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ABSTRACT

Nonnegative matrix factorization (NMF) has become a method of

choice for spectrogram decomposition. However, its inability to cap-

ture dependencies across columns of the input motivated the intro-

duction of a variant, convolutive NMF. While algorithms for solv-

ing the convolutive NMF problem were previously proposed, they

rely on the use of a heuristic that does not insure the convergence

of the algorithm (in particular in terms of objective function values).

The goal of this work is to propose rigorous update rules, based on

a majorization-minimization (MM) approach, for convolutive NMF

with the β-divergence (a standard family of measures of fit). Specif-

ically, we derive and study two variants of a convolutive NMF al-

gorithm that are guaranteed to decrease the objective function value

at each iteration. The complexity of the algorithms is studied, and

the performance in terms of execution time and objective function

are evaluated and compared in several numerical experiments using

real-world audio data. Experiments show that the proposed MM al-

gorithms consistently provide lower values of the objective function

than the heuristic, at similar computational cost.

Index Terms— Nonnegative matrix factorization (NMF),

majorization-minimization (MM)

1. INTRODUCTION

Nonnegative matrix factorization (NMF) consists of decomposing

nonnegative data V ∈ R
M×N
+ , such as a spectrogram, into

V ≈WH (1)

where W ∈ R
M×K
+ and H ∈ R

K×N
+ are two nonnegative matri-

ces referred to as dictionary and activation matrix, respectively. K

is usually chosen such that the decomposition is low-rank (K <

min(M,N)). NMF is known to produce a factorization that gives

a part-based representation of V. This method, popularized by Lee

and Seung [1], has led to state-of-the-art results in audio source sep-

aration [2, 3, 4] and music transcription [5, 6]. In the context of

audio processing, NMF is typically applied on a spectrogram, with

each column corresponding to one time frame of data. It can lead to

a meaningful decomposition where the dictionary tends to capture

the vertical structure (spectral patterns) while the activation matrix

encodes how these are mixed.

In audio data, it is common that spectral patterns (e.g., a note)

extend over several time frames. However, by construction, W

in the factorization (1) cannot model such temporal dependencies

∗Supported by ERC grant #681839 (European Union’s Horizon 2020 re-
search and innovation program, project FACTORY).
†Supported by NSF grant #1453104.

among the columns of V. This limitation of NMF (1) (which will

be termed traditional NMF hereafter to avoid ambiguities) has mo-

tivated the introduction of a variant, the so-named convolutive NMF,

which is able to capture these temporal dependencies efficiently and

encode them in a single pattern. Convolutive NMF computes

V ≈ V̂
△
=

T−1
∑

t=0

W(t)
t→

H (2)

where {W(t)}t ∈ R
M×K
+ are nonnegative matrices referred to as

dictionaries. The notation t→. denotes the operator which shifts the

entries of a matrix by t columns to the right and replaces the ones

shifted in from outside the matrix with zeros. In other words, each

column of V̂ is given by a convolution v̂n =
∑

t W(t)hn−t where

hn denotes the n-th column of H. The columns wk of the dictionary

W in traditional NMF now become patches

Pk = [wk(0), . . . ,wk(T − 1)] ∈ R
M×T
+ (3)

which capture patterns of length T .

Convolutive NMF was originally introduced in [7]. In that work,

the author also proposed an algorithm for finding an approximation

V̂ as in (2), by minimization of an objective function of the form

D(V|V̂), where D(·|·) is a measure of fit, cf. (4) below. However,

the update rule for H in [7] is based on a heuristic, see Section 3.2

for details. This constitutes an important limitation because it leads

to an algorithm that does not guarantee the decrease of the objec-

tive function value. Moreover, the update rules were derived only

for a variant of the Kullback-Leibler divergence. Other authors [8]

derived update rules for convolutive NMF based on the Euclidean

distance criterion but use the same kind of heuristic to update H.

Goals and contributions. The goal of this paper is to provide rig-

orous algorithms for solving the convolutive NMF problem (briefly

recalled in Section 2) that guarantee a decrease of the objective

function values between two iterates. Our approach is based on the

majorization-minimization (MM) technique [9], which is widely

used in the context of NMF and leads to inexpensive update rules.

Specifically, we derive two new update rules for H that ensure the

convergence of the objective function value (cf. Section 3). The

new algorithms are found to have identical leading-order complexity

O(MKNT ) as the previous, heuristic formulation, yet to lead to

significant practical benefits in terms of obtained objective function

values (cf. Section 4). MATLAB codes for the proposed novel

algorithms are made available online.

2. CONVOLUTIVE NMF

The goal of convolutive NMF is to minimize some measure of fit be-

tween the data and the approximate factorization (2). Finding latent



Algorithm 1: Convolutive NMF

Input : V, K, β

Output: {W(t)}t,H

Initialize H and W(t), t = 1, . . . , T
for i = 1 : Niter do

Update H

Update W(t), t = 1, . . . , T
Normalize H and W(t), t = 1, . . . , T

end

factors {W(t)}t and H satisfying (2) is achieved by solving

min
{W(t)}t,H

D

(

V

∣

∣

∣

∣

∣

T−1
∑

t=0

W(t)
t→

H

)

s.t. ∀t W(t) ≥ 0,H ≥ 0 (4)

where D(·|·) is a measure of fit. This paper will assume that D be-

longs to the family of the β-divergences [10, 11], which is popular

in NMF and encompasses the squared Euclidean distance, the gener-

alized Kullback-Leibler (KL) divergence and the Itakura-Saito (IS)

divergence for values of β of 2, 1 and 0, respectively.

Note that, as for traditional NMF, convolutive NMF suffers from

a scale indeterminacy as for any solution ({W(t)}t,H) of the prob-

lem in (4), ({W(t)Λ−1}t,ΛH) is also a solution, where Λ is a

K × K diagonal matrix, with diagonal elements λk > 0. Simi-

larly to traditional NMF, we can define a renormalization matrix as

Λ = diag (||P1||1, ..., ||PK ||1). The normalization ∀t W(t) ←
W(t)Λ−1, H ← ΛH, results in patches which have their ℓ1-norm

equal to 1.

Likewise [7], we propose to resort to a block-coordinate de-

scent algorithm that alternates between updates for the latent fac-

tors {W(t)}t and H to solve (2). The global algorithm to solve

the convolutive NMF problem can be found in Algorithm 1. In the

following, we study in detail the update steps for {W(t)}t and H.

3. ALGORITHMS FOR UPDATING {W(t)}t AND H

3.1. Update rule for {W(t)}t

Unlike traditional NMF, convolutive NMF involves T dictionaries

denoted {W(t)}t. Yet, minimizing D(V|V̂) for a given dictionary

W(t) with H and {W(τ)}τ 6=t fixed leads to minimizing

D



V

∣

∣

∣

∣

∣

∣

W(t)
t→

H +
∑

τ 6=t

W(τ)
τ→

H



 t = 0, . . . , T − 1, (5)

which, for each t = 1, . . . , T , can be seen as a NMF subproblem

with a residual term, i.e., the minimization of a function of the form

D(V|WH+R) with H and R fixed. Using the results of [12], the

MM update for W(t) is therefore given by

W(t)←W(t) ◦







(

V ◦ V̂◦(β−2)
)

t→

H

T

V̂◦(β−1)
t→

H

T







◦γ(β)

, (6)

where ◦ denotes the entry-wise product/exponentiation, γ(β) =
(2 − β)−1

1{β<1} + 1{1≤β≤2} + (β − 1)−1
1{β≥2} and 1I is

the indicator function of set I. In the remaining of the paper, the

dictionaries will always be updated using (6).

3.2. Heuristic update for H

Unlike the dictionaries {W(t)}t, the NMF subproblems (5) are tied

by a unique (shifted) activation matrix H. The update rule for H

proposed in [7] proposes to bypass this difficulty by introducing T

uncoupled surrogate activation matrices H̄(t) that replace
t→

H in (5).

The set of surrogate activation matrices are updated independently

and then averaged to form the new update of H. The update for the

t-th surrogate activation matrix H̄(t) is given by the traditional NMF

(with residual) update rule

H̄(t)← H ◦













W
T (t)

[

←t

V ◦
( ←t

V̂

)◦(β−2)
]

WT (t)
( ←t

V̂

)◦(β−1)













◦γ(β)

, (7)

which we state here for the β-divergence [12]. The average then

writes

H← 〈H̄(t)〉t. (8)

The artificial de-coupling using surrogate matrices H̄(t) implies that

there is no guarantee for a monotonous decrease of the objective

function. We can thus expect that the objective function may not

decrease at each step, and experiments confirm that this happens in

practice (see Section 4). Algorithm 2 sums up the heuristic proce-

dure to update H.

3.3. Sequential MM update for H

We now propose an update rule following a formal MM approach

that respects the convolutive structure of the problem. This is

achieved by updating the columns of H sequentially (forward pass).

The objective function is

D(V|V̂) =

N
∑

n=1

D



vn

∣

∣

∣

∣

∣

∣

ρ(n)
∑

t=0

W(t)hn−t



 (9)

with ρ(n) = (n− 1)1{n<T}+(T − 1)1{n≥T}. Minimizing the di-

vergence in (9) with respect to a particular column hn of H amounts

to minimizing

Cn(hn) =
∑

n′∈I(n)

D



vn′

∣

∣

∣

∣

∣

∣

ρ(n′)
∑

t=0

W(t)hn′−t





=
∑

n′∈I(n)

D
(

vn′

∣

∣W(n′ − n)hn + b(n′, n)
)

(10)

with b(n′, n) =
∑

t 6=(n′−n) W(t)hn′−t and I(n) = [n,min{n+

T − 1, N}]. The vector b(n′, n) does not depend on hn but only on

(the current value of) neighboring columns. Finding an upper bound

to Cn(hn) can be done by bounding the individual summands in

(10) and summing the bounds. The summands are given by

D(vn′ |W(n′ − n)hn + b(n′, n)) =

∑

m

D

(

vmn′

∣

∣

∣

∣

∣

∑

k

wmk(n
′ − n)hkn + bm(n′, n)

)

.

(11)

The summands in (11) can themselves be decomposed as the sum

of convex and concave parts which can be bounded with Jensen and



Algorithm 2: Three different algorithms to update H

Input : V, V̂, {W(t)}t, H, β

Output: H

Variant 1 - Heuristic:

Compute each H̄(t) as in (7)

Update H as in (8)

Update V̂

Variant 2 - MM1:

for n = 1 : N do
Update hn as in (12)

Update the Card(I(n)) columns of V̂ altered by hn

end

Variant 3 - MM2:

for n = 1 : N do
Update hn as in (12)

end

Update V̂

tangent inequalities, following [10, 12]. The overall resulting bound

can be minimized analytically, leading to

hn ← hn ◦

(
∑

n′∈I(n) W
T (n′ − n)(vn′ ◦ v̂

◦(β−2)

n′ )
∑

n′∈I(n) W
T (n′ − n)v̂

◦(β−1)

n′

)◦γ(β)

.

(12)

It is easy to see that the update rule is consistent with traditional

NMF. Indeed, when setting T = 1, (12) boils down to the traditional

NMF multiplicative MM update [10].

The block-coordinate descent architecture dictates that we up-

date V̂ after each update of a column of H. It is unnecessary to

update the whole V̂ after updating hn since only the columns n to

min{n + T − 1, N} of V̂ are altered by the update of hn. This

method for updating H, summarized in Algorithm 2, will be called

MM1 thereafter.

3.4. Sequential formulation of the global MM update for H

It can be shown that the convolutive NMF problem can be solved

by casting it as a traditional NMF problem by unfolding the con-

volution in a higher dimensional space. Indeed, introducing vec(·)
the vectorization operator and ⊗ the Kronecker product, (2) can be

written as vec(V) ≈ W vec(H) using the property vec(AB) =
(I⊗A)vec(B) where

W =

T−1
∑

t=0

tւ

IN ⊗W(t) (13)

and
tւ

IN denotes the N×N matrix of zeros with a t-th subdiagonal of

ones. W is a MN ×KN block-band matrix resulting from the sum

of all Kronecker products. This matrix is nonnegative and can thus

play the role of the dictionary in a traditional NMF problem. Using

this formulation, the activation H can be updated with standard MM

[10], leading to

vec(H)← vec(H) ◦





WT vec
(

V ◦ V̂◦(β−2)
)

WT vec(V̂◦(β−1))





◦γ(β)

. (14)

β Algorithm MKNT MNT KNT MKT

Heuristic 12 6 2 2
0 MM1 12 5 0 3

MM2 12 5 0 3
Heuristic 8 4 3 3

1 MM1 9 5 0 2
MM2 9 5 0 2

Heuristic 12 0 1 1
2 MM1 12 2 0 3

MM2 12 2 0 3

Table 1. Leading terms in the complexities per iteration of the con-

volutive NMF algorithms (number of flop operations). Lower order

terms are not shown for conciseness.

Interestingly, it can be shown that performing this update is equiv-

alent to performing the update (12) sequentially, i.e., for n =

1, . . . , N , without refreshment of V̂ after each update of hn but

only once after updating all the columns. This leads to an efficient

sequential algorithm that performs a global MM update of H, which

avoids creating and manipulating the large-scale MN×KN matrix

W . This algorithm will be referred to as MM2 and is summarized

in Algorithm 2.

3.5. Complexity analysis

The complexity of the three convolutive algorithms obtained by

combining the update of {W(t)}t defined in Section 3.1 with those

of H proposed in Sections 3.2, 3.3 and 3.4 are given in Table 1.

We can see that the dominant terms are O(MKNT ) for all three

algorithms and divergences, and hence T times the complexity

O(MKN) of traditional NMF.1

4. EXPERIMENTS

4.1. Description of the data

The following experiments will use a 23-second musical excerpt of

Mamavatu by Susheela Raman sampled at 16 kHz. We used a 640
point spectrum (40 ms) which resulted in M = 321 distinct fre-

quency bins. We applied 50% overlapping sinebell windows before

performing the discrete Fourier transform. This leads to N = 1191
time frames. We consider three values of β ∈ {0, 1, 2}, correspond-

ing to the IS, KL and squared Euclidean loss, respectively. The non-

negative data matrix V is computed as the squared magnitude spec-

trogram for β = 0 and as the magnitude spectrogram for β = 1
and β = 2, which corresponds to three commonly used choices

[2]. Each run the three convolutive NMF algorithms is initialized

the same starting points. We perform experiments based on a fixed

number of iterations Niter which appears to be roughly equivalent to

fixing the execution time of each algorithm. All the experiments are

run on a single core of a DELL PowerEdge R620 equipped with 2

Intel Xeon E5-2690v2 @ 3.0 GHz and 128 GB of RAM. The experi-

ments were run using MATLAB. Code implementing the algorithms

and the experiments is made available online.2

1Note that complexity of traditional NMF can be reduced when β = 2

by computing W
T
V̂ as (WT

W)H [13]. Unfortunately, this trick is not

possible in convolutive NMF since V̂ is a sum of several terms in this case.
2https://www.irit.fr/˜Cedric.Fevotte/extras/icassp2019/

code.zip



Fig. 1. Evolution of the objective function over 104 iterations for the

Mamavatu experiment with the execution time (left) and zoom at the

end (right).

T Algorithm β = 0 β = 1 β = 2
Heuristic 41 35 34

3 MM1 360 302 149
MM2 247 203 87

Heuristic 76 54 65
5 MM1 523 321 220

MM2 426 263 142
Heuristic 136 112 119

10 MM1 1045 890 450
MM2 860 611 292

Table 2. Execution time per iteration (in milliseconds).

4.2. Single run experiment

To start, we carry out an experiment where the algorithms are run

once for β = 0 with T = 10, K = 10 and using Niter = 104

iterations, providing an overall idea of the execution speeds and be-

havior of the objective function values. We can see in Fig. 1 that

the heuristic runs faster than the two MM algorithms on this run,

and that MM1 is slightly slower than MM2. The experiment high-

lights the fact that the heuristic does not always decrease the objec-

tive function value, while the proposed MM algorithms ensures its

monotonic decrease. Moreover, MM1 and MM2 yield substantially

smaller objective function values than the heuristic (and after a few

iterations only).

4.3. Execution time

The second experiment uses the same setting than in Section 4.2

but considers multiple values for T and β. The goal is to exam-

ine the influence of these parameters on the execution speed. Re-

sults are reported in Table 2 and confirm that the execution time for

each algorithm is proportional to (and hence increases with) convo-

lution length T . This was to be expected given the linear complexity

O(MKNT ) per iteration of all algorithms. The algorithms have

similar speed for β = 1 and β = 2, and run slower for β = 0.

For each value of β, the two MM algorithms are found to be slower

than the heuristic algorithm. While this cannot be explained from the

complexity values reported in Table 2, which are similar for a given

β, the observed slow-down is likely caused by the use of MATLAB

for-loops in the update of H with the MM algorithms.

4.4. Objective function minimization

In a third experiment, we investigate the ability of each algorithm to

minimize the divergence between the nonnegative data matrix V and

T Algorithm β = 0 (×103) β = 1 β = 2
Heuristic 312.4± 4.2 1190.0± 13.7 134.8± 2.0

3 MM1 288.5± 3.3 1125.8± 11.6 119.0± 2.5
MM2 288.6± 3.2 1126.1± 11.2 119.3± 2.4

Heuristic 320.7± 5.1 1208.4± 14.4 147.0± 4.3
5 MM1 281.6± 3.4 1099.2± 12.1 114.4± 2.0

MM2 285.4± 3.3 1098.4± 11.4 115.3± 1.9
Heuristic 337.2± 11.3 1246.4± 34.3 211.2± 24.6

10 MM1 271.5± 3.8 1054.9± 12.5 107.7± 2.0
MM2 276.3± 3.7 1054.9± 14.2 108.0± 2.2

Table 3. Average objective function values (with standard deviations

over 100 random initializations) reached after Niter = 1000.

T β = 0 β = 1 β = 2
3 11.6± 12.9 26.7± 24.3 24.6± 22.1
5 15.7± 17.8 21.0± 21.5 19.6± 13.4
10 2.1± 6.6 19.0± 24.0 39.5± 17.8

Table 4. Average percentage (with standard deviations over 100 ran-

dom initializations) of times the objective function value has actually

increased using the heuristic algorithm (Niter = 1000 iterations).

its convolutive NMF approximation V̂. The algorithms are run for

Niter = 1000 iterations and the end values of the objective function

are averaged over 100 random initializations. Results are reported

in Table 3. They show that the two MM algorithms provide equiva-

lent performances and perform significantly better than the heuristic

in every case. MM1 appears to be slightly better than MM2. Inter-

estingly, the objective function end value increases with T for the

heuristic, while it decreases (as should be expected) for the MM al-

gorithms. The MM algorithms can take advantage of the increas-

ing degrees of freedom offered by larger values of T . In contrast,

the heuristic on which the update (7-8) is based seems less and less

plausible as T increases. Note that qualitatively similar results (not

reproduced here due to space limitations) were obtained when com-

paring objective function values after a fixed budget of CPU time

instead of iterations.

Finally, Table 4 shows the fraction (in %) of iterations for which

the heuristic algorithm has actually increased the objective function

value between two consecutive iterations (remember that the MM

algorithms ensure its decrease at each iteration). Up to 25% of the

iterations can lead to an increase of the objective function for the

scenarios considered here. This is coherent with the inferior perfor-

mance in terms of objective function value obtained for the heuristic

reported in Table 3. Indeed, any of these increases is bound to impact

the overall minimization performances as observed in Fig. 1.

5. CONCLUSION

This paper addressed the problem of finding rigorous MM-based up-

dates for convolutive NMF with the β-divergence. We proposed two

rigorous algorithms that ensure monotonic decrease of the objective

function. Experiments showed that the proposed MM algorithms

consistently provide lower values of the objective function than the

heuristic. All algorithms have similar complexity, yet the MM up-

dates are found to be slightly slower because of implementation is-

sues. Overall, the sequential algorithm MM2 for the global update

of H yields best overall trade-off between computation time and per-

formance.
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