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In [DT] and [DET], the authors studied almost minimizers for functionals of the type first studied by Alt and Caffarelli in [AC] and Alt, Caffarelli and Friedman in [ACF]. In this paper we study the regularity of almost minimizers to energy functionals with variable coefficients (as opposed to [DT], [DET], [AC] and [ACF] which deal only with the "Laplacian" setting). We prove Lipschitz regularity up to, and across, the free boundary, fully generalizing the results of [DT] to the variable coefficient setting. Résumé. Dans [DT] et [DET], les auteurs ont étudié les fonctions presque minimales pour des fonctionnelles comme celles d'Alt et Caffarelli [AC], et d'Alt, Caffarelli et Friedman [ACF]. Dans ce papier on étudie la régularité des fonctions presque minimales pour des fonctionnelles d'énergie à coefficients variables (contrairement à [DT], [DET], [AC] et [ACF] qui se placent dans le cadre du Laplacian). On prouve que ces fonctions sont Lipschitziennes juqu'à la frontière, et à travers, généralisant ainsi les résultats de [DT] au cas de coefficients variables.

Introduction

In [DT] and [DET], the authors studied almost-minimizers for functionals of the type first studied by Alt and Caffarelli in [AC] and Alt, Caffarelli and Friedman in [ACF]. Almostminimization is the natural property to consider once the presence of noise or lower order terms in a problem is taken into account. In this paper we study the regularity of almost minimizers to energy functionals with variable coefficients (as opposed to [DT], [DET], [AC] and [ACF] which deal only with the "Laplacian" setting).

The point of the present generalization is to allow anisotropic energies that depend mildly on the point of the domain, so that in particular our classes of minimizers should be essentially invariant by C 1+α diffeomorphisms.

The variable coefficient problem has been studied before: Caffarelli, in [C], proved regularity for solutions to a more general free boundary problem. De Queiroz and Tavares, in [deT], provided the first results for almost minimizers with variable coefficients: the authors proved regularity away from the free boundary for almost minimizers to the same functionals we consider here (they consider a slightly broader class of functionals, of which our functionals are a limiting case).

Our work differs from that of [deT] in two ways: first, our definition of almost-minimizing is, a priori, broader than that considered in [deT], [DT] or [DET] (for more discussion see Section 2.2 below). Second, and more significantly, we prove Lipschitz regularity up to, and across, the free boundary, in contrast to [deT], thus we fully generalize the results of [DT] to the variable coefficient setting. In a forthcoming paper where we address the free boundary regularity for (κ, α)-almost minimizers in the variable coefficient setting, we tackle the important issues of compactness for sequences of almost minimizers and nondegeneracy properties of almost minimizers near the free boundary.

Besides including the notion of almost-minimizers from [deT], [DT] or [DET], our definition of almost minimizers also connects to the work of [GZ]. There, the authors extend the notion of ω-minimizers introduced by Anzellotti in [A], to the framework of multiple-valued functions in the sense of Almgren, and prove Hölder regularity of Dirichlet multiple-valued (c, α)-almost minimizers.

Almost-minimizers to functionals of Alt-Caffarelli or Alt-Caffarelli-Friedman type with variable coefficients arise naturally in measure-penalized minimization problems for Dirichlet eigenvalues of elliptic operators (e.g. the Laplace-Beltrami operator on a manifold; see [LS] for a treatment of the analogous measure-constrained problem). We also want to draw attention to the interesting paper [STV], which proves (using an epiperimetric inequality) free boundary regularity for almost-minimizers of the functionals considered here, in dimension n = 2. Throughout that paper they need to assume a priori Lipschitz regularity on the minimizer. Our paper shows (as alluded to in their paper) that this assumption is redundant. Note that while the class of almost-minimizers considered in [STV] may seem broader than the one considered here, the two are actually equivalent (see Remark 2.2 below).

Remark 1.1. Shortly after this paper was initially posted to the ArXiv, B. Trey posted [T]. In that paper, the author studies the regularity of shape optimizers for variable coefficient divergence form elliptic operators (e.g. the domain of area one which minimizes the sum of the first k Dirichlet eigenvalues of a given operator).

In particular, Trey (also adapting the approach of [DT]), proves very similar results to ours but for vectorial "quasi-minimizers" of (2.2) with the additional property that they are solutions of a divergence form elliptic PDE with right hand side (see Theorem 1.2 in [T]).

We would like to emphasize that our results neither imply nor are implied by those of [START_REF] Trey | Lipschitz continuity of the eigenfunctions on optimal sets for functionals with variable coefficients[END_REF]Theorem 1.2], due to the different notions of "minimization" used and to the presence of an underlying PDE in [T] (solutions of which were known to satisfy Theorem 7.1).

The structure of the paper is as follows. In Section 2 we introduce our notion of (κ, α)almost-minimizer, recalling the one used in [DT], [DET] and [deT]. In Section 2.1 we address basic facts regarding the change of coordinates that will be used throughout the paper; in Section 2.2 we address the connection between the "multiplicative" almost-minimizers used in [DT] and [deT] and the "additive" almost-minimizers used here. In Section 3 we prove the continuity of almost-minimizers; in Section 4 we prove the C 1,β regularity of almost minimizers in {u > 0} and {u < 0}. In Section 5 we prove the bulk of the technical results needed to obtain local Lipschitz regularity for both the one phase and two-phase problems.

In Section 6 we prove the local Lipschitz continuity of almost minimizers of the one-phase problem. In Section 7 we establish an analogue of the Alt-Caffarelli-Friedman monotonicity formula for variable coefficient almost-minimizers. Finally, in Section 8 we prove the local Lipschitz continuity for two-phase almost minimizers.

Preliminaries

We consider a bounded domain Ω ⊂ R n , n ≥ 2, and study the regularity of the free boundary of almost minimizers of the functional (2.1) J(u) = ˆΩ A(x)∇u(x), ∇u(x) + q 2 + (x)χ {u>0} (x) + q 2 -(x)χ {u<0} (x),

where q + , q -∈ L ∞ (Ω) are bounded real valued functions and A ∈ C 0,α (Ω; R n×n ) is a Hölder continuous function with values in symmetric, uniformly positive definite matrices. Let 0 < λ ≤ Λ < ∞ be such that λ|ξ| 2 ≤ A(x)ξ • ξ ≤ Λ|ξ| 2 for all x ∈ Ω. We will also consider the situation where u ≥ 0 and q -≡ 0, and

(2.2)

J + (u) = ˆΩ A∇u, ∇u + q 2 + (x)χ {u>0} ,
where q + and A are as above.

We do not need any boundedness or regularity assumption on Ω, because our results will be local and so we do not need to define a trace on ∂Ω. Also, q -is not needed when we consider J + , and then we may assume that it is identically zero.

Definition 2.1 (Definition 1 of almost minimizers, with balls). Set (2.3) K loc (Ω) = u ∈ L 1 loc (Ω) ; ∇u ∈ L 2 (B(x, r)) for every ball B(x, r) such that B(x, r) ⊂ Ω ,

(2.4) K + loc (Ω) = {u ∈ K loc (Ω) ; u(x) ≥ 0 almost everywhere on Ω} , and let constants κ ∈ (0, +∞) and α ∈ (0, 1] be given.

We say that u is a (κ, α)-almost minimizer for J + B in Ω if u ∈ K + loc (Ω) and (2.5) J + B,x,r (u) ≤ J + B,x,r (v) + κr n+α for every ball B(x, r) such that B(x, r) ⊂ Ω and every v ∈ L 1 (B(x, r)) such that ∇v ∈ L 2 (B(x, r)) and v = u on ∂B(x, r), where

(2.6) J + B,x,r (v) = ˆB(x,r) A∇v, ∇v + q 2 + χ {v>0} .
Similarly, we say that u is a (κ, α)-almost minimizer for J B in Ω if u ∈ K loc (Ω) and

(2.7) J B,x,r (u) ≤ J B,x,r (v) + κr n+α for every ball B(x, r) such that B(x, r) ⊂ Ω and every v ∈ L 1 (B(x, r)) such that ∇v ∈ L 2 (B(x, r)) and v = u on ∂B(x, r), where

(2.8) J B,x,r (v) = ˆB(x,r) A∇v, ∇v + q 2 + χ {v>0} + q 2 -χ {v<0} .
When we say v = u on ∂B(x, r), we really mean that their traces coincide. Equivalently we could extend v by setting v = u on Ω \ B(x, r) and require that v ∈ K loc (Ω). This is discussed in detail in [DT].

We note that this definition differs from the one found in [DT] (or [deT]), even when A is the identity matrix; we will address this in more detail in Section 2.2. For now, let us only comment that the definition given by (2.7) is more general than that of [DT].

When working with variable coefficients, it is also convenient to work with a definition of almost minimizers that considers ellipsoids instead of balls. For this effect, we define (2.9)

T x (y) = A -1/2 (x)(y -x) + x, T -1 x (y) = A 1/2 (x)(y -x) + x, E x (x, r) = T -1 x (B(x, r)). Note that (2.10) E x (x, r) ⊂ B(x, Λ 1/2 r) and B(x, r) ⊂ E x (x, λ -1/2 r).
Definition 2.2 (Definition 2 of almost minimizers, with ellipsoids). Let

(2.11)

K loc (Ω, E) = u ∈ L 1 loc (Ω) ; ∇u ∈ L 2 (E x (x, r)) for E x (x, r) ⊂ Ω and
(2.12)

K + loc (Ω, E) = {u ∈ K loc (Ω, E) ; u(x) ≥ 0 almost everywhere on Ω} . We say that u is a (κ, α)-almost minimizer for J + E in Ω if u ∈ K + loc (Ω, E) and (2.13) J + E,x,r (u) ≤ J + E,x,r (v) + κr n+α for every ellipsoid E x (x, r) such that E x (x, r) ⊂ Ω and every v ∈ L 1 (E x (x, r)) such that ∇v ∈ L 2 (E x (x, r)) and v = u on ∂E x (x, r), where (2.14) J + E,x,r (v) = ˆEx(x,r) A∇v, ∇v + q 2 + χ {v>0} .
Similarly, we say that u is a (κ, α)-almost minimizer for

J E in Ω if u ∈ K loc (Ω, E) and
(2.15)

J E,x,r (u) ≤ J E,x,r (v) + κr n+α for every ellipsoid E x (x, r) such that E x (x, r) ⊂ Ω and every v ∈ L 1 (E x (x, r)) such that ∇v ∈ L 2 (E x (x, r)) and v = u on ∂E x (x, r), where (2.16) J E,x,r (v) = ˆEx(x,r) A∇v, ∇v + q 2 + χ {v>0} + q 2 -χ {v<0} .
Notice that when A = I (the identity matrix), both definitions coincide. Moreover, for a general matrix A, if u is a (κ, α)-almost minimizer for J B in Ω according to Definition 2.1, then it satisfies (2.13) in Definition 2.2 (with constant Λ (n+α)/2 κ and exponent α) whenever x and r are such that B(x, Λ 1/2 r) ⊂ Ω.

Similarly, if u is a (κ, α)-almost minimizer for J E in Ω according to Definition 2.2, then it satisfies (2.5) in Definition 2.1 (with constant λ -(n+α)1/2 κ and exponent α) whenever x and r are such that B(x, Λ 1/2 λ -1/2 r) ⊂ Ω.

Given that we are mostly interested in the regularity of almost-minimizeres away from ∂Ω these definitions are essentially equivalent. Bearing this in mind, we will work with almost minimizers according to Definition 2.2, recalling that such functions satisfy (2.5) when B(x, Λ 1/2 λ -1/2 r) ⊂ Ω. We will most often not write "(κ, α)-almost minimizer", but only "almost minimizer", and we will drop the subscripts B and E from the energy functional.

Notation: Throughout the paper we will write B(x, r) = {y ∈ R n : |y -x| < r} and ∂B(x, r) = {y ∈ R n : |y -x| = r}. We will consider A ∈ C 0,α (Ω; R n×n ) a Hölder continuous function with values in symmetric, uniformly positive definite matrices, and 0 < λ ≤ Λ < ∞ such that λ|ξ| 2 ≤ A(x)ξ • ξ ≤ Λ|ξ| 2 for all x ∈ Ω. Additionally, q ± ∈ L ∞ (Ω) will be bounded real valued functions. We will also frequently refer to

(2.17) T x (y) = A -1/2 (x)(y-x)+x, T -1 x (y) = A 1/2 (x)(y-x)+x, E x (x, r) = T -1 x (B(x, r))
. Moreover, we will write

(2.18) u x (y) = u(T -1 x (y)), (q x ) ± (y) = q ± (T -1 x (y)), A x (y) = A -1/2 (x)A(T -1 x (y))A -1/2 (x). Notice that T x (x) = x and A x (x) = I.
2.1. Coordinate changes. Compared to [DT] and [DET], our proofs will use two new ingredients: the good invariance properties of our notion with respect to bijective affine transformations, and the fact that the slow variations of A allow us to make approximations by freezing the coefficients. We take care of the first part in this subsection.

Many of our proofs will use the affine mapping T x to transform our almost minimizer u into another one u x , which corresponds to a new matrix function A x (y) that coincides with the identity at x. In this subsection we check that our notion of almost minimizer behaves well under bijective affine transformations. Our second definition, with ellipsoids, is more adapted to this.

Lemma 2.1. Let u be a (κ, α)-almost minimizer for J E (or J + E ) in Ω ⊂ R n . Let T : R n → R n be an injective affine mapping, and denote by S the linear map corresponding to T (i.e T x = Sx + z 0 for some z 0 ∈ R n ). Also let 0 < a ≤ b < +∞ be such that a|ξ| ≤ |Sξ| ≤ b|ξ| for ξ ∈ R n . Then define functions u T , q T,+ , q T,-on Ω T = T (Ω) by

(2.19) u T (y) = u(T -1 (y)) and q T,± (y) = q ± (T -1 (y)) for y ∈ Ω T ,
and a matrix-valued function A T by

(2.20)

A T (y) = SA(T -1 y)S t for y ∈ Ω T ,
where S t is the transposed matrix of S. Then u T is a (κ, α)-almost minimizer of J E,T (or J + E,T ) in Ω T , according to Definition 2.2, where J E,S (or J + E,S ) is defined in terms of A T and the q T,± , i.e.,

(2.21) Remark 2.1. Lemma 2.1 says that under an affine change of variables, almost minimizers are transformed to almost minimizers for a modified functional. Its proof will also show why our second definition of almost minimizers is natural. But it will be applied almost exclusively in the following circumstances: we pick x ∈ Ω, and we take S = A -1/2 (x). In this case, T (y) = x + S(y -x), we recognize the affine mapping T x from (2.17), and then u T = u x and A T (y) = A x (y) (from (2.18)). The advantage is that A T (x 0 ) = I and we can use simpler competitors.

J E,S (v) = ˆ A T (y)∇v(y), ∇v(y) + q 2 T,+ (y)χ {v>0} (y) + q 2 T,- ( 
Proof. We do the proof for J + ; the argument for J would be the same. Let u, T , and u T be as in the statement, then let E T be the corresponding ellipsoid and v T ∈ L 1 (E T ) define a competitor for u T as in Definition 2.2; thus

E T ⊂ Ω T , ∇v T ∈ L 2 (E T ), and v T = u T on ∂E T .
We want to use v T to define a competitor v for u, and naturally we take

v(y) = v T (T (y)) for y ∈ E = T -1 (E T ). Notice that T -1 (E T ) ⊂ Ω because E T ⊂ Ω T = T (Ω)
. Moreover, (2.17) and (2.20) say that

E T -x is the image of B(0, r) by the linear mapping A 1/2 T = SA 1/2 (x ′ ), where x ′ = T -1 (x). Then T -1 (E T ) -x ′ is the image of B(0, r) by S -1 SA 1/2 (x ′ ) = A 1/2 (x ′ ). In other words, E = T -1 (E T )
is the ellipsoid associated to x ′ and our initial function A, as in (2.17), and we can apply Definition 2.2 to v. It is clear that v = u on ∂E, and ∇v ∈ L 2 (E) because the differential is Dv(z) = Dv(T (z))S (and you transpose to get the gradients). Now we compute, setting y = T (z) and eventually changing variables,

J + E,x ′ ,r (v) = ˆE A∇v, ∇v + q 2 + χ {v>0} dz = ˆE A(z)S t ∇v(y), S t ∇v(y) + q 2 + χ {v>0} (z)dz = ˆE A T (y)∇v(y), ∇v(y) + q 2 + χ {v T >0} (y)dz = | det(T )| ˆET A T ( 
y)∇v(y), ∇v(y) + q 2 + χ {v T >0} (y)dy, (2.22) which is the analogue (call it J E T (v T )) of J + E,x,r for v T on E T . We have a similar formula for J + E,x ′ ,r (u), and since J + E,x ′ ,r (u) ≤ J + E,x ′ ,r (v) + κr n+α by (2.15), we get that

J + E T (u T ) ≤ J + E T (v T ) + | det(T )|κr n+α . Lemma 2.1 follows.
In the analysis below we are working entirely locally within Ω and are unconcerned with the precise dependence of our regularity on κ and α. Therefore, we will sometimes make the a priori assumption (justified by the analysis above) that for a given point x 0 ∈ Ω we have A(x 0 ) = I. When it is necessary to compare different points in Ω, we will explicitly use the rescaled functions defined above.

Whenever we write C, we mean a constant (which might change from line to line) that depends on n, λ, Λ, ||q ± || L ∞ , α and on upper bounds for ||A|| C 0,α , and κ.

"

Additive" Almost-Minimizers. Let us now address the differences between our definition of almost minimizers, with (2.7) or (2.15), and the definition of an almost-minimizer in [DT]. Recall that when A = I, being an almost minimizer for J E is equivalent to being an almost minimizer for J B , and that in [DT] (with A = I) u was an almost-minimizer for J E if, instead of satisfying (2.15) for all admissible v, it satisfied (2.23)

J E,x,r (u) ≤ (1 + κr α )J E,x,r (v),
(and similarly for J + E ). Here we consider variable A and stick to J E (but J B would work the same way). Let almost minimizers in the sense of (2.15) be additive almost minimizers, whereas almost-minimizers in the sense of (2.23) are multiplicative almost-minimizers. Our goal is to prove results for additive minimizers, first showing that multiplicative almost minimizers are also additive almost minimizers. To obtain this result we first need to show that multiplicative almost minimizers, in the variable coefficient setting, obey a certain decay property. This will be done in the next Lemma. With this result in hand, we will then show that every multiplicative almost minimizer is actually an additive almost minimizer, therefore reducing our analysis to the case of additive minimizers.

Lemma 2.2. Let u be a multiplicative almost minimizer for J E in Ω. Then there exists a constant C > 0 such that if x ∈ Ω and r > 0 are such that E x (x, r) ⊂ Ω, then for 0 < s ≤ r, (2.24)

Ex(x,s) |∇u| 2 1/2 ≤ C Ex(x,r) |∇u| 2 1/2 + C log(r/s).
Proof. Our assumption that E(x, r) ⊂ Ω allows us to define u x as in (2.18). Note that

u x ∈ H 1/2 (∂B(x, s)). Denote by (u x ) * s the function in L 1 (B(x, s)) with ∇(u x ) * s ∈ L 2 (B(x, s)), trace u x on ∂B(x, s) = T x (∂E x (x, s))
, and which minimizes the Dirichlet energy on B(x, s). Note that u * s is the harmonic extension of (u x )| ∂B(x,s) . The minimality of u * s implies that for any t ∈ R, ˆB(x,s)

|∇(u x ) * s | 2 ≤ ˆB(x,s) |∇((u x ) * s + t(u x -(u x ) * s ))| 2 .
Expanding near t = 0 we obtain ´B(x,s) ∇u x -∇(u x ) * s , ∇(u x ) * s = 0, hence (2.25)

ˆB(x,s) |∇(u x ) * s | 2 = ˆB(x,s) ∇u x , ∇(u x ) * s . Since (u x ) * s • T x ∈ L 2 (E x (x, s)
) and its trace is equal to u on ∂E x (x, s), (2.18), the almost minimality of u and the same computation as in (2.22) (in fact, we are in the situation of Remark 2.1) yield

detA 1/2 (x) ˆB(x,s) A x ∇u x , ∇u x + (q x ) 2 + χ {ux>0} + (q x ) 2 -χ {ux<0} = ˆEx(x,s) A∇u, ∇u + q 2 + χ {u>0} + q 2 -χ {u<0} ≤ (1 + κs α ) ˆEx(x,s) A∇((u x ) * s • T x ), ∇((u x ) * s • T x ) + q 2 + χ {(ux) * s •Tx>0} + q 2 -χ {((ux) * s •Tx)<0} = (1 + κs α )detA 1/2 (x) ˆB(x,s) A x ∇(u x ) * s , ∇(u x ) * s + (q x ) 2 + χ {(ux) * s >0} + (q x ) 2 -χ {(ux) * s <0} .
Consequently, ˆB(x,s)

A x ∇u x , ∇u x + (q x ) 2 + χ {ux>0} + (q x ) 2 -χ {ux<0} ≤ (1 + κs α ) ˆB(x,s) A x ∇(u x ) * s , ∇(u x ) * s + (q x ) 2 + χ {(ux) * s >0} + (q x ) 2 -χ {(ux) * s <0} ≤ Cs n + (1 + κs α ) ˆB(x,s) A x ∇(u x ) * s , ∇(u x ) * s (2.26)
where C depends on the ||q ± || ∞ and an upper bound for κs α . Observe that for z ∈ B(x, s), 

|I -A x (y)| = |A x (x) -A x (y)| = |A -1/2 (x)[A(T -1 x (x)) -A(T -1 x (y))]A -1/2 (x)| ≤ λ -1 |x -y| α ||A|| C α ≤ Cs α (2.
|∇u x -∇(u x ) * s | 2 = ˆB(x,s) |∇u x | 2 - ˆB(x,s) |∇(u x ) * s | 2 ≤ ˆB(x,s) (I -A x )∇u x , ∇u x + ˆB(x,s) A x ∇u x , ∇u x - ˆB(x,s) |∇(u x ) * s | 2 ≤ Cs α ˆB(x,s) |∇u x | 2 - ˆB(x,s) |∇(u x ) * s | 2 + ˆB(x,s) A x ∇u x , ∇u x ≤ Cs α ˆB(x,s) |∇u x | 2 - ˆB(x,s) |∇(u x ) * s | 2 + Cs n + (1 + κs α ) ˆB(x,s) A x ∇(u x ) * s , ∇(u x ) * s ≤ Cs α ˆB(x,s) |∇u x | 2 - ˆB(x,s) |∇(u x ) * s | 2 + Cs n + (1 + κs α )(1 + s α ) ˆB(x,s) |∇(u x ) * s | 2 ≤ Cs α ˆB(x,s) |∇u x | 2 + Cs n + Cs α ˆB(x,s) |∇(u x ) * s | 2 ≤ Cs α ˆB(x,s) |∇u x | 2 + Cs n (2.28)
where we finished with the minimality of (u x ) * s . Applying (2.28) to s = r yields (2.29)

ˆB(x,r) |∇u x -∇(u x ) * r | 2 ≤ Cr α ˆB(x,r) |∇u x | 2 + Cr n .
We may now follow the computations in [DT], to which we refer for additional detail. Set

(2.30)

ω(u x , x, s) = B(x,s) |∇u x | 2 1/2 . Since (u x ) * r is energy minimizer, it is harmonic in B(x, r), therefore |∇(u x ) * r | 2 is subharmonic. We obtain (2.31) B(x,s) |∇(u x ) * r | 2 ≤ B(x,r) |∇(u x ) * r | 2 .
By the triangle inequality in L 2 , (2.29), (2.30) and (2.31), we obtain, as in [DT],

ω(u x , x, s) ≤ 1 + C r s n/2 r α/2 ω(u x , x, r) + C r s n/2 . (2.32)
Setting r j = 2 -j r, for j ≥ 0, (2.32) gives (2.33) ω(u x , x, r j+1 ) ≤ (1 + C2 n/2 r α/2 j )ω(u x , x, r j ) + C2 n/2 , and an iteration yields (2.34) where P = ∞ j=0 (1 + C2 n/2 r α/2 j ) and we used the fact that P is bounded, depending only on an upper bound for r. As in [DT], this implies that if E x (x, r) ⊂ Ω, then for 0 < s ≤ r,

ω(u x , x, r j+1 ) ≤ ω(u x , x, r) j l=0 (1 + C2 n/2 r α/2 l ) + C j+1 l=1 j k=l (1 + C2 n/2 r α/2 k ) 2 n/2 ≤ ω(u x , x, r)P + CP 2 n/2 j ≤ Cω(u x , x, r) + Cj,
(2.35) ω(u x , x, s) ≤ Cω(u x , x, r) + C log(r/s). Since (2.36) ω(u x , x, r) ≤ C Ex(x,r) |∇u| 2 1/2 and Ex(x,s) |∇u| 2 1/2 ≤ Cω(u x , x, s),
we obtain, for 0 < s ≤ r

(2.37)

Ex(x,s) |∇u| 2 1/2 ≤ C Ex(x,r) |∇u| 2 1/2 + C log(r/s).
Lemma 2.3. Let u be a multiplicative almost-minimizer of J E in Ω with constant κ and exponent α, and let Ω ⊂⊂ Ω be an open subset of Ω whose closure is a compact subset of Ω. Then u is an additive almost minimizer of J E in Ω, with exponent α/2 and a constant κ that depends on the constants for J, u and Ω.

Proof. Let Ω, u, Ω, be as in the statement, and choose r 0 = Λ -1/2 dist ( Ω, ∂Ω)/2, so small that E x (x, 2r 0 ) ⊂ Ω for x ∈ Ω. We deduce from Lemma 2.2, applied with r = r 0 , that (2.38)

Ex(x,s) |∇u| 2 ≤ C + C| log(s/r 0 )| 2 for 0 < s ≤ r 0 ,
where C only depends on Ω and u through a bound for

Ex(x,r 0 ) |∇u| 2 by r -n 0 ˆ( Ω,r 0 ) |∇u| 2
where ( Ω, r 0 ), the r 0 neighborhood of Ω, is compactly contained in Ω by our choice of r 0 . Now let x ∈ Ω, r > 0 be such that E x (x, r) ⊂ Ω and let v be an admissible function, with v = u on ∂E x (x, r); we know that

J E,x,r (u) ≤ (1 + κr α )J E,x,r (v)
and so we just need to show that κr α J E,x,r (v) ≤ κr n+α/2 . But by (2.16) and (2.38)

(2.39) J E,x,r (u) ≤ Λ ˆEx(x,r) |∇v| 2 + Cr n ||q + || ∞ + Cr n ||q -|| ∞ ≤ Cr n + Cr n | log(r/r 0 )| 2
and the result follows easily; we could even have taken any given exponent α < α.

For the remainder of the paper we will work solely with additive almost-minimizers and refer to them simply as almost-minimizers.

Remark 2.2. In [STV] they consider the seemingly broader class of almost-minimizers defined by the inequality

J x,r (u) ≤ (1 + C 1 r α )J x,r (v) + C 2 r α+n .
In fact this definition is equivalent to our "additive" almost-minimizers. To see this, first note that Lemmas 2.2 and 2.3 hold with the same proofs if "multiplicative" almost-minimizers are replaced by almost-minimizers of " [STV]-type". The only change is the presence of the (lower order) term C 2 r α+n in (2.28) and (2.39).

Continuity of Almost-Minimizers

Given the equivalence between almost minimizers of J B and J E , we will omit the subscript. In this section we prove the continuity of almost minimizers for J and J + . Our arguments will follow very closely those of Theorem 2.1 in [DT]. Despite this, we will prove Theorem 3.1 in complete detail, in order to highlight the differences in the variable coefficient setting.

Furthermore, to ease notation we will refer only to J in this section, with the understanding that q -might be identically zero and the functions we consider might be a priori nonnegative.

Theorem 3.1. Almost minimizers of J are continuous in Ω. Moreover, if u is an almost minimizer for J and B(x 0 , 2r 0 ) ⊂ Ω then there exists a constant C > 0 such that for x, y ∈ B(x 0 , r 0 )

(3.1) |u(x) -u(y)| ≤ C|x -y| 1 + log 2r 0 |x -y| .
Proof. Let u be an almost minimizer of J in Ω, and let x ∈ Ω and 0 < r < 1 be such that E x (x, r) ⊂ Ω. Define u x as in (2.18), and then for 0

< s ≤ r, let u * s ∈ L 1 (B(x, s)) with ∇u * s ∈ L 2 (B(x, s)), be the harmonic extension of u x in B(x, s) = T x (E x (x, s)). Recall that u *
s minimizes the Dirichlet energy among all functions that coincide u x on ∂B(x, s).

Let us assume for the moment that A(x) = I; this will simplify the computation, in particular because E x (x, r) = B(x, r) and u x = u, and then we will use Lemma 2.1 to reduce

to that case. Since A ∈ C 0,α (Ω; R n×n ), (2.25) yields ˆB(x,s) |∇u -∇u * s | 2 = ˆB(x,s) |∇u| 2 -|∇u * s | 2 = ˆB(x,s) (A(x) -A(y))∇u, ∇u + ˆB(x,s) A(y)∇u, ∇u - ˆB(x,s) |∇u * s | 2 ≤ Cs α ˆB(x,s) |∇u| 2 - ˆB(x,s) |∇u * s | 2 + ˆB(x,s) A∇u, ∇u , (3.2)
where we used (2.27) to control |A(x) -A(y)|. Since u is an almost minimizer and

q ± ∈ L ∞ , ˆB(x,s) A∇u, ∇u = J x,s (u) - ˆB(x,s) q 2 + χ {u>0} + q 2 -χ {u<0} ≤ J x,s (u) ≤ J x,s (u * s ) + κs n+α ≤ ˆB(x,s) A∇u * s , ∇u * s + κs n+α + Cs n = ˆB(x,s) |∇u * s | 2 + ˆB(x,s) (A(y) -A(x))∇u * s , ∇u * s + κs n+α + Cs n ≤ (1 + Cs α ) ˆB(x,s) |∇u * s | 2 + κs n+α + Cs n , (3.3) by (2.27) again. Hence by (3.2) and since ´B(x,s) |∇u * s | 2 ≤ ´B(x,s) |∇u s | 2 by definition of u * s , ˆB(x,s) |∇u -∇u * s | 2 ≤ Cs α ˆB(x,s) |∇u| 2 + Cs α ˆB(x,s) |∇u * s | 2 + κs n+α + Cs n ≤ Cs α ˆB(x,s) |∇u| 2 + Cs n . (3.4)
In particular, when applied to s = r,

(3.5) ˆB(x,r) |∇u -∇u * r | 2 ≤ Cr α ˆB(x,r) |∇u| 2 + Cr n .
For s > 0 such that B(x, s) ⊂ Ω, define as in (2.30)

(3.6) ω(u, x, s) := B(x,s) |∇u| 2 1/2 . Since u * r is harmonic in B(x, r), |∇u * r | 2 is subharmonic and for s ≤ r, (3.7) B(x,s) |∇u * r | 2 1/2 ≤ B(x,r) |∇u * r | 2 1/2 ≤ B(x,r) |∇u| 2 1/2
Combining (3.5), (3.6) and (3.7) as in (2.10) in [DT] and (2.34), we obtain, for some C > 0,

ω(u, x, s) ≤ B(x,s) |∇u -∇u * r | 2 1/2 + B(x,s) |∇u * r | 2 1/2 ≤ 1 + C r s n/2 r α/2 ω(u, x, r) + C r s n/2 (3.8) Setting r j = 2 -j r for j ≥ 0, (3.8) implies ω(u, x, r j+1 ) ≤ 1 + C2 n/2 r α/2 j ω(u, x, r j ) + C2 n/2 .
Iterating this as in (2.10) of [DT] we obtain for r j = 2 -j r for j ≥ 0 that (3.9) ω(u, x, r j+1 ) ≤ P ω(u, x, r) + CP j ≤ Cω(u, x, r) + Cj,

where P = ∞ j=0 (1 + C2 n/2 r α/2 j
) can be bounded depending on an upper bound for r. As in (2.11) in [DT], this implies that if B(x, r) ⊂ Ω and A(x) = I, then for 0 < s ≤ r,

(3.10) ω(u, x, s) ≤ Cω(u, x, r) + C log(r/s),
where C also depends on an upper bound for r.

Now we use this to control the variations of u near x let u j = ffl B(x,r j ) u. The Poincaré inequality and (3.9) yield (3.11)

B(x,r j ) |u -u j | 2 1/2 ≤ Cr j ω(u, x, r j ) ≤ Cr j ω(u, x, r) + Cjr j .
If, in addition to the assumptions above, x is a Lebesgue point of u, then u(x) = lim l→∞ u l and we obtain, as in (2.13) from [DT],

(3.12) |u(x) -u j | ≤ Cr j (ω(u, x, r) + j + 1).
We may now return to the general case when E x (x, r) ⊂ Ω but maybe A(x) = I. In this case, Lemma 2.1 and Remark 2.1 say that u x is an almost minimizer in the domain Ω x = T x (Ω), with the functional J x associated to A x defined by (2.18), the same exponent α and κ = det A(x) -1/2 κ. This is good, because we can apply the argument above to u x in B(x, r) = T x (E x (x, r)) as A x (x) = I. In particular we obtain that

(3.13) ω(u x , x, s) ≤ C r s n/2 r α ω(u x , x, r) + C r s n/2 + B(x,s) |∇(u x ) * r | 2 1/2
, where (u x ) * r is the harmonic extension of u x to B(x, r). Since u(x) = u x (x) by (2.17), we get that

(3.14) |u(x) -u x,j | = |u x (x) -u x,j | ≤ Cr j (ω(u x , x, r) + j + 1),
where u j,x = ffl B(x,r j ) u x , provided that x is a Lebesgue point for u x (or, equivalently for u). For the continuity of u, we intend to apply this to Lebesgue points x, y for u, choose a correct j, and compare u j,x to u j,y . This is possible if

E x (x, r j ) = T -1 x (B(x, r j )) and E y (y, r j ) = T -1
x (B(y, r j )) have a large intersection, so we need to pay attention to the size of balls.

Let x 0 ∈ Ω and r 0 > 0 such that B(x 0 , 2r 0 ) ⊂ Ω be given, and then let x, y ∈ B(x 0 , r 0 ) be given. Set r = Λ -1/2 r 0 ; this way we are sure that

E x (x, r) = T -1 x (B(x, r)) ⊂ B(x, Λ 1/2 r) ⊂ B(x 0 , 2r 0 ) (see (2.17)), and since u x (y) = u(T -1 x (u)) by (2.18), ω(u x , x, r) := B(x,r) |∇u x | 2 1/2 = Ex(x,r) A(x)∇u, ∇u 1/2 ≤ C B(x,Λ 1/2 r) |∇u| 2 1/2 ≤ C B(x,2r 0 ) |∇u| 2 1/2 , (3.15)
and we have a similar estimate for ω(u y , y, r). Next assume that |x-y| ≤ λ 1/2 r = λ 1/2 Λ -1/2 r 0 . If this does not happen, we need to take intermediate points and apply the estimates below to a string of such points. Let j be the largest integer such that |x-y| ≤ λ 1/2 r j ; we just made sure that j ≥ 0. Since

r j = 2 -j r then |x -y| ≥ λ 1/2 r j /2. Now E x (x, r j ) = T -1
x (B(x, r j )) contains B(x, λ 1/2 r j ) and similarly E y (y, r j ) contains B(y, λ 1/2 r j ). Thus both sets contain the ball B xy centered at (x + y)/2 and with radius

λ 1/2 r j /2, because |x -y| ≤ λ 1/2 r j . Set m = ffl Bxy u; then |m -u j,x | ≤ Bxy |u -u j,x | ≤ C Ex(x,r j ) |u -u j,x | = C B(x,r j ) |u x -u j,x | ≤ Cr j ω(u x , x, r) + Cjr j ≤ C B(x,2r 0 ) |∇u| 2 1/2 r j + Cjr j (3.16) because B ⊂ E x (x, r j )
, by the change of variable suggested by (2.17) and (2.18), then by the Poincaré estimate (3.11) and (3.15).

We have a similar estimate for |m -u j,y |, we compare them, and then use (3.14) to obtain

|u(x) -u(y)| ≤ Cr j B(x,2r 0 ) |∇u| 2 1/2 + j ≤ C|x -y| B(x,2r 0 ) |∇u| 2 1/2 + log r 0 |x -y| (3.17)
for Lebesgue points x, y ∈ B(x 0 , r 0 ) such that |x -y| ≤ λ 1/2 Λ -1/2 r 0 , and where C depends on κ, ||q ± || L ∞ (Ω) , α, n, an upper bound on r and the C 0,α norm of A. By possibly modifying u on a set of measure 0, we get a continuous function that satisfies (3.1).

Here is a simple consequence of Theorem 3.1.

Corollary 3.1. If u is an almost minimizer for J, then for each compact K ⊂ Ω, there exists a constant C K > 0 such that for x, y ∈ K,

(3.18) |u(x) -u(y)| ≤ C K |x -y| 1 + log 1 |x -y| . 4. Almost minimizers are C 1,β in {u > 0} and in {u < 0}
We first prove Lipschitz bounds away from the free boundary. Note that since u is continuous, {u > 0} and {u < 0} are open sets.

Theorem 4.1. Let u be an almost minimizer for J (or J + ) in Ω. Then u is locally Lipschitz in {u > 0} and in {u < 0}.

Proof. We show the result for almost minimizers of J in {u > 0}, but the proof applies to the other cases. First let x ∈ {u > 0} be such that A(x) = I and take r > 0 such that B(x, 2Λ 1/2 λ -1/2 r) ⊂ {u > 0}. We start as in the proof of Lemma 2.2. Denote with u * r the function with the same trace as u on ∂B(x, r) and which minimizes the Dirichlet energy under this constraint. Since u is an almost minimizer we have (4.1) J B,x,r (u) ≤ J B,x,r (u * r ) + κr n+α . Since u > 0 in B(x, r), by the maximum principle we have u * r > 0 in B(x, r). Therefore (4.1) gives ˆB(x,r)

( A∇u, ∇u + q 2 + ) ≤ ˆB(x,r) ( A∇u * r , ∇u * r + q 2 + ) + κr n+α , which implies that ˆB(x,r) A∇u, ∇u ≤ ˆB(x,r) A∇u * r , ∇u * r + κr n+α .
Hence, since A(x) = I and then by (2.27),

ˆB(x,r) |∇u| 2 = ˆB(x,r) (A(x) -A(y))∇u, ∇u + ˆB(x,r) A(y)∇u, ∇u ≤ Cr α ˆB(x,r) |∇u| 2 + ˆB(x,r) A∇u * r , ∇u * r + κr n+α . (4.2) As in (2.25), ´B(x,r) |∇u * r | 2 = ´B(x,r) ∇u, ∇u * r , hence (4.2) yields ˆB(x,r) |∇u -∇u * r | 2 = ˆB(x,r) |∇u| 2 - ˆB(x,r) |∇u * r | 2 ≤ Cr α ˆB(x,r) |∇u| 2 + ˆB(x,r) A∇u * r , ∇u * r + κr n+α - ˆB(x,r) |∇u * r | 2 = Cr α ˆB(x,r) |∇u| 2 + ˆB(x,r) (A -I)∇u * r , ∇u * r + κr n+α ≤ Cr α ˆB(x,r) |∇u| 2 + Cr α ˆB(x,r) |∇u * r | 2 + κr n+α ≤ Cr α ˆB(x,r) |∇u| 2 + κr n+α , (4.3)
by the minimizing property of u * r . Defining ω(u, x, s) for 0 < s ≤ r as in (3.6), the triangle inequality, subharmonicity of |∇u * r | 2 and (4.3) yield as for (3.8), but with a smaller error term

ω(u, x, s) ≤ 1 + C r s n 2 r α/2 ω(u, x, r) + C r s n 2 r α/2 . (4.4)
Set r j = 2 -j r for j ≥ 0 and apply (4.4) repeatedly. This time the error term yields a converging series, and we obtain as in (3.6) of [DT], (4.5) ω(u, x, r j+1 ) ≤ ω(u, x, r)

j l=0 1 + C2 n/2 r α/2 l +C2 n/2 j+1 l=1 j k=l 1 + C2 n/2 r α/2 k r α/2 l-1 . Since ∞ l=0 1 + C2 n/2 r α/2 l ≤ C
, where C depends on an upper bound for r, (4.5) yields

(4.6) ω(u, x, r j+1 ) ≤ Cω(u, x, r) + C2 n/2 j+1 l=1 r α/2 l-1 ≤ Cω(u, x, r) + Cr α/2 .
Consequently, applying this for j such that r j+1 < s ≤ r j ,

(4.7) ω(u, x, s) ≤ Cω(u, x, r) + Cr α/2 for 0 < s ≤ r.
Recall that all of this holds if B(x, 2Λ 1/2 λ -1/2 r) ⊂ {u > 0} and A(x) = I. Now assume that x ∈ Ω, but maybe A(x) = I. By Lemma 2.1 and Remark 2.1, u x is an almost minimizer in the domain Ω x = T x (Ω), with the functional J x associated to A x defined by (2.18), the same exponent α and the constant κ = det A(x) -1/2 κ ≤ Cκ. The proof above yields

(4.8) ω(u x , x, s) ≤ Cω(u x , x, r) + Cr α/2 for 0 < s ≤ r, as soon as B(x, 2Λ 1/2 x λ -1/2 x r) ⊂ {u x > 0}
, where the constants Λ x and λ x are slightly different, because they correspond to A x . On the other hand Λ x and λ x are bounded above and below in terms of Λ and λ. Let us not do the precise computation but choose c(λ, Λ) ∈ (0, 1/2) such that this happens for r ≤ 2c(λ, Λ)dist (x, ∂Ω). Note that in this case

E x (x, r) ⊂ B(x, Λ 1/2 x r) ⊂ B(x, C 0 Λ 1/2 r) ⊂ Ω.
If in addition x is a Lebesgue point for |∇u| 2 (recall that this happens for almost every x ∈ Ω, because |∇u| 2 ∈ L 1 loc (Ω)), then

|∇u| 2 (x) = lim s→0 Ex(x,s) |∇u| 2 ≤ C lim sup s→0 B(x,s) |∇u x | 2 = C lim sup s→0 ω(u x , x, s) 2 ≤ C ω(u x , x, r) + r α/2 2 ≤ C Ex(x,r)
|∇u| 2 + Cr α (4.9) because ∇u and ∇u x are related by (2.18), and by (4.8).

Note that the Lebesgue points (with the strong definition where we average |u(x) -u(y)| on small balls) are the same for the balls and the ellipsoids E x (x, r), which have bounded eccentricities. Now (4.9) means that locally, the gradient of u is bounded, and hence u is Lipschitz in small balls. In particular given a compact subset K of Ω there exists

η K = C(λ, Λ, dist (K, ∂Ω) such that (K, η K ) ⊂ Ω and (4.10) sup x∈K |∇u(x)| ≤ C(K, λ, Λ) ˆ(K,η K ) |∇u| 2 + C(K).
Theorem 4.1 follows.

We shall now improve Theorem 4.1 and prove that u is C 1,β away from the free boundary. Before we wanted bounds on averages of |∇u| 2 , and now we want to be more precise and control the variations of ∇u. Our main tool will be a (more careful) comparison with the harmonic approximation (u x ) * r .

Theorem 4.2. Let u be an almost minimizer for J in Ω and set β = α n+2+α . Then u is of class C 1,β locally in {u > 0} and in {u < 0}.

Proof. As before we consider almost minimizers for J and the open set {u > 0} ⊂ Ω, but the proof works in the other cases. Let x ∈ Ω be given, assume first that A(x) = I (we will reduce to that case later), and let r be such that B(x, r) ⊂ {u > 0} ⊂ Ω. Let u * r denote, as before, the harmonic extension of u| ∂B(x,r) to B(x, r). Then ∇u * r is also harmonic and by the mean value property

(4.11) v(u, x, r) := B(x,r) ∇u * r = ∇u * r (x).
We want to estimate ´B(x,τr) |∇u -v(u, x, r)| 2 , where τ ∈ (0, 1/2) is a small number to be chosen later, depending on r. As in 3.20 from [DT], we deduce that for y ∈ B(x, τ r),

|∇u * r (y) -v(u, x, r)| = |∇u * r (y) -∇u * r (x)| ≤ τ r sup B(x,τ r) |∇ 2 u * r | ≤ Cτ B(x,r) |∇u * r | ≤ Cτ B(x,r) |∇u * r | 2 1/2 ≤ Cτ B(x,r) |∇u| 2 1/2
= Cτ ω(u, x, r), (4.12)

where the last part uses the Dirichlet minimality of u * r . Then by (4.3) and (4.12), ˆB(x,τr)

|∇u -v(u, x, r)| 2 ≤ 2 ˆB(x,τr) |∇u -∇(u * r )| 2 + 2 ˆB(x,τr) |∇u * r -v(u, x, r)| 2 ≤ 2 ˆB(x,r) |∇u -∇(u * r )| 2 + Cτ n+2 r n ω(u, x, r) 2 ≤ Cr α ˆB(x,r) |∇u| 2 + Cr n+α + Cτ n+2 r n ω(u, x, r) 2 . ≤ C[r α + τ n+2 ]r n ω(u, x, r) 2 + Cr n+α (4.13) or, dividing by (τ r) -n , (4.14) B(x,τ r) |∇u -v(u, x, r)| 2 ≤ C[τ -n r α + τ 2 ][1 + ω(u, x, r) 2 ].
We want to optimize in (4.14) and take τ = r α n+2 . Since we required τ < 1/2 for the computations above, we add the assumption that (4.15)

r α n+2 < 1/2 Set ρ = τ r = r 1+ α n+2 = r n+2+α n+2
, and notice that r α τ -n = τ 2 = r 2α n+2 = ρ 2α n+2+α . Also set β = α n+2+α as in the statement ; this way (4.14) implies that (4.16)

B(x,τ r) |∇u -v(u, x, r)| 2 ≤ Cρ 2β [1 + ω(u, x, r) 2 ].
Now we want to compute everything in terms of ρ rather than r, so we take (4.17 

B(x,ρ) |∇u -m(u, x, ρ)| 2 ≤ B(x,ρ) |∇u -v(u, x, r)| 2 ≤ Cρ 2β [1 + ω(u, x, r) 2 ],
where we keep r = r(ρ) in ω(u, x, r) to simplify the notation. So far this holds whenever u(x) > 0 and A(x) = I, as soon as ρ < 2 -n+2+α α for (4.15)), and B(x, r(ρ)) ⊂ {u > 0}, so that we can define u * r and do the computations. Let us extend (4.19) to the case when we no longer assume that A(x) = I. By Lemma 2.1 and Remark 2.1, u x is an almost minimizer in the domain Ω x = T x (Ω), with the functional J x associated to A x defined by (2.18), the same exponent α and the constant κ = det A(x) -1/2 κ ≤ Cκ. So we can apply the proof of (4.19) to the function u x ; we get that (4.20)

B(x,ρ) |∇u x -m(u x , x, ρ)| 2 ≤ Cρ 2β [1 + ω(u x , x, r(ρ)) 2 ],
maybe with a slightly larger constant (because of κ). The conditions of validity are now that ρ < 2 -n+2+α α , as before, and B(x, r) ⊂ Ω x , i.e., (4.21) T by (2.18), ∇u(y) = T t ∇u x (T (y)). Then using a change of variable in (4.20) we have

E x (x, r(ρ)) = T -1 x (B(x, r(ρ)) ⊂ Ω. Since u = u x •
(4.22) Ex(x,ρ) |∇u -m E (u, x, ρ)| 2 ≤ Cρ 2β [1 + ω E (u, x, r(ρ)) 2 ],
where C became larger, depending on λ and Λ, and where

(4.23) m E (u, x, ρ) = Eρ(x,ρ) ∇u and ω E (u, x, r) 2 = Eρ(x,ρ) |∇u| 2 .
Now we localize and get rid of ω E (u, x, r). Let B 0 = B(x 0 , r 0 ) be such that that 4B 0 ⊂ {u > 0} ⊂ Ω with r α n+2 0 < 1/2, because this way we will always pick radii that satisfy (4.15). Theorem 4.1 and in particular (4.10) ensure that u is Lipschitz on 2B 0 .

Then let x, y ∈ B 0 be given. Suppose in addition that |x -y| ≤ cr n+2+α n+2

0

, where the small constant c depends on λ and Λ, and will be chosen soon. We want to apply the computations above with radii ρ ≤ 2λ -1/2 |x -y|, and we choose c so small that (4.17) yields Λr(ρ) < r 0 , and so E x (x, r(ρ)) ⊂ B(x, r 0 ) ⊂ 2B 0 . Then (4.22), holds with uniform control on ω E (u, x, r(ρ)) ≤ C(B 0 ) by (4.10).

We apply this to ρ and ρ/2, compare, and get that

|m E (u, x, ρ/2) -m E (u, x, ρ)| = Ex(x,ρ/2) ∇u -m E (u, x, ρ) ≤ 2 n Ex(x,ρ) |∇u -m E (u, x, ρ)| ≤ 2 n Ex(x,ρ) |∇u -m E (u, x, ρ)| 2 1/2 ≤ Cρ β [1 + C(B 0 ) 2 ] 1/2 . (4.24)
Then we iterate as usual, sum a geometric series, and find that when x is a Lebesgue point for ∇u,

(4.25) |∇u(x) -m E (u, x, ρ)| ≤ Cρ β [1 + C(B 0 ) 2 ] 1/2 .
We have a similar estimate for y if y is a Lebesgue point also. We now compare two averages as we did in (4.24). Take ρ x = 2λ -1/2 |x -y|, so that E x (x, ρ x ) contains B(x, 2|x -y|), and

ρ y = Λ -1/2 |x -y|, chosen so that E y (y, ρ y ) ⊂ B(y, |x -y|) ⊂ E x (x, ρ x ).
Then

|m E (u, y, ρ y ) -m E (u, x, ρ x )| = Ey(y,ρy) ∇u -m E (u, x, ρ x ) ≤ (Λ/λ) n/2 Ex(x,ρx) |∇u -m E (u, x, ρ x )| ≤ C Ex(x,ρx) |∇u -m E (u, x, ρ x )| 2 1/2 ≤ Cρ β x [1 + C(B 0 ) 2 ] 1/2 ≤ C|x -y| β [1 + C(B 0 ) 2 ] 1/2 . (4.26)
This completes the proof of Theorem 4.2.

Estimates towards Lipschitz continuity

In this section we prove technical results needed to obtain local Lipschitz regularity for both the one phase and two-phase problems. The main case is really with two phases, but our estimates are also true (and some times simpler) for J + .

Define the quantities

(5.1) b(x, r) = ∂B(x,r) u x and b + (x, r) = ∂B(x,r) |u x |,
where we recall that

u x = u•T -1
x and T x is the affine mapping from (2.17). We will sometimes write b(u x , x, r) and b + (u x , x, r) to stress the dependence on u x .

The object of the next manipulations will be to distinguish two types of pairs (x, r), for which we will use different estimates. For constants τ ∈ (0, 10 -2 ), C 0 ≥ 1, C 1 ≥ 3 and r 0 > 0, we study the class G(τ, C 0 , C 1 , r 0 ) of pairs (x, r) ∈ Ω × (0, r 0 ] such that (5.2)

E x (x, 2r) ⊂ Ω, (5.3) C 0 τ -n (1 + r α ω(u x , x, r) 2 ) 1/2 ≤ r -1 |b(x, r)|, and 
(5.4) b + (x, r) ≤ C 1 |b(x, r)|.
Let us explain the idea. We force r ≤ r 0 to have uniform estimates, and (5.2) is natural. In (5.3), we will typically choose τ very small, so (5.3) really says that the quantity r -1 |b(x, r)| is as large as we want. This quantity has the same dimensionality of the expected variation of u on B(x, r). And in addition, (5.4) says that b accounts for a significant part of b + , which measures the average size of |u|. We mostly expect this to happen only far from the free boundary, and the next lemmas go in that direction.

We will have to be a little more careful than usual, because for the first time we will play with our usual center x, and at the same time with ellipsoids E z (z, ρ), with z near x, with different orientations. Set (5.5)

k = 1 6 λ 1/2 Λ -1/2 ,
which we choose like this so that

(5.6)

E z (z, kr) ⊂ B(z, Λ 1/2 kr) ⊂ E x (x, r/2) whenever x ∈ Ω and z ∈ E x (x, r/3). Indeed recall that E x (x, r) = T -1
x (B(x, r)) and T x (y) = x + A -1/2 (y -x) by (2.17), and similarly for z. The first inclusion follows at once, and since B(z, Λ 1/2 kr) is contained in the translation centered at z of E x (x, λ -1/2 Λ 1/2 kr) = E x (x, r/6), (5.6) holds too. We start with a self-improvement lemma.

Lemma 5.1. Assume u is an almost minimizer for J in Ω. For each choice of constants C 1 ≥ 3 and r 0 , there is a constant τ 1 ∈ (0, 10 -2 ) (which depends only on n, κ, α, r 0 , C 1 , λ and Λ), such that if (x, r) ∈ G(τ, C 0 , C 1 , r 0 ) for some choice of τ ∈ (0, τ 1 ) and C 0 ≥ 1, then for each z ∈ E x (x, τ r/3), we can find ρ z ∈ (τ kr/2, τ kr) such that (z, ρ z ) ∈ G(τ, 10C 0 , 3, r 0 ). Here k is defined as in (5.5) and satisfies (5.6).

Proof. We already use u

x = u • T -1
x as in (2.18), and now let (u x ) * r be the harmonic extension of u x to B(x, r). Hence for y ∈ B(x, τ r)

|(u x ) * r (y) -b(x, r)| = (u x ) * r (y) - ∂B(x,r) u x = |(u x ) * r (y) -(u x ) * r (x)| ≤ τ r sup z∈B(x,τ r) |∇(u x ) * r (z)| ≤ τ sup ∂B(x,r/2) |(u x ) * r | ≤ Cτ ∂B(x,r) |(u x ) * r | = Cτ ∂B(x,r) |u x | = Cτ b + (x, r) (5.4) ≤ CC 1 τ |b(x, r)|. (5.7)
Recall that (3.5) holds as long as A(x) = I and B(x, r) ⊂ Ω. Then, by the discussion below (3.12), this also holds for u x , as long as B(x, r) ⊂ Ω x = T x (Ω) or equivalently E x (x, r) ⊂ Ω. That is, (5.8)

ˆB(x,r) |∇u x -∇(u x ) * r | 2 ≤ Cr α ˆB(x,r) |∇u x | 2 + Cr n .
Then by Poincaré's inequality and the definition (3.6),

(5.9)

B(x,r) |u x -(u x ) * r | 2 ≤ r 2 B(x,r) |∇u x -∇(u x ) * r | 2 ≤ Cr 2 (r α ω(u x , x, r) 2 + 1).
Applying Cauchy-Schwartz's inequality in the smaller ball; then by (5.9) (5.10)

B(x,τ r) |u x -(u x ) * r | ≤ τ -n/2 B(x,r) |u x -(u x ) * r | 2
1/2 (5.9)

≤ Cτ -n/2 r(r α ω(u x , x, r) 2 + 1) 1/2 , or equivalently, after an affine change of variable,

(5.11)

Ex(x,τ r) |u -(u x ) * r • T x | ≤ Cτ -n/2 r(r α ω(u x , x, r) 2 + 1) 1/2 .
Now let z ∈ E x (x, τ r/3) be given. We want to use (5.11) to control b(z, ρ) for some ρ ∈ (τ kr/2, τ kr) Fix x and z, and notice that for each such ρ,

(5.12) b(z, ρ) = ζ∈∂B(z,ρ) u z (ζ) dζ = ∂Ez(z,ρ) u(ξ)J (ξ)dσ(ξ),
where we set 

ξ = T z (ζ) ∈ ∂E z (z, ρ), notice that u z (ζ) = u(ξ).
∈ E x (x, τ r/2) = T -1 x (B(x, τ r/2)) (5.14) |u(ξ) -b(x, r)| ≤ |u(ξ) -(u x ) * r (T x (ξ)| + |(u x ) * r (T x (ξ)) -b(x, r)|.
Use (5.14), (5.7) and (5.11); this yields

(5.15) ˆI |b(z, ρ) -b(x, r)| ≤ Cτ r C 1 τ |b(x, r)| + τ -n/2 r(r α ω(u x , x, r) 2 + 1) 1/2
and allows us to choose, by Chebyshev, a radius ρ = ρ z ∈ (τ kr/2, τ kr) such that (5.16) provided τ 1 is small enough depending on C (which depends on the usual constants for J) and C 1 . Note that we have used (5.3) for τ ≤ τ 1 . Note that (5.16) implies that (5.17)

|b(z, ρ z ) -b(x, r)| ≤ C C 1 τ |b(x, r)| + τ -n/2 r(r α ω(u x , x, r) 2 + 1) 1/2 ≤ C C 1 τ |b(x, r)| + τ n/2 |b(x, r)| ≤ 1 2 |b(x, r)|,
|b(z, ρ z )| ≥ 1 2 |b(x, r).
Next we need to prove (5.4) for ρ z , and for this we want to control 

) |b + (z, ρ z ) -|b(x, r)|| ≤ C C 1 τ |b(x, r)| + τ -n/2 r(r α ω(u x , x, r) 2 + 1) 1/2 ≤ 1 2 |b(x, r)|.
We do not even have to ask for an additional Chebyshev requirement for ρ z , even though we could have done so. Hence, if τ 1 is small enough and by (5.16),

b + (z, ρ z ) ≤ 3 2 |b(x, r)| ≤ 3|b(z, ρ z )|, (5.20) which is (5.4) with C 1 = 3.
We are left to verify an analogue of ( 5.3) at the scale ρ z , and for this we control ω(u z , z, ρ z ) in terms of ω(u x , x, r). First observe that E z (z, kr) ⊂ E x (x, r/2) by (5.6); hence we can apply (3.10) to u z in B(z, kr), between the radii ρ z and kr; we get that ω(u z , z, ρ z ) ≤ Cω(u z , z, kr) + C log(kr/ρ z ) ≤ Cω(u z , z, kr)

+ C(1 + | log(τ )|).
Then by (3.6)

ω(u z , z, kr) 2 = B(z,kr) |∇u z | 2 ≤ C Ez(z,kr) |∇u| 2 ≤ C Ex(x,r) |∇u| 2 ≤ Cω(u x , x, r) 2
with constants C that depend also on λ and Λ, so

(5.21) ω(u z , z, ρ z ) ≤ Cω(u x , x, r) + C(1 + | log(τ )|). Thus 1 + ρ α z ω(u z , z, ρ z ) 2 (5.21) ≤ 1 + Cρ α z ω(u x , x, r) 2 + Cρ α z (1 + | log τ |) 2 ≤ 1 + Cr α ω(u x , x, r) 2 + C(τ r) α (1 + | log τ |) 2 ≤ 1 + Cr α ω(u x , x, r) 2 + Cr α [τ α (1 + | log τ |) 2 ] ≤ C(1 + r α ω(u x , x, r) 2 ) (5.3) ≤ Cτ n C 0 r |b(x, r)| 2 (5.16) ≤ 2Cτ n C 0 r |b(z, ρ z )| 2 . (5.22)
Recall that r ≃ τ -1 ρ z with constants of comparability depending only on n, λ, Λ. Together with (5.22), this remark yields

|b(z, ρ z )| ≥ C 0 r 2Cτ n 1 + ρ α z ω(u z , z, ρ z ) 2 1/2 ≥ C 0 ρ z 2Cτ n+1 1 + ρ α z ω(u z , z, ρ z ) 2 1/2 = (Cτ ) -1 C 0 τ -n ρ z 1 + ρ α z ω(u z , z, ρ z ) 2 1/2 . (5.23)
Here C > 0 is a constant which depends on n, λ and Λ. Therefore we can choose τ 1 so small that (Cτ ) -1 ≥ 10 above. Thus we have (5.3) at (z, ρ z ) with the constant 10C 0 . We can conclude that (z, ρ z ) ∈ G(τ, 10C 0 , 3, r 0 ), which is the desired result.

Lemma 5.2. Let u, x, r satisfy the hypothesis of Lemma 5.1; in particular (x, r) ∈ G(τ, C 0 , C 1 , r 0 ) for some C 0 ≥ 1, C 1 ≥ 3 and τ ≤ τ 1 . Recall that b(x, r) = 0 by (5.3). If b(x, r) > 0 then u ≥ 0 on E x (x, τ r/3) and u > 0 almost everywhere on E x (x, τ r/3) (5.24)

Similarly, if b(x, r) < 0, then (5.25) u ≤ 0 on E x (x, τ r/3) and u < 0 almost everywhere on E x (x, τ r/3).

Proof. Let z ∈ E x (x, τ r/3). Apply Lemma 5.1 to get (z, ρ z ) ∈ G(τ, 10C 0 , 3, r 0 ). Let ρ z = ρ 0 . Iterate Lemma 5.1, j times, each time around the point z, to get (z, ρ j ) ∈ G(τ, 10 j C 0 , 3, r 0 ) where ρ j ∈ ((τ k/2) j r, (τ k) j r). By (5.3),

(5.26)

ρ -1 j |b(z, ρ j )| ≥ 10 j C 0 τ -n (1 + ρ α j w(u z , z, ρ j )
2 ) 1/2 . Arguing as before (i.e. obtaining (5.16) at the scale j) we see that

|b(z, ρ j ) -b(z, ρ j-1 )| < 1 2 |b(z, ρ j-1 )|,
that is, b(z, ρ j ) has the same sign as b(z, ρ j-1 ). An induction argument yields that b(z, ρ j ) has the same sign as b(x, r) for all j. Set (5.27)

Z j = {y ∈ B(z, τ ρ j ) | u(y)b(x, r) ≤ 0} = {y ∈ B(z, τ ρ j ) | u(y)b(z, ρ j ) ≤ 0}.
One should think of this as the subset of B(z, τ ρ j ) where u has the "wrong" sign. In particular if y ∈ Z j , |u(y) -b(z, ρ j )| ≥ |b(z, ρ j )|. Arguing exactly as in the proof of Lemma 5.1 we can prove as in (5.7) (and because we took τ small enough for (5.16)) that

(5.28)

|(u z ) * ρ j (y) -b(z, ρ j )| ≤ CC 1 τ |b(z, ρ j )| ≤ 1 4 |b(z, ρ j )| for y ∈ B(z, τ ρ j ).
Here (u z ) * ρ j is the harmonic extension of u z to B(z, ρ j ). This implies that (u z ) * ρ j shares a sign with b(z, ρ j ) on B(z, τ ρ j ). Thus, for every y ∈ Z j we have

(5.29) |u z (y) -(u z ) * ρ j (y)| ≥ |u z (y) -b(z, ρ j )| -|b(z, ρ j ) -(u z ) * ρ j (y)| ≥ 3 4 |b(z, ρ j )|.
In other words,

Z j ⊂ y ∈ B(z, τ ρ j ) : |u z (y) -(u z ) * ρ j (y)| ≥ 3 4 |b(z, ρ j )| .
Arguing as in (5.11), Markov's inequality combined with (5.10) yields, (5.30) To simplify the discussion assume that b(x, r) > 0 and thus b(z, ρ j ) > 0 for all j. Then Z j = {u ≤ 0} ∩ B(z, τ ρ j ). Divide both sides of (5.30) by |B(z, τ ρ j )| ≃ (τ ρ j ) n and then let j → ∞ to get that (5.31) lim

|Z j | ≤ 4 3|b(z, ρ j )| ˆB(z,τρ j ) |u z -(u z ) * ρ j | ≤ C |b(z, ρ j )| ˆEz(z,τρj) |u -(u z ) * ρ j • T z | ≤ C |b(z, ρ j )| (τ ρ j ) n τ -n/2 ρ j (ρ α j w(u z , z, ρ j ) 2 + 1) 1/2 ≤ C(τ ρ j ) n τ -n/2 ρ j (1 + ρ α j w(u z , z, ρ j ) 2 ) 1/2 |b(z, ρ j )| ≤ C[C 0 10 j ] -1 (τ ρ j ) n τ n/2 10 j C 0 τ -n (1 + ρ α j w(u z , z, ρ j ) 2 ) 1/2 ρ -1 j |b(z, ρ j )| (5.26) ≤ C[C 0 10 j ] -1 (τ ρ j ) n τ n/2 .
j→∞ |{u ≤ 0} ∩ B(z, τ ρ j )| |B(z, τ ρ j )| = lim j→∞ C|Z j | (τ ρ j ) n = 0 for all z ∈ E x (x, τ r/3).
Thus |{u ≤ 0} ∩ E x (x, τ r/3)| = 0. Hence u > 0 a.e on E x (x, τ r/3) and by continuity u ≥ 0 on E x (x, τ r/3). The case where b(x, r) < 0 follows in the same way.

For the next lemma we use Lemma 5.2 to get some regularity for u near a point x such that (x, r) ∈ G(τ, C 0 , C 1 , r 0 ), with the same method as for the local regularity of u away from the free boundary.

Lemma 5.3. There exist constants k 1 ∈ (0, k/2), depending only on λ and Λ, and τ 2 ∈ (0, τ 1 ), with τ 1 as in Lemmas 5.1 and 5.2 with the following properties. Let u be an almost minimizer for J in Ω. Let (x, r) ∈ G(τ, C 0 , C 1 , r 0 ) for some τ ∈ (0, τ 2 ) and C 0 ≥ 1. Then for z ∈ B(x, τ r/10) and s ∈ (0, k 1 τ r),

(5.32) ω(u, z, s) ≤ C τ -n 2 ω(u x , x, r) + r α 2
, and for y, z ∈ B(x, τ r/10),

(5.33) |u(y) -u(z)| ≤ C τ -n 2 ω(u x , x, r) + r α 2
|y -z|.

Here C = C(n, κ, α, λ, Λ, r 0 ). Finally, there is a constant C(τ, r) depending on n, κ, α, r 0 , τ, r, λ, Λ, such that

(5.34) |∇u(y) -∇u(z)| ≤ C(τ, r)(ω(u x , x, r) + 1)|y -z| β ,
for any y, z ∈ B(x, τ r/10), where as before β = α n+2+α .

Proof. Let u, x and r be as in the statement and z ∈ B(x, τ r/3). By taking τ 2 small enough Lemmas 5.1 and 5.2 hold when we replace k by 2k 1 (see (5.13) and (5.15)). Thus we can find ρ ∈ (k 1 τ r, 2k 1 τ r) such that such that (z, ρ) ∈ G(τ, 10C 0 , 3, r 0 ). Since b(x, r) = 0 by ( 5.3), we can assume b(x, r) > 0 (the other case is similar). By Lemma 5.2, u ≥ 0 in E x (x, τ r/3) and u > 0 almost everywhere in E x (x, τ r/3).

Assume now that z ∈ B(x, τ r/6), and apply (5.6) with the radius τ r/2; we get that E z (z, kτ r/2) ⊂ E x (x, τ r/4) and so u > 0 almost everywhere on E z (z, kτ r/2). This means that in the definition (2.16) of our functional, (5.35) J E,z,kτ r/2 (u) = ˆEz(z,τr/2) A∇u, ∇u + q 2 + with a full contribution for q 2 + . The same thing holds for other ellipsoids contained in E x (x, τ r/4), and in particular smaller ellipsoids centered at z. In Section 4, positivity almost everywhere and its consequence (5.35) were the only way we ever used the fact that ellipsoids are contained in {u x > 0}. That is, we can repeat the proofs of that section as long as our ellipsoids stay inside E x (x, τ r/4). In particular, if we choose k 2 small enough (depending on λ and Λ), and set r 2 = k 2 τ r, the proof of (4.8) also yields

(5.36) ω(u z , z, t) ≤ Cω(u z , z, r 2 ) + Cr α/2 2 for 0 < t ≤ r 2 ,
because our earlier condition that B(z, 2Λ

1/2 z λ -1/2 z r 2 ) ⊂ E z (z, τ r/2)
, where λ z and Λ z are easily estimated in terms of λ and Λ, is satisfied. Now observe that ω(u, z, s) ≤ Cω(u z , z, λ -1/2 s), by (3.6) and (2.17), and ω(u z , z, r 2 ) ≤ Cτ -n 2 ω(u x , x, r), for the same reasons; (5.32) follows provided s ≤ λ 1/2 k 2 τ r. Thus k 1 = k 2 λ 1/2 . Next (5.33) follows from (5.32), because ∇u(z) can be computed almost everywhere as limits of averages of u, which are dominated by lim sup s→0 ω(u, z, s).

The local Hölder estimate for ∇u in (5.34) is very similar to the proof of Theorem 4.2. We only need to make sure that we never get outside of the ellipsoid E x (x, τ r/4), where we know that u > 0 almost everywhere.

Lemma 5.4. Let u be an almost minimizer for J in Ω. There exists K 2 = K 2 (λ, Λ) ≥ 2 such that for each choice of γ ∈ (0, 1), τ > 0 and C 0 ≥ 1, we can find r 0 , η small and K ≥ 1 with the following property: if x ∈ Ω and r > 0 are such that 0 < r ≤ r 0 , B(x, K 2 r) ⊂ Ω and

(5.37) |b(u x , x, r)| ≥ γr(1 + ω(u x , x, r)),

and

(5.38) ω(u x , x, r) ≥ K, then there exists ρ ∈ ηr 2 , ηr such that (x, ρ) ∈ G(τ, C 0 , 3, r 0 ). Proof. Let η ∈ (0, 10 -2 ) be small, to be chosen later, and let (x, r) be as in the statement. Let (u x ) * r be the harmonic extension of u x to B(x, r). Notice that |∇(u x ) * r | 2 is subharmonic on B(x, r), and ´B(x,r) x, r). Therefore for y ∈ B(x, ηr).

|∇(u x ) * r | 2 ≤ ´B(x,r) |∇u x | 2 . For y ∈ B(x, ηr), (5.39) |∇(u x ) * r (y)| 2 ≤ B(y,r/2) |∇(u x ) * r | 2 ≤ 2 n B(x,r) |∇(u x ) * r | 2 ≤ 2 n B(x,r) |∇u x | 2 = 2 n ω(u x , x, r) 2 . Since (u x ) * r is harmonic in B(x, r), (u x ) * r (x) = ∂B(x,r) u x = b(u x ,
(5.40)

|(u x ) * r (y)-b(u x , x, r)| = |(u x ) * r (y)-(u x ) * r (x)| ≤ ηr sup B(x,ηr) |∇(u x ) * r | ≤ 2 n/2 ηrω(u x , x, r).
We will choose η so small that 2 n/2 η < γ/4. Then (5.37) and (5.40) yield

(5.41)

|(u x ) * r (y) -b(u x , x, r)| ≤ 2 n/2 ηrω(u x , x, r) ≤ 1 4 γrω(u x , x, r) ≤ 1 4 |b(u x , x, r)|.
In particular, (u x ) * r has the same sign as b(u x , x, r) on B(x, ηr) and

(5.42)

5 4 |b(u x , x, r)| ≥ |(u x ) * r (y)| ≥ 3 4 |b(u x , x, r)| for y ∈ B(x, ηr). Since ˆB(x,ηr)\B(x,ηr/2) |u x -(u x ) * r | = ˆηr ηr/2 ˆ∂B(x,s) |u x -(u x ) * r |, there exists ρ ∈ ηr 2 , ηr such that ˆ∂B(x,ρ) |u x -(u x ) * r | ≤ 2 ηr ˆB(x,ηr)\B(x,ηr/2) |u x -(u x ) * r | = 2 ηr ˆηr ηr/2 ˆ∂B(x,s) |u x -(u x ) * r |.
Poincaré's inequality and Cauchy-Schwarz lead to

ˆ∂B(x,ρ) |u x -(u x ) * r | ≤ 2 ηr ˆηr ηr/2 ˆ∂B(x,s) |u x -(u x ) * r | ≤ 2 ηr ˆB(x,ηr) |u x -(u x ) * r | ≤ C ˆB(x,ηr) |∇u x -∇(u x ) * r | ≤ C(ηr) n/2 ˆB(x,ηr) |∇u x -∇(u x ) * r | 2 1/2 ≤ C(ηr) n/2 ˆB(x,r) |∇u x -∇(u x ) * r | 2 1/2 . (5.43) By (3.4) (5.44) B(x,r) |∇u x -∇(u x ) * r | 2 ≤ Cr α B(x,r) |∇u x | 2 + C = Cr α ω(u x , x, r) 2 + C.
Combining (5.44) and (5.43) yields

(5.45)

ˆ∂B(x,ρ) |u x -(u x ) * r | ≤ Cη n/2 r n (1 + r α ω(u x , x, r)) 1/2 .
Since r ≤ r 0 , then r α ≤ r α 0 and by (5.45) and (5.38),

∂B(x,ρ) |u x -(u x ) * r | ≤ C(ηr) 1-n ˆ∂B(x,ρ) |u x -(u x ) * r | ≤ Cη 1-n 2 r(1 + r α 0 ω(u x , x, r) 2 ) 1/2 ≤ Cη 1-n 2 rω(u x , x, r)(K -2 + r α 0 ) 1/2 . (5.46)
We choose K large enough and r 0 small enough, both depending on γ and η (recall that η depends on γ only), so that in (5.46), (5.47)

Cη 1-n 2 (K -2 + r α 0 ) 1/2 ≤ γ 4 .
Then by (5.46) and (5.37),

(5.48)

∂B(x,ρ) |u x -(u x ) * r | ≤ γ 4 rω(u x , x, r) ≤ |b(u x , x, r)| 4 .
As mentioned above, (u x ) * r has the same sign as b(u x , x, r) in B(x, ηr). Since ρ < ηr, (u x ) * r does not change sign in ∂B(x, ρ). By (5.42) and (5.48),

|b(u x , x, ρ)| = ∂B(x,ρ) u x ≥ ∂B(x,ρ) (u x ) * r - ∂B(x,ρ) |u x -(u x ) * r | = ∂B(x,ρ) |(u x ) * r | - ∂B(x,ρ) |u x -(u x ) * r | ≥ 3 4 |b(u x , x, r)| - 1 4 |b(u x , x, r)| = 1 2 |b(u x , x, r)|. (5.49)
The same computations yield (5.50) This shows that (x, ρ) satisfies (5.4) with C 1 = 3. We still need to check (5.3). By (5.49) and (5.37),

|b + (u x , x, ρ)| = ∂B(x,ρ) |u x | ≤ ∂B(x,ρ) |(u x ) * r | + ∂B(x,ρ) |u x -(u x ) * r | ≤ 5 4 |b(u x , x, r)| + 1 4 |b(u x , x, r)| ≤ 3 2 |b(u x , x, r)|.
(5.51)

|b(u x , x, ρ)| ρ ≥ 1 2ρ |b(u x , x, r)| ≥ γr 2ρ (1 + ω(u x , x, r)) ≥ γ 2η (1 + ω(u x , x, r)).
We now need a lower bound for ω(u x , x, r) in terms of ω(u x , x, ρ). Applying (3.9) to u x (which can be done as long as B(x, r) ⊂ Ω x ), for any j ≥ 0 integer, we have

(5.52) ω(u x , x, 2 -j-1 r) ≤ Cω(u x , x, r) + Cj
We apply this to the integer j such that 2 -j-2 r ≤ ρ < 2 -j-1 r and get, recalling that ρ ∈ ( ηr 2 , ηr), that (5.53)

ω(u x , x, ρ) ≤ 2 n/2 ω(u x , x, 2 -j-1 r) ≤ C(ω(u x , x, r) + Cj) ≤ ω(u x , x, r) + C| log η|.
Then (5.51) yields

(1 + ρ α ω(u x , x, ρ) 2 ) 1/2 ≤ 1 + ρ α/2 ω(u x , x, ρ) ≤ 1 + Cr α/2 0 ω(u x , x, r) + Cr α/2 0 | log η| ≤ (1 + Cr α/2 0 + Cr α/2 0 | log η|)(1 + ω(u x , x, r)) ≤ (1 + Cr α/2 0 + Cr α/2 0 | log η|) 2η γ |b(u x , x, ρ)| ρ . (5.54) Multiplying by C 0 τ -n we obtain (5.55) C 0 τ -n (1 + ρ α ω(u x , x, ρ) 2 ) 1/2 ≤ C 2 |b(u x , x, ρ)| ρ ,
where (5.56)

C 2 = C 0 τ -n (1 + Cr α/2 0 + Cr α/2 0 | log η|) 2η γ .
This shows that (5.3) holds for (x, ρ) if C 2 ≤ 1. We choose η so small (depending on C 0 , τ, γ), so that C 0 τ -n 2η γ ≤ 1 2 and η2 n/2 ≤ γ 4 , and then r 0 so small and K so large, depending on η, so that 1 + Cr (5.47). By using an upper bound for r 0 we get rid of the dependence on it. Therefore (x, ρ) ∈ G(τ, C 0 , 3, r 0 ), completing our proof.

α/2 0 + Cr α/2 0 | log η| ≤ 2 and Cη 1-n 2 (K -2 + r α 0 ) 1/2 ≤ γ 4 , see

6.

Local Lipschitz regularity for one-phase almost minimizers Lemma 6.1. Let u be an almost minimizer for J + in Ω. Let θ ∈ (0, 1/2). There exist γ > 0,

K 1 > 1, β ∈ (0, 1) and r 1 > 0 such that if x ∈ Ω and 0 < r ≤ r 1 are such that B(x, r) ⊂ Ω x , (6.1) b(u x , x, r) ≤ γr(1 + ω(u x , x, r)), and 
(6.2) ω(u x , x, r) ≥ K 1 , then (6.3) ω(u x , x, θr) ≤ βω(u x , x, r).
Proof. Recall from the definition of K + loc (Ω) that almost minimizers for J + are non-negative almost everywhere. Since Theorem 3.1 ensures that almost minimizers are continuous (after modification on a set of measure zero), almost minimizers must be non-negative everywhere. Let x ∈ Ω and r ≤ r 1 be such that B(x, r) ⊂ Ω x . Let (u x ) * r denote the harmonic extension of u x to B(x, r). Notice that, by the maximum principle, (u

x ) * r ≥ 0 in B(x, r). Given y ∈ B(x, r), let a(y) = (u x ) * r (x) + ∇(u x ) * r (x), y -x . Let also (6.4) (v x ) * r (y) = (u x ) * r (y) -a(y) = (u x ) * r (y) -(u x ) * r (x) -∇(u x ) * r (x), y -x . Notice that (v x ) * r is harmonic in B(x, r), (v x ) * r (x) = 0 and ∇(v x ) * r (x) = 0.
As in (3.13), we obtain that for 0 < s ≤ r,

(6.5) ω(u x , x, s) ≤ C r s n/2 r α/2 ω(u x , x, r) + C r s n/2 + B(x,s) |∇(u x ) * r | 2 1/2
. By (6.5) and (6.11), since b(u x , x, r) ≥ 0 (and because

√ a 2 + b 2 ≤ a + b for a, b ≥ 0), we have (6.12) ω(u x , x, s) ≤ C r s n/2 r α/2 ω(u x , x, r) + C r s n/2 + |∇(u x ) * r (x)| + Cr -2 sb(u x , x, r).
Let θ ∈ (0, 1/2), as in the statement. Take s = θr < r/2. With this notation, (6.12) yields, using (6.2) and (6.1):

ω(u x , x, θr) ≤ |∇(u x ) * r (x)| + Cθ -n/2 r α/2 ω(u x , x, r) + Cθ -n/2 + Cθr -1 b(u x , x, r) ≤ |∇(u x ) * r (x)| + Cθ -n/2 (r α/2 + K -1 1 )ω(u x , x, r) + Cθγ(1 + ω(u x , x, r)) ≤ |∇(u x ) * r (x)| + C θ -n/2 (r α/2 + K -1 1 ) + θγ(K -1 1 + 1) ω(u x , x, r). (6.13)
We shall now control |∇(u x ) * r (x)| in terms of ω(u x , x, r). We consider two cases. Let η > 0 be small, to be chosen later. If (6.14)

B(x,r) |∇(v x ) * r | 2 ≥ η 2 B(x,r) |∇u x | 2 = η 2 ω(u x , x, r) 2
then we use (6.8) and obtain

ω(u x , x, r) 2 = B(x,r) |∇u x | 2 ≥ B(x,r) |∇(u x ) * r | 2 = |∇(u x ) * r (x)| 2 + B(x,r) |∇(v x ) * r | 2 ≥ |∇(u x ) * r (x)| 2 + η 2 ω(u x , x, r) 2 . (6.15)
By (6.13), (6.15) yields

ω(u x , x, θr) ≤ |∇(u x ) * r (x)| + C θ -n/2 (r α/2 + K -1 1 ) + θγ(K -1 1 + 1) ω(u x , x, r) ≤ 1 -η 2 ω(u x , x, r) + C θ -n/2 (r α/2 + K -1
1 ) + θγ(K -1 1 + 1) ω(u x , x, r). (6.16) Before we continue the analysis of this case, let us deal with the case when (6.14) fails. In this case, by (6.8), (6.17)

B(x,r) |∇(u x ) * r | 2 = |∇(u x ) * r (x)| 2 + B(x,r) |∇(v x ) * r | 2 ≤ |∇(u x ) * r (x)| 2 + η 2 ω(u x , x, r) 2 .
By standard estimates on harmonic functions, (6.18)

|∇(u x ) * r (x)| ≤ Cr -1 ∂B(x,r) |(u x ) * r | = Cr -1 ∂B(x,r) |u x | = Cr -1 ∂B(x,r) u x = Cr -1 b(u x , x, r).
Then, returning to (6.17),

B(x,r) |∇(u x ) * r | 2 ≤ |∇(u x ) * r (x)| 2 + η 2 ω(u x , x, r) 2 ≤ Cr -2 b(u x , x, r) 2 + η 2 ω(u x , x, r) 2 ≤ Cγ 2 (1 + ω(u x , x, r)) 2 + η 2 ω(u x , x, r) 2 . (6.19)
At the same time, (6.5) with s = r, (6.19) and (6.2) yield, recalling that r < r 1 ,

ω(u x , x, r) ≤ Cr α/2 ω(u x , x, r) + C + B(x,r) |∇(u x ) * r | 2 1/2 ≤ Cr α/2 ω(u x , x, r) + C + Cγ(1 + ω(u x , x, r)) + ηω(u x , x, r) ≤ C(r α/2 1 + K -1 1 + γK -1 1 + γ + η)ω(u x , x, r). (6.20)
If η is small enough so that Cη < 1/4 and K 1 is large enough and r 1 is small enough so that (6.21) C(r

α/2 1 + K -1 1 + γK -1 1 + γ) < 1 4 ,
we get a contradiction since ω(u x , x, r) ≥ K 1 > 0. Under these conditions the second case is impossible and (6.16) holds.

To deduce (6.3), choose K 1 , r 1 and γ satisfying (6.21) and

(6.22) C θ -n/2 (r α/2 1 + K -1 1 ) + θγ(K -1 1 + 1) ≤ 1 -1 -η 2 2 ,
where η is as above. Let

β ∈ 1+ √ 1-η 2 2
, 1 . We have

(6.23) 1 -η 2 + C θ -n/2 (r α/2 1 + K -1 1 ) + θγ(K -1 1 + 1) ≤ β,
which ensures that (6.3) holds.

Theorem 6.1. Let u be an almost minimizer for J + in Ω. Then u is locally Lipschitz in Ω.

We want to show that there exist r 2 > 0 and C 2 ≥ 1 (depending on n, κ, α, λ, Λ) such that for each choice of x 0 ∈ Ω and r 0 > 0 such that r 0 ≤ r 2 and B(x 0 , K 2 r 0 ) ⊂ Ω, where K 2 is as in Lemma 5.4,then (6.24) |u(x) -u(y)| ≤ C 2 (ω(u x 0 , x 0 , 2r 0 ) + 1)|x -y| for x, y ∈ B(x 0 , r 0 ).

Proof. Let (x, r) be such that B(x, K 2 r) ⊂ Ω. We want to use the different Lemmas above to find a pair (x, ρ) that allows us to control u. Pick θ = 1/3 (smaller values would work as well), and let β, γ, K 1 , r 1 be as in Lemma 6.1. Pick τ = τ 2 /2, where τ 2 ∈ (0, τ 1 ) where τ 1 is the constant that we get in Lemma 5.1 applied with C 1 = 3 and r 0 = r 1 . Here τ 2 us the corresponding constant that appears in Lemma 5.3. Let now r 0 , η, K be as in Lemma 5.4 applied to C 0 = 10, and to τ and γ as above. From Lemma 5.4 we get a small r γ . Set (6.25) K 3 ≥ max(K 1 , K), and r 2 ≤ min(r 1 , r γ ).

Let r ≤ r 2 . We consider three cases.

Case 1:

(6.26) ω(u x , x, r) ≥ K 3 b(u x , x, r) ≥ γr(1 + ω(u x , x, r))
Case 2:

(6.27) ω(u x , x, r) ≥ K 3 b(u x , x, r) < γr(1 + ω(u x , x, r))

Case 3:

(6.28) ω(u x , x, r) < K 3 .

Let us start with case 1. By (6.26), we can apply Lemma 5.4 to find ρ ∈ ηr 2 , ηr such that (x, ρ) ∈ G(τ, 10, 3, r γ ).

Notice that τ 1 obtained in Lemma 5.1 depends on an upper bound on r 0 (which we had taken to be r 1 ), so if we keep C 1 but have a smaller r 0 , the same τ 1 works. Notice that ρ < ηr < r < r γ . The pair (x, ρ) satisfies the assumptions of Lemmas 5.1-5.3 (applied with r 0 = r 1 ), that is, (x, ρ) ∈ G(τ, 10, 3, r γ ), where τ < τ 2 . By Lemma 5.3, u is C x -Lipschitz in B(x, τ r/10).

By (5.33), we can take (6.29)

C x = C(τ -n 2 ω(u x , x, ρ) + ρ α 2 ) ≤ C(τ -n 2 η -n 2 ω(u x , x, r) + r α 2
). By Lemma 5.3 we even know that u is C 1,β in a neighborhood of x, thus Case 1 yields additional regularity.

In the two remaining cases, we set

r k = θ k r = 3 -k r, k ≥ 0.
Our task is to control ω(u x , x, r k ). If the pair (x, r k ) ever satisfies (6.26), we denote k stop the smallest integer such that (x, r k ) satisfies (6.26) (notice that k ≥ 1 since we are not in Case 1). Otherwise, set k stop = ∞. Let k < k stop be given. If (x, r k ) satisfies (6.27), we can apply Lemma 6.1 to it. Therefore (6.30) ω(u x , x, r k+1 ) ≤ βω(u x , x, r k ).

Otherwise, (x, r k ) satisfies (6.28) (since k < k stop ). Then (6.31) ω(u x , x, r k+1 ) = B(x,r k+1 )

|∇u x | 2 1/2 ≤ 3 n 2 ω(u x , x, r k ) ≤ 3 n 2 K 3 .
By (6.30) and (6.31), we obtain that for 0 ≤ k ≤ k stop , (6.32)

ω(u x , x, r k ) ≤ max β k ω(u x , x, r), 3 n 2 K 3 . If k stop = ∞, this implies that (6.33) lim sup k→∞ ω(u x , x, r k ) ≤ 3 n 2 K 3 .
In particular, if x is a Lebesgue point of ∇u x (hence a Lebesgue point for ∇u), (6.34)

|∇u x (x)| ≤ 3 n/2 K 3 .
This implies

(6.35) |∇u(x)| ≤ C3 n/2 K 3 .
If k stop < ∞, we apply our argument from Case 1 to the pair (x, r kstop ) and get that u is C 1,β in a neighborhood of x. By (6.29) and (6.32), (6.36) where C ′ depends on n, κ, α, λ, Λ. Notice that we still have (6.36) in Case 1 (directly by (6.29)), and since (6.35) is better than (6.36), we proved that if r ≤ r 2 , (6.36) holds for almost every x ∈ Ω with B(x, K 2 r) ⊂ Ω. Now let x 0 ∈ Ω and r 0 < r 2 be such that B(x 0 , K 2 r 0 ) ⊂ Ω. Then for almost every x ∈ B(x 0 , r 0 ), (6.36) holds with r = r 0 /2 (so that B(x, K 2 r) ⊂ B(x 0 , K 2 r 0 )) and so (6.37)

|∇u(x)| ≤ C(τ -n 2 η -n 2 ω(u x , x, r kstop ) + r α 2 kstop ) ≤ Cτ -n 2 η -n 2 max β kstop ω(u x , x, r), 3 n 2 K 3 + Cr α 2 ≤ C ′ ω(u x , x, r) + C ′ ,
|∇u(x)| ≤ C ′ ω(u x , x, r) + C ′ ≤ 2 n/2 C ′ ω(u x , x 0 , 2r 0 ) + C ′ .
Since we already know that u is in the Sobolev space W 1,2 loc (B(x 0 , r 0 )), we deduce from (6.37) that u is Lipschitz in B(x 0 , r 0 ) and (6.24) holds, proving Theorem 6.1.

Almost Mononotonicity

In this section we establish an analogue of the Alt-Caffarelli-Friedman [ACF] monotonicity formula for variable coefficient almost-minimizers. Recall, for the reminder of this section, the notation f ± = max{±f, 0}. In [ACF] it was shown that the quantity

(7.1) Φ(f, y, r) ≡ 1 r 4 ˆB(y,r) |∇f + | 2 |z -y| n-2 dz ˆB(y,r) |∇f -| 2 |z -y| n-2 dz ≡ 1 r 4 Φ + (f, y, r)Φ -(f, y, r)
.

is monotone increasing in r as long as f (y) = 0 and f is harmonic. While we cannot expect to get the same monotonicity, we will prove an almost-mononicity result in the style of [DT].

Lemma 7.1. Let u be an almost minimizer for J in Ω, and assume that B(x, 2r) ⊂ Ω, where x is such that A(x) = I. Let ϕ ∈ W 1,2 (Ω) ∩ C(Ω) be such that ϕ(y) ≥ 0 everywhere, ϕ(y) = 0 on Ω\B(x, r), and let λ ∈ R be such that

(7.2) |λϕ(y)| < 1, on Ω.
Then, for each choice of sign, ±,

(7.3) 0 ≤ Cr α J x,r (u) + Cr α+n + 2λ ˆB(x,r) ϕ|∇u ± | 2 + ˆB(x,r) u ± ∇u ± , ∇ϕ + λ 2 ˆB(x,r) ϕ 2 |∇u ± | 2 + (u ± ) 2 |∇ϕ| 2 + 2ϕu ± ∇u ± , ∇ϕ ,
where C < ∞ is a constant which depends only on κ, n, Λ, λ and the C 0,α norm of A.

Proof. We verify the proof for u + , the arguments for u -are similar. Define v on Ω by (7.4) v(y) = u(y) + λϕ(y)u(y) = (1 + λϕ(y))u + (y), ∀y ∈ B(x, r) ∩ {u > 0} and v(x) ≡ u(x) otherwise. It is then easy to verify that v is continuous, that u and v have the same sign on Ω and that v + = (1 + λϕ)u + everywhere on Ω. We also know that v ± ∈ W 1,2 (Ω) with (7.5) ∇v + = (1 + λϕ)∇u + + λu + ∇ϕ.

For a detailed verification of these facts, see the proof of Lemma 6.1 in [DT].

Because u and v have the same sign and as ∇u -= ∇v -we can compute that J x,r (v) = J x,r (u) + ˆB(x,r) A∇v + , ∇v + -A∇u + , ∇u + .

Also, u = v on ∂B(x, r) so we can use the almost-minimizing properties of u to conclude that (7.6) J x,r (u) ≤ J x,r (v) + κr α+n .

Combining the two above equations we can conclude that (7.7) 0 ≤ κr α+n + ˆB(x,r) A∇v + , ∇v + -A∇u + , ∇u + Note that A(x) = I and A is Hölder continuous. Thus, on B(x, r), we have

A∇v + , ∇v + ≤ (1 + Cr α )|∇v + | 2 and (1 -Cr α )|∇u + | 2 ≤ A∇u + , ∇u + .
Using these estimates in (7.7), we have

(7.8) 0 ≤ κr α+n + (1 + Cr α ) ˆB(x,r) |∇v + | 2 -|∇u + | 2 + 2Cr α ˆB(x,r) |∇u + | 2 .
By the ellipticity of A, r α ´B(x,r) |∇u + | 2 ≤ Cr α J x,r (u) and so we get

(7.9) 0 ≤ κr α+n + C 1 r α J x,r (u) + (1 + C 2 r α ) ˆB(x,r) |∇v + | 2 -|∇u + | 2 ,
where C 1 , C 2 < ∞ here depend on κ, Λ and the C 0,α norm of A. While the exact values of C 1 , C 2 are unimportant, we give them subscripts to emphasize that we cannot necessarily take them to be the same constant. We note that (7.9) above is very similar to equation (6.14) in [DT]. We can then argue as in the rest of the proof of Lemma 6.1 there to complete our proof. For the sake of completeness, we include these arguments below. By (7.5), (7.10)

|∇v + | 2 =(1 + λ) 2 |∇u + | 2 + 2λ(1 + λϕ)u ∇u + , ∇ϕ + λ 2 (u + ) 2 |∇ϕ| 2 =|∇u + | 2 + 2λ ϕ|∇u + | 2 + u + ∇u + , ∇ϕ + λ 2 ϕ 2 |∇u + | 2 + 2ϕu + ∇u + , ∇ϕ + (u + ) 2 |∇ϕ| 2 .
Integrate this, place it in (7.9) and get that

0 ≤κr α+n + C 1 r α J x,r (u) + 2λ(1 + C 2 r α ) ˆB(x,r) ϕ|∇u + | 2 + u + ∇u + , ∇ϕ + λ 2 (1 + C 2 r α ) ˆB(x,r) ϕ 2 |∇u + | 2 + 2ϕu + ∇u + , ∇ϕ + (u + ) 2 |∇ϕ| 2 .
Divide by (1 + C 2 r α ) and add (Cr α -C 1 r α 1+C 2 r α )J x,r (u) ≥ 0 for C large enough depending only on Λ, α and the C 0,α constant of A. This gives us the desired inequality (7.3).

We will now state and prove variable-coefficient analogues of Lemmas 6.2, 6.3 and 6.4 in [DT]. We note that the proofs in [DT] use Lemma 6.1 there, the continuity of almostminimizers and the logarithmic growth of ω(x, r). In particular, the proofs go through virtually unchanged for almost-minimizers with variable coefficients. Thus, we will give brief indications of how to adapt the proofs of [DT] in our context and invite the reader to study Section 6 in [DT] for more details.

Lemma 7.2. [Compare to Lemmas 6.2 and 6.3 in [DT]] Still assume that n ≥ 3. Let u be an almost minimizer for J in Ω and assume that B(x 0 , 4r 0 ) ⊂ Ω and that u(x 0 ) = 0 and A(x 0 ) = I. Then, for 0 < r < min(1, r 0 ) and for each choice of sign, ±, (7.11)

c n r 2 Φ ± (u, x 0 , r) - 1 n(n -2) B(x 0 ,r) |∇u ± | 2 - 1 2 ∂B(x 0 ,r) u ± r 2 ≤ Cr α n+1 1 + B(x 0 , Cr 0 ) |∇u 2 | + log 2 (r 0 /r) + log 2 (1/r) .
Again, c n = (n(n -2)ω n ) -1 and C > 0 depending only on n, Λ, λ, A C 0,α and the almostminimizing constants of u.

Proof. We will prove this for u + and only prove the lower bound on the left hand side of (7.11). The modifications required to prove the upper bound and the statement for u -are exactly as in [DT] (see, in particular, Lemma 6.3 there) and we leave them to the interested reader. Fix s < r and apply Lemma 7.1 with n+1) . Inserting this choice for ϕ, λ into (7.3), integrating by parts (moving the derivative onto the ϕ term) and using Cauchy-Schwartz we get (7.13)

(7.12) ϕ(y) ≡ ϕ r,s (y) ≡    0 for y ∈ Ω\B(x 0 , r) c n (|y -x 0 | 2-n -r 2-n ) for y ∈ B(x 0 , r)\B(x 0 , s) c n s 2-n -c n r 2-n for y ∈ B(x 0 , s), note the constant c n is such that ´∂B(x 0 ,r) ∂ nϕ r,s (y) = 1. Finally, let λ = c -1 n r n-2+ nα n+1 and s = r 1+ α 2(
0 ≤ Cr α J x 0 ,r (u) + Cr α+n + 2λ ˆB(x 0 ,r) ϕ|∇u ± | 2 - 1 2 ∂B(x 0 ,r) (u ± ) 2 - ∂B(x 0 ,s) (u ± ) 2 + 2λ 2 ˆB(x 0 ,r) ϕ 2 |∇u ± | 2 + (u ± ) 2 |∇ϕ| 2 .
Using the definition of ϕ and the estimates

ϕ ∞ ≤ c n s n-2 and ∇ϕ ∞ ≤ c n (n -2) s n-1 , we can deduce that (7.14) 0 ≤ Cr α J x 0 ,r (u) + Cr α+n + 2λ Φ + (u, x 0 , r) - c n r n-2 ˆB(x,r) |∇u + | 2 -λ ∂B(x 0 ,r) (u ± ) 2 - ∂B(x 0 ,s) (u ± ) 2 + 2λ 2 c 2 n s 2n-4 ˆB(x 0 ,r) |∇u ± | 2 + c 2 n (n -2) 2 s 2n-2 ˆB(x 0 ,r)\B(x 0 ,s) (u ± ) 2 .
We want to estimate

M ≡ c n r 2 Φ + (u, x 0 , r) - 1 n(n -2) B(x 0 ,r) |∇u + | 2 - 1 2 ∂B(x 0 ,r) u + r 2 ≡ c n r 2 Φ + (u, x 0 , r) -c n r -n ˆB(x 0 ,r) |∇u + | 2 - 1 2r 2 ∂B(x 0 ,r) (u + ) 2 .
Rearranging the terms of (7.14) and dividing by 2λr 2 we get that

(7.15) -M ≤ Cr α (J x 0 ,r (u) + r n ) λr 2 + 1 2r 2 B(x 0 ,s) (u + ) 2 +λr -2 c 2 n s 2n-4 ˆB(x 0 ,r) |∇u ± | 2 + c 2 n (n -2) 2 s 2n-2 ˆB(x 0 ,r)\B(x 0 ,s) (u ± ) 2 .
By the continuity of u, more specifically the last estimate in the proof of Theorem 3.1, and u(x 0 ) = 0 we can estimate (7.16)

B(x 0 ,s) (u + ) 2 ≤Cs 2 ω(u, x 0 , 2r 0 ) + + log r 0 s 2 , ˆB(x 0 ,r)\B(x 0 ,s) (u ± ) 2 ≤Cr n+2 ω(u, x 0 , 2r 0 ) + log r 0 s 2 .
Apply the estimates (7.16) to the corresponding terms in (7.15) and use the logarithmic growth of the Dirichlet energy, (2.37), to bound both the energy term in J x 0 ,r and the term

ˆB(x 0 ,r) |∇u + | 2 ≤ ˆB(x 0 ,r) |∇u| 2 ≤ Cr n (ω(u, x 0 , r 0 ) + log(r 0 /r)) 2 .
Note that to bound the energy term in J x 0 ,r we need to use the ellipticity of A. Finally, overestimate the area terms in J by |B(x, r)| ≃ r n . After some arithmetic, and plugging in the values for λ, s we arrive at the desired result. See [DT] for the detailed computations.

The next two results follow from the previous theorems just as they do in [DT]. We state them here without proof and encourage the reader to refer to [DT] for full details.

Lemma 7.3. [Compare to Lemma 6.4 in [DT]] Let u be an almost minimizer for J in Ω, and assume that B(x 0 , 4r 0 ) ⊂ Ω with u(x 0 ) = 0 and A(x 0 ) = I. For 0 < r < 1 2 min(1, r 0 ), set t ≡ t(r) ≡ 1 -r α/4 10 r. Then for 0 < r < min(1/2, r 0 ) and each choice of sign, ±, (7.17)

r t(r) ˆB(x 0 ,s) |∇u ± (y)| 2 dy ds - r t(r) ˆ∂B(x 0 ,s) u ± ∂u ± ∂n ds ≤ Cr n+α/4 1 + B(x 0 , Cr 0 ) |∇u| 2 + log 2 r 0 r .
Here, ∂u ± /∂n denotes the radial derivative of u ± and C > 0 depend only on q ± ∞ , n, Λ, λ, A C 0,α and the almost-minimization constants.

Theorem 7.1. Let u be an almost minimizer for J in Ω and let δ be such that 0 < δ < α/4(n + 1). Let B(x 0 , 4r 0 ) ⊂ Ω with u(x 0 ) = 0 and A(x 0 ) = I. Then there exists C > 0, depending on the usual parameters such that for 0 < s < r < 1 2 min(1, r 0 ), (7.18) Φ(u, x 0 , s) ≤ Φ(u, x 0 , r) + C(x 0 , r 0 )r δ , where,

(7.19) C(x 0 , r 0 ) ≡ C + C B(x 0 ,2r 0 ) |∇u| 2 2 + C((log r 0 ) + ) 4 .

Local Lipschitz continuity for two-phase almost minimizers

The proof of two-phase Lipschitz continuity follows the same blue-print as the one-phase case. We start with Lemma 8.1 which is an analogue of Lemma 6.1. However, the proof of Lemma 8.1 is a bit more involved as it requires the use of the two-phase almost monotonicity formula, (7.18). Lemma 8.1. Let u be an almost minimizer for J in Ω and let B 0 ≡ B(x 0 , λ -1/2 r 0 ) ⊂ Ω be given. Let θ ∈ (0, 1/3) and β ∈ (0, 1). Then there exists γ > 0, K 1 > 1 and r 1 > 0 (which may depend on θ and β) such that if x ∈ B(x 0 , r 0 ) and 0 < r ≤ r 1 satisfy (8.1) u x (y) = 0 for some y ∈ B(x, 2r/3), (8.2) |b(u x , x, r)| ≤ γr(1 + ω(u x , x, r)), and

(8.3) ω(u x , x, r) ≥ K 1 .
Then, (8.4) ω(u x , x, θr) ≤ βω(u x , x, r).

Proof. Let x, r be as in the statement, and y ∈ B(x, 2r/3) such that u x (y) = 0. As usual, let (u x ) * r be the harmonic extension of u x to B(x, r). By standard elliptic estimates there exists a c > 0 (depending on θ ∈ (0, 1/3) but independent of r, x) such that for all z ∈ B(x, θr),

|∇(u x ) * r (z)| ≤ c r sup ζ∈∂B(x,2θr) |(u x ) * r (ζ)| ≤ cb + (u x , x, r) r .
Using this estimate, (2.28) and the triangle inequality we can say: where C > 0 depends on the dimension and the almost-minimization properties of u x , but, crucially, not on K 1 . For any β ∈ (0, 1) if K 1 is large enough and r 1 is small enough (depending on β), then (using condition (8.3)), C + Cr α ω 2 (u x , x, r) ≤ β 2 ω 2 (u x , x, r) 2 .

Thus to prove (8.4), it suffices to bound (8.6) C b + (u x , x, r) r 2 ≤ β 2 ω 2 (u x , x, r) 2 .

Recall the notation u ± x := max{±u x , 0}. To simplify our exposition, we need to specify whether u +

x or u - x contributes more to the energy around x at scale r (of course the two situations are symmetric). So assume, without loss of generality, that ω(u +

x , x, r) ≡ B(x,r)

|∇u + x | 2 1/2 ≤ B(x,r) |∇u - x | 2 1/2
≡ ω(u - x , x, r).

We will now bound b + (u x , x, r) by ω(u + x , x, r). We then finish by bounding ω(u + x , x, r) by a constant depending on x 0 , r 0 . This requires the monotonicity formula we developed in the previous section.

To begin, note that b + (u x , x, r) r ≤ 2 r ∂B(x,r) u +

x -1 r b(u x , x, r)

(8.2)
≤ 2 r ∂B(x,r) u + x + γ(1 + ω(u x , x, r)).

Choosing γ > 0 small (depending on β and K 1 ), the second term on the right hand side above is dominated by βω(ux,x,r) 8

. So we have further simplified the problem and now it suffices to bound 2 r ∂B(x,r) u + x ≤ βω(u x , x, r) 2 .

Recall that y ∈ B(x, 2r/3) is such that u x (y) = 0. Fix η > 0 small but to be determined later, and let z ∈ B(y, ηr/8). In particular B(z, ηr) ⊂ B(x, r). For such z integrate on rays from points in ∂B(z, ηr) to points in ∂B(x, r) and using Fubini we see that Picking η > 0 small enough (again depending only on K 1 and β) this allows us to bound I by rβω(u x , x, r)/8 as desired.

To bound II in (8.7) note that (8.8) ω(u + x , x, r) 2 ω(u - x , x, r) 2

(3.15)

≤ Cω 2 (u + , x, Λ 1/2 r)ω 2 (u -, x, Λ 1/2 r) ≤Cω 2 (u + , y, (1 + Λ 1/2 )r)ω 2 (u -, y, (1 + Λ 1/2 )r)

≤Cω 2 (u + y , y, λ -1/2 (1 + Λ 1/2 )r)ω 2 (u - y , y, λ -1/2 (1 + Λ 1/2 )r) ≤CΦ(u y , y, λ -1/2 (1 + Λ 1/2 )r) (7.18) ≤ CΦ(u y , y, (100 + Λ) -1/2 r 0 ) + Cr δ 0 ,

where C > 0 depends on the ffl B(x 0 ,2r 0 ) |∇u| 2 , r 0 and the almost-minimization constants of u but crucially does not depend on x, r or y. In what remains, we will denote by C(B 0 ) constants that are uniform over points and scales inside of B(x 0 , 2r 0 ).

Recall, from above that Φ(f, y, r) ≡ Case 2: u x (z) = 0 for some z ∈ B(x, 2r/3) and (8.15) ω(u x , x, r) ≥ K 3 b(u x , x, r) < γr(1 + ω(u x , x, r))

Case 3: u x (z) = 0 for some z ∈ B(x, 2r/3) and (8.16) ω(u x , x, r) < K 3 .

Let us start with Case 0. If u x does not vanish inside of B(x, 2r/3) then we know that u is C 1,β in a neighborhood of x and (4.9) tells us (8.17) |∇u x (y)| ≤ C ω(u x , x, r) + r α/2 for almost every y ∈ B(x, 10 -3 λ 1/2 Λ -1/2 r).

If we are in case Case 1, by (8.14), we can apply Lemma 5.4 to find ρ ∈ ηr 2 , ηr such that (x, ρ) ∈ G(τ, 10, 3, r γ ).

Notice that τ 1 obtained in Lemma 5.1 depends on an upper bound on r 0 (which we had taken to be r 1 ), so if we keep C 1 but have a smaller r 0 , the same τ 1 works. Notice that ρ < ηr < r < r γ . The pair (x, ρ) satisfies the assumptions of Lemmas 5.1-5.3 (applied with r 0 = r 1 ), that is, (x, ρ) ∈ G(τ, 10, 3, r γ ), where τ < τ 1 . By Lemma 5.3, u is C x -Lipschitz in B(x, τ r/10).

By (5.33), we can take (8.18) C x = C(τ -n 2 ω(u x , x, ρ) + ρ α 2 ) ≤ C(τ -n 2 η -n 2 ω(u x , x, r) + r α 2 ). By Lemma 5.3 we even know that u is C 1,β in a neighborhood of x, thus Case 1 yields additional regularity.

In the two remaining cases, we set

r k = θ k r = 3 -k r, k ≥ 0.
Our task is to control ω(u x , x, r k ). If the pair (x, r k ) ever satisfies (8.14) or (8.13) we denote k stop the smallest integer such that (x, r k ) satisfies (8.14) or (8.13) (notice that k ≥ 1 since we are not in Cases 0 or 1). Otherwise, set k stop = ∞. Let k < k stop be given. If (x, r k ) satisfies (8.15) and there exists a y ∈ B(x, 2r k /3) such that u x (y) = 0, we can apply Lemma 8.1 at that point and scale. Therefore If k stop < ∞, we apply our argument from either Case 0 or Case 1 to the pair (x, r kstop ) and get that u is C 1,β in a neighborhood of x. By either (8.17 (8.25) where C ′ is independent of x, r. Notice that we still have (8.25) in Cases 0 or 1 (directly by (8.17) or (8.18)), and since (8.24) is better than (8.25), we proved that if r ≤ r 2 , (8.25) holds for almost every x ∈ Ω with B(x, K 2 r) ⊂ Ω. Now let x 0 ∈ Ω and r 0 < r 2 be such that B(x 0 , K 2 r 0 ) ⊂ Ω. Then for almost every x ∈ B(x 0 , r 0 ), (8.25) holds with r = r 0 /2 (so that B(x, K 2 r) ⊂ B(x 0 , K 2 r 0 ) and so (8.26) |∇u(x)| ≤ C ′ ω(u x , x, r) + C ′ ≤ 2 n/2 C ′ ω(u x , x 0 , 2r 0 ) + C ′ .

Since we already know that u is in the Sobolev space W 1,2 loc (B(x 0 , r 0 )), we deduce from (8.26) that u is Lipschitz in B(x 0 , r 0 ) and (8.11) holds, proving Theorem 8.1.

  y)χ {v<0} (y) dy, and κ = κ| det T |.

  x, τ r) = B(x, ρ) and m(u, x, ρ) gives the best approximation of ∇u in L 2 , (4.16) implies that(4.19) 

  Here J (ξ) is the Jacobian of the change of variable T z . Since A x (x) = I and A is Hölder continuous one can show that |J (ξ) -1| ≤ C(τ r) α . Here we only use the fact that C -1 ≤ J (ξ) ≤ C for some C depending on λ, Λ and the Hölder norm of A. There is no problem with the definition and the domains, because E z (z, kτ r) ⊂ E x (x, τ r/2) by (5.6). Now we subtract b(x, r), take absolute values, and integrate on I = (τ kr/2, τ kr). We get that ˆI |b(z, ρ) -b(x, r)| dρ ≤ C(τ r) n-1 ˆρ∈I ˆ∂Ez(z,ρ) |u(ξ) -b(x, r)|J (ξ)dσ(ξ)dρ ≤ C(τ r) n-1 ˆEx(x,τr/2) |u -b(x, r)| ≤ Cτ r Ex(x,τ r/2) |u -b(x, r)|. (5.13) Observe that for ξ

  difference with (5.12) is that we used |u|. Recall that ||a| -|b|| ≤ |a -b| and continue the computation as above, putting absolute values in (5.7) to control the integral of |(u x ) * r (y)| -|b(x, r)| and in (5.11) to control the integral of |u| -|(u x ) * • T x |. We obtain as in (5.16) that (5.19

  u x , x, θr) ≤2ω 2 ((u x ) * r , x, θr) + B(x,θr) |∇ ((u x ) * r -u x ) | 2 ≤C b + (u x , xu x ) * r -u x ) | 2 ≤C b + (u x , x, r) r 2 + C + Cr α ω 2 (u x , x, r),

.

  Term I in (8.7) is small because points in ∂B(z, ηr) are close to y, u x (y) = 0 and u x does not oscillate too much. To wit, by Theorem 3.1 applied inside the ball B(x, r) (more specifically, using the penultimate equation in the Theorem's proof), for all ζ ∈ ∂B(z, ηr),|u + x (ζ)| =|u + x (ζ) -u + x (y)| ≤ C|ζ -y| 1 + ω(u x , x, r) + log r |ζ -y| ≤Cηr 1 + ω(u x , x, r) + log 1 η .

  |∇f + | 2 |z -y| n-2 dz ˆB(y,r) |∇f -| 2 |z -y| n-2 dz ≡ 1 r 4 Φ + (f, y, r)Φ -(f, y, r). u x (z) = 0 for some z ∈ B(x, 2r/3) and (8.14) ω(u x , x, r) ≥ K 3 b(u x , x, r) ≥ γr(1 + ω(u x , x, r))

  x , x, r k+1 ) ≤ ω(u x , x, r k )/2. Otherwise, (x, r k ) satisfies (8.16) (since k < k stop ). Then (8.20)ω(u x , x, r k+1 ) = B(x,r k+1 ) u x , x, r k ) ≤ 3 n 2 K 3 .By (8.19) and (8.20), we obtain that for 0≤ k ≤ k stop , (8.21) ω(u x , x, r k ) ≤ max 2 -k ω(u x , x, r), 3 n 2 K 3 . If k stop = ∞, this implies that (8.22) lim sup k→∞ ω(u x , x, r k ) ≤ 3 n 2 K 3 .In particular, if x is a Lebesgue point of ∇u x (hence a Lebesgue point for ∇u),(8.23) |∇u x (x)| ≤ 3 n/2 K 3 .This implies (8.24) |∇u(x)| ≤ C3 n/2 K 3 .

  ) or (8.18) and then (8.21),|∇u(x)| ≤ C(ω(u x , x, r kstop ) + r α 2 kstop ) ≤ C max β kstop ω(u x , x, r), 3 n 2 K 3 + Cr α 2 ≤ C ′ ω(u x , x, r) + C ′ ,
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We now evaluate B(x,s) |∇(u x ) * r | 2 . By (6.4) and because ∇a = ∇(u x ) * r (x),

The same proof, with (x, s) replaced with B(x, r), shows that (6.8)

We return to

Now suppose that s < r/2. By basic properties of harmonic functions,

Now (6.9) and (6.10) yield (6.11)

For ease of notation let c 1 = (100 + Λ) -1/2 , so that B(y, c 1 r 0 ), B(y, Λ 1/2 c 1 r 0 ) ⊂ B(y, r 0 ) ⊂ B(x 0 , 2r 0 ). We estimate (8.9)

Combine (8.8) and (8.9) to obtain,

0 is large enough (but chosen uniformly over B 0 ). Putting the above two offset equations together we have (8.10)

where the last inequality is again justified by choosing K 1 large enough depending on β ∈ (0, 1) and uniform over B 0 . This completes the bound of II in (8.7) and in turn completes the proof.

Theorem 8.1. Let u be an almost minimizer for J in Ω. Then u is locally Lipschitz in Ω.

Again, we will show a more precise estimate; that there exist r 2 > 0 and C 2 ≥ 1 (depending on n, κ, α, λ, Λ) such that for each choice of x 0 ∈ Ω and r 0 > 0 such that r 0 ≤ r 2 and B(x 0 , K 2 r 0 ) ⊂ Ω (with K 2 as in Lemma 5.4), then (8.11) |u(x) -u(y)| ≤ C 2 (ω(u x 0 , x 0 , 2r 0 ) + 1)|x -y| for x, y ∈ B(x 0 , r 0 ).

Proof. Let (x, r) be such that B(x, K 2 r) ⊂ Ω. We want to use the different Lemmas above to find a pair (x, ρ) that allows us to control u. Pick θ = 1/3, β = 1/2 (smaller values would work as well), and let γ, K 1 , r 1 be as in Lemma 8.1. Pick τ = τ 2 /2, where τ 2 ∈ (0, τ 1 ) where τ 1 is the constant that we get in Lemma 5.1 applied with C 1 = 3 and r 0 = r 1 . Here τ 2 us the corresponding constant that appears in Lemma 5.3. Let now r 0 , η, K be as in Lemma 5.4 applied to C 0 = 10, and to τ and γ as above. From Lemma 5.4 we get a small r γ . Set (8.12) K 3 ≥ max(K 1 , K), and r 2 ≤ min(r 1 , r γ ).

Let r ≤ r 2 . We consider four cases.