRM6_200bp-ectoGPR179-myc-P2A-EYFP This paper N/A

Software and Algorithms

Fiji/ImageJ National Institutes of Health (NIH) SCR_003070

Zen2.1 SP1 (Black) Carl Zeiss SCR_013672

MetaMorph image analysis software Molecular Devices SCR_002368

EM LKC Technologies software Cao et al., 2015 N/A

Prism6 GraphPad Software SCR_002798

Other

TaqMan Gene Expression Assay Probe: Egflam Applied Biosystems Cat#Mm01298063_m1

TaqMan Gene Expression Assay Probe: Gpr179 Applied Biosystems Cat#Mm00615352_m1

TaqMan Gene Expression Assay Probe: Rgs7 Applied Biosystems Cat#Mm01317058_m1

TaqMan Gene Expression Assay Probe: Rgs11 Applied Biosystems Cat#Mm01309856_m1

TaqMan Gene Expression Assay Probe: Gapdh Applied Biosystems Cat#Mm99999915_g1
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kirill

Martemyanov (kirill@scripps.edu).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

All experiments were conducted in accordance with the ARVO statement for the use of animals in vision research and guidelines

set forth by NIH and approved by the IACUC committee at the Scripps Research Institute. mGluR6�/� (129S6.129S(Cg)-

Grm6 < tm1Nak >) were obtained from Riken Bioresource Center (RBRC05552), DmdMdx-4cv and DmdMdx-3cv mice was purchased

from The Jackson Laboratory. The generation ofPika�/�, Gpr179nob5, and photoreceptor-specific DG conditional knockout (DGcKO)

mice was previously described (Omori et al., 2012; Peachey et al., 2012; Sato et al., 2008). Mice were maintained in a pathogen free

facility under standard housing conditions with continuous access to food and water. Mice used in the study were 1–2 months old,

and were maintained on a diurnal 12 hr light/dark cycle. No mice displayed health or immune status abnormalities and were not

subject to prior procedures. The genotypes of mice are described where appropriate.

METHOD DETAILS

Antibodies and genetic constructs
The following commercial antibodies were used: rat anti-HA (Roche), rabbit anti-myc (GenScript), rabbit anti-Pikachurin (Wako),

mouse anti-b-DG (Novocastra), mouse anti-PKCa (Abcam), mouse anti-GAPDH (Millipore) mouse anti-human-Fc (ThemoFisher
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Scientific), chicken anti-GFP (Genscript), rabbit anti-RFP (Rockland) and chicken anti-RFP (Rockland). Mouse anti-GPR179 (Yomics-

Primm Biotech) was used for IHC experiments. Rabbit anti-RGS7 (7RC-1), used for IHC on retina sections was a kind gift from

Dr.William Simonds (NIDDK, National Institutes of Health, Bethesda) while rabbit anti-RGS7 (Upstate) were used for western blotting.

Generation of sheep anti-GPR179, sheep anti-mGluR6, guinea pig anti-mGluR6, sheep anti-TRPM1, rabbit anti-RGS11, rabbit anti-

ELFN1, and Dystrophin H4 (a kind gift from Dr. Dominique Mornet, Université de Montpellier) was previously described (Cao et al.,

2009; Cao et al., 2011; Cao et al., 2015; Cao et al., 2008; Koike et al., 2010; Martemyanov et al., 2005; Orlandi et al., 2013; Royuela

et al., 2003).

Cloning of full-length mouse GPR158-myc and human GPR179-myc was described (Orlandi et al., 2012). To obtain Fc tagged

ecto-GPR158 and ecto-GPR179 expression constructs, the mouse GPR158 (aa 1-417) and human GPR179 (aa 1-380) were sub-

cloned into a previously described pcDM8-derived plasmid expressing the Fc domain of human IgG1 (Farzan et al., 1999) between

XhoI and BamHI restriction sites. The control Fc expression construct was the 3CPro expression vector (a gift from Dr. Davide

Comoletti, The Child Health Institute of NJ, New Brunswick, NJ, USA). Genetic constructs encoding the full-length sequence of

human Pikachurin (GenBank: BC063822.1; cDNA clone MGC:74567), Glypican-1 (GenBank: BC051279.1; cDNA clone

MGC:59855), Glypican-5 (GenBank: BC039730.1; cDNA clone MGC:47702) and Syndecan-4 (GenBank: BC030805.1; cDNA clone

MGC:22217) were purchased from GE Dharmacon. Each sequence was sub-cloned into pcDNA3.1 vector for mammalian expres-

sion and a HA tag was added at the C terminus with In-Fusion HD Cloning technology (Clontech). Plasmids encoding deletions of

mouse Pikachurin fused with mCherry in their C terminus were generated by subcloning into pCAG-mCherry backbone. The con-

structs used for in vivo electroporation was generated using In-Fusion HD cloning kit (Clontech) as follows: the human Pikachurin

sequence fused with a HA tag in its C terminus and the P2A-EYFP cassette were amplified by PCR reaction and mixed with a

PCR-amplified backbone vector containing the 4.4 kb mouse rhodopsin promoter (Lem et al., 1991) to generate the pRho-Pikachuri-

nHA-P2A-EYFP vector. The human GPR179 ectodomain sequence (aa 1-380) fused with a myc tag in its C terminus and the P2A-

EYFP cassette were amplified by PCR reaction and mixed with a PCR-amplified backbone vector containing the mGluR6 promoter,

a kind gift from Connie Cepko (Kim et al., 2008), to generate the pGRM6-ectoGPR179myc-P2A-EYFP vector. All constructs were

verified by DNA sequencing.

Quantitative real-time PCR
Total RNA from retina was extracted using TRIZOL reagent (Invitrogen) according to the manufacturer’s instructions. The RNA in the

aqueous phase was further purified using RNeasy spin column (QIAGEN). The concentration of purified RNA was obtained with a

NanoDrop spectrophotometer (Thermo Fisher Scientific). Reverse transcription was carried out using qScript cDNA Supermix

(Quantabio) for qRT-PCR according tomanufacturer’s instructions starting from 800 ng of total RNA. The analysis of RNA expression

of the target genes was performed on a 7900HT Fast Real-Time PCR System (Applied Biosystems) with Taqman probes under the

following conditions: 95�C for 10 min, followed by 40 cycles of 95�C for 15 s, 60�C for 1 min. 5 biological replicates and 3 technical

replicates for each sample were used. 16 ng of each sample were used in each real-time PCR (TaqMan Gene Expression Assay ID

probes: Rgs7: Mm01317058_m1; Rgs11: Mm01309856_m1; Gpr179: Mm00615352_m1; Egflam: Mm01298063_m1; Applied

Biosystems). The expression ratio of the target genes was calculated using the Gapdh (ID: Mm99999915_g1) as reference using

the 2-DDCT method (Livak and Schmittgen, 2001).

Cell culture, transfection, western blotting, immunoprecipitation, and pull-down assay
HEK293T/17 cells were cultured at 37�Cand 5%CO2 in DMEMsupplemented with 10%FBS,MEMnon-essential amino acids, 1mM

sodium pyruvate, and antibiotics (100 units/ml penicillin and 100 mg/ml streptomycin). Cells were transfected using Lipofectamine

LTX (Invitrogen), harvested 24 h later, lysed in ice-cold IP buffer (300 mM NaCl, 50 mM Tris-HCl pH 7.4, 1% Triton X-100 and

complete protease inhibitor cocktail) by sonication. For immunoprecipitation, lysates were cleared by centrifugation at 14,000 g

for 15 min, and the supernatants were incubated with 20 ml of Protein G Beads (GE) and 2 mg of antibodies on a rocker at 4�C for

1 h. After three washes with IP buffer, proteins were eluted with 40 ml of 2X SDS sample buffer. Samples were analyzed by SDS-PAGE

followed by western blotting using HRP-conjugated secondary antibodies and an ECL West Pico (Thermo Scientific) detection sys-

tem. For pull-down assays, Fc or ectoGPR179-Fc from transfected HEK293T/17 media were purified by incubation for 1 hr at 4�C
with protein G beads. The beads were then incubated for 1 hr at 4�Cwith lysates of cells expressing the indicated constructs derived

from Pikachurin fused to mCherry. Effective pull-down was verified by immunoblotting using antibodies against mCherry (rabbit

anti-RFP; Rockland) or Fc fragments (mouse anti-human-Fc; ThemoFisher Scientific).

Heparinase III treatments
HEK293 cells were transfected with Pika-FL-mCherry, cultured for 16 hr, washed to remove FBS and cultured for additional 24 hr

in Optimem. Conditioned medium was collected, concentrated with Amicon filters (30 kDa cutoff) to a final volume of 300 ml

and supplemented with (final concentrations) Tris-HCl pH 7.5 (20 mM), CaCl2 (4 mM) and Heparinase III (1U/ml; SIGMA).

Heparinase III was not added in untreated controls. Samples were incubated for 2h on a rocker at 37�C. In parallel, HEK293 cells

transfected with GPR179-myc or pcDNA3.1 as negative control, were prepared for immunoprecipitation using rabbit anti-myc

antibodies and conjugated to protein G beads. The beads were then mixed with heparinase III, treated Pikachurin for 1 hr at 4�C,
washed 4 times and eluted for western blot analysis.
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Purification of ecto-Fc proteins and mass spectrometry
4 hr after transfection with Fc or GPR-Fc constructs, themedium of HEK293T/17 cells were changed with Optimem. The conditioned

Optimem containing the secreted Fc-fused proteins was collected after 72 hr. Dead cells were eliminated by centrifugation and the

mediumwas incubated with 30 ul of Protein G beads (GE) for 1 hr at 4�C. Beads were then washed 3 times with 1% Triton X-100/PBS

and retained proteins were eluted with 40 ul of 2X sample buffer (62 mM Tris, 10% glycerol, 2% SDS, and 5% b-mercaptoethanol),

entered and SDS-PAGE by applying�150 mV for 15-20 min. Gels were fixed with using 5% acetic acid in 50%methanol, stained by

NOVEX colloidal blue (Invitrogen). Stained areas were cut out, digestedwith trypsin (Promega), and alkylated as described previously

(Shevchenko et al., 2006). The resulting peptide mixtures were desalted, resolved by high-pressure liquid chromatography, and

analyzed using LTQ-Orbitrap XL mass spectrometer, as described previously (Posokhova et al., 2011).

Immunocytochemistry and Immunohistochemistry
The staining of Pikachurin-HA has been performed on live cells without permeabilization. HEK293 cells were plated on 12 mm

coverslips coated with Poly-D-lysine (SIGMA) and transfected with indicated DNA constructs. Transfected cells were incubated

overnight at 4�Cwith rat anti-HA antibody (Roche) in PBS containing 2% donkey serum. After a brief wash with PBS, cells were fixed

for 15 min with 4% paraformaldehyde. After three washes with 0.1% Triton X-100/PBS, cells were incubated with Alexa Fluor

546-anti-rat secondary antibodies for 1 hr, washed, and the coverslips where then mounted before mounting in Fluoromount-

DAPI (SouthernBiotech).Eyecups were dissected from mice, fixed for 15 min with 4% paraformaldehyde (PFA), cryoprotected

with 30% sucrose in PBS for 2 h at room temperature (RT) and embedded in OCT. 12 mm frozen sections were obtained using a cryo-

stat, permeabilized with 0.1% Triton X-100/PBS for 5 min, blocked with 0.1% Triton X-100/PBS and 10% donkey serum for 1 hr and

incubated with primary antibodies in 0.1% Triton X-100/PBS and 2%donkey serum for 1 hr. After 3 washes, sections were incubated

with Alexa Fluor 488, 546 or Cy3-conjugated secondary antibodies or Alexa Fluor 647-conjugated PNA for 1 hr. Sections were then

washed and mounted using Fluoromount-DAPI (SouthernBiotech).

Proximity Ligation Assay
Proximity Ligation Assays were performed as previously described (Orlandi et al., 2013). Briefly, sections were prepared, permea-

bilized, and blocked as for immunohistochemistry and then incubated with primary antibodies (sheep anti-GPR179 1:50; rabbit

anti-Pikachurin 1:200 and mouse anti-PKCa 1:100) for 1 hr at RT, followed by 4 washes. The sections were then incubated with

Plus-anti-rabbit and Minus-anti-sheep Probemaker-conjugated PLA probes (SIGMA) together with Alexa Fluor 488-conjugated

anti-mouse antibody (Invitrogen) in PLA Probe Diluent and Assay Reagent 20X, for 1 hr at 37�C. Sections were washed 4 times, incu-

bated with Ligation-Ligase mix (Ligation Stock 5X with Ligase in high purity water) for 30 min at 37�C, washed 3 times and incubated

with Amplification-Polymerase mix (Amplification Stock 5X and Polymerase in high purity water) for 100 min at 37�C. Sections were

then washed and mounted with Fluoromount-DAPI (SouthernBiotech). The quantification of PLA particles was performed using

ImageJ software. A constant area (4800 mm2) was drawn across either the OPL or INL and all positive PLA particles within the

area were automatically counted. The total number of bipolar cells that contribute to the formation of these synapses was counted

based on DAPI staining and the resulting value was used to normalize the PLA quantification.

In vivo retina electroporation
In vivo electroporation was performed as previously described (Matsuda and Cepko, 2004). Briefly, newborn mouse pups were first

anesthetized by chilling on ice. A small incision wasmade in the eyelid and sclera near the lens with a 30-gauge needle. Then�0.5 mL

of DNA solutions (pRho-PikachurinHA-P2A-EYFP, �5 mg/ml) containing 0.1% fast green were injected sub-retinally using a Hamilton

syringe with 32 gauge blunt-ended needle. After injection, tweezer-style electrodes (7 mm Platinum Tweezertrodes, BTX/Harvard

Apparatus) applied with electrode gel (Spectra 360, Parker Laboratories, INC.) were placed to clamp softly the head of the pup.

5 square pulses (50 ms duration, 85V, 950 ms intervals) were applied by using a pulse generator (Electro Square Porator, ECM

830, BTX/Harvard Apparatus). Retinas were harvested 3 weeks after electroporation (postnatal day 21), dissected and checked

for EYFP expression using fluorescence microscopy (Leica DMI 6000B).

Confocal Imaging
Images used in this article were generated at The Light Microscopy Facility, the Max Planck Florida Institute, using a Zeiss LSM 880

confocal microscope (Plan-Apochromat 63x/1.4 Oil DIC M27; C-Apochromat 40x/1.2 W Korr FCS M27 and Plan-Apochromat

20x/0.8 M27), at Osaka University on Zeiss LSM700 confocal microscope (alpha Plan-Apochromat 100x/1.46 Oil DIC M27), or at

IGBMC Imaging Center using a Leica SP5 microscope (Plan-Apochromat 63x/1.4 Oil) at room temperature. Image acquisition

and processing was accomplished using ZEN 2011, ZEN 2009 or LAS-AF software packages with only minor manipulations of

the images setting the fluorescence intensity in non-saturating conditions and maintaining similar parameters for each acquired

image.

Bioinformatics
Alignment of GPR158 and GPR179 mouse sequences and identification of a consensus motif were generated using the software

ESPript3.0 (Robert and Gouet, 2014). Gene Ontology (GO) enrichment analysis was performed on the list of 129 proteins specifically
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co-purified with the ecto-GPR158-Fc protein using the Database for Annotation, Visualization and Integrated Discovery (DAVID) tool

(Huang et al., 2009). The HSPG Fold Enrichment was calculated as the ratio of number of identified HSPGs on the total number of

HSPGs (12/17, 70.59%) and the background information 129/20581 (0.63%) of genes identified.

Multiple alignment of 197 sequences corresponding to Pikachurin across species were performed by a similarity search using the

blastp program against the Refseq_protein database (protein sequences from NCBI Reference Sequence project). Parameters used

included at least 90% coverage and 50% homology compared to the Pikachurin mouse sequence (NP_001276425.1). Amino acids

that were identical in all 197 sequences were highlighted to recognize the most conserved regions.

Electroretinography
Electroretinograms were recorded as previously described (Omori et al., 2015; Sarria et al., 2015; Yamazaki et al., 2013) using either

UTAS (LKC Technologies) or PuREC (Mayo Corporation) systems. Mice were dark-adapted overnight prior to ERG measurements.

ERG traces were analyzed using Sigma Plot and Microsoft Excel using previously described approaches (Sarria et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

We used Student’s t test to analyze densitometry data from western blot experiments obtained with ImageJ software. Confocal

images from immunohistochemistry experiments were used to quantify protein accumulation at the dendritic tips of ON-BCs using

Metamorph or ImageJ software packages. A minimum of 3 biological replicates was used for each statistical analysis. Sample sizes

ranging from 3 to 6 for biochemical assays (e.g., western blot and IHC) and electrophysiological assays (e.g., ERG) were estimated

based on minimum number sufficient to invoke Central Limit Theorem and expected effect sizes observed in previous studies exam-

ining the same endpoints. Data from all subjects and samples examined were included with no exclusions. SEM values are provided

for each of the plotted mean. Details on particular quantification procedures and analyses are provided in the corresponding section

of the STAR Methods section. The confidence values below p < 0.05 were considered to be statistically significant.
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