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Energy-efficient time-triggered communication
policies for wireless networked control systems

Vineeth S. Varma, André M. de Oliveira, Romain Postoyan, Irinel-Constantin Morărescu and Jamal Daafouz

Abstract—Energy-efficient communication protocols have be-
come an important topic over the past two decades due to
environmental issues, increased monetary costs of energy con-
sumption, and limited battery capacities of sensors and mobile
devices. In this context, we present a novel approach to design
energy-efficient time-triggered communication policies for wire-
less networked control systems, while ensuring a given control
performance. We consider a plant, modeled as a deterministic
discrete-time linear system, which is controlled through a wireless
network by an output-feedback law. We proceed by emulation,
i.e., we construct the controller to stabilize the origin of the plant
while ignoring communication constraints. Next, the wireless
network is taken into account and we assume that the probability
of packet drops depends on the transmission signal power. We
introduce the notion of stochastic allowable transmission interval
(SATI) to characterize stabilizing time-triggered transmission
policies. We then explain how to minimize the average energy
expenditure of the transmitting devices while satisfying the SATI
constraints, thus ensuring the control requirements. Simulations
results are provided to illustrate the trade-off between the
communication and the control costs.

I. INTRODUCTION

Energy-efficiency in communication systems has gained a
rising amount of interest in recent years [1], [2]. For devices
such as cellular phones, unplugged laptops, wireless sensors,
and mobile robots, smart management of energy is essential
due to the limited supply of energy available. Various studies
have investigated the design of energy efficient communication
systems, i.e., minimizing energy while maintaining a certain
quality of service parameter, or maximizing the ratio of data
rate to energy consumed, see [2] for an extensive survey. When
the wireless communication is with single antennas, one of the
most relevant techniques to improve energy efficiency is that of
transmission power control. In works like [3], [4], transmission
power is optimized so that the ratio between the number of
packets transmitted successfully to the power consumed is
maximized.

In the context of control systems, wireless networks offer
appealing features as they allow remote control and exhibit
many advantages over traditional wired point-to-point set-ups
in terms of flexibility, ease of maintenance, reduced weight,
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and volume. On the other hand, the communication constraints
induced by the network need to be appropriately handled to
guarantee the desired performance for the closed-loop system,
which motivates research on so-called networked control sys-
tems (NCS), see e.g. [5] and the references therein. Often, the
energy expenditure due to communications is ignored in works
on NCS, or it is treated in an ad-hoc way, in the sense that the
less often we transmit (or the smaller the packet length), the
less energy we spend to communicate for instance. In wireless
communication, transmitting less often does not always imply
improving the energy efficiency of communication as the
probability of successful communication depends on several
factors like the power of the transmission signal, the quality
of the wireless channel, noise levels, etc. [1], [6].

A few researchers have recently published results, which
consider the above mentioned problem. The paper [7] provides
a list of works that implement energy-efficient communication
design in the context of NCS, which mostly concentrates on
estimation, as in [8], or proposed numerical heuristics, as in
[9]. On the other hand, the authors of [10] and [11] studied
the problem of minimization of a cost defined as the sum of
the control cost and the wireless power and proposed event-
triggered transmission strategies. There are also works like
[12], which deal with power control and energy efficiency but
for the purpose of filtering, and not for stability and control
performance as is done in our work.

In this paper, we consider plants modeled as deterministic
linear time-invariant systems and we design time-triggered
energy-efficient communication policies in the sense that the
transmission strategy depends on the elapsed time since the
last successful communication. We are motivated by applica-
tions involving sensor nodes with limited computational and
energy capacities. In this context, while the proposed policy
may generate more transmissions than event-triggered control
as in [11], it exhibits various advantages such as ease of
implementation and relaxed information requirements at the
sensor. For example, in the time-triggered framework, if the
sensor is a camera, it does not have to process the images
captured in order to evaluate the triggering condition and
decide when to transmit the images.

This motivates us to develop a new notion, referred to as,
the stochastic allowable transmission interval (SATI). The
SATI is described by a certain interval length N , a cumulative
probability η of a transmission to occur before N steps have
elapsed since the previous successful transmission, and δ the
instantaneous transmission success probability after N steps
have passed. Here, δ corresponds to the success probability
when using the maximum possible transmission power. This



approach can be seen as a stochastic version of time-triggered
control instead of independently distributed probabilities of
the inter-transmissions intervals as in [13], [14]. During the
N steps, packet drop probabilities can be designed in a
flexible manner by adapting the transmission power as long
as the constraint on η is satisfied. This flexibility can be
exploited in order to design energy efficient communication
policies. After N steps have passed, the maximum power
is used until a successful transmission occurs. Compared to
[11], (i) we design time-triggered policies, as opposed to
event-triggered policies, which is a different implementation
paradigm with its associated pros and cons as explained above,
(ii) we consider output feedback laws, and not only state-
feedbacks, (iii) we allow for varying holding strategies not
only model-based ones, and (iv) our approach allows mini-
mization of the communication cost while ensuring a given
control performance. We started to address this problem in
[6] using a deterministic constraint on the maximum allowed
time between two transmissions, which resulted in very strong
assumptions of the channel state, in particular, we assumed
that a successful transmission is possible at any given time.
This condition is no longer needed in this work. Compared to
[15], where we introduce the notion of SATI, we now account
for control performance costs in addition to results on stability
and also perform the optimization of communication energy
in this framework.
Notation. Let R := (−∞,∞), R≥0 := [0,∞), and R>0 :=
R≥0 \ {0} , as well as Z≥0 := {0, 1, 2, . . .} and Z>0 :=
Z≥0 \ {0}. We use Pr for the probability and E for the
expectation taken over the relevant stochastic variables, and
1S(x) for the indicator function, taking the value 1 when
x ∈ S and 0 otherwise.

II. PROBLEM STATEMENT

A. Setup

We consider the discrete-time linear system

xp(t+ 1) = Apxp(t) +Bpu(t)
y(t) = Cpxp(t),

(1)

where t ∈ Z≥0 is the time, xp(t) ∈ Rnx is the plant state,
u(t) ∈ Rnu is the control input, y(t) ∈ Rny is the output
and nx, nu, ny ∈ Z>0. The pairs (Ap, Bp) and (Ap, Cp)
are assumed to be stabilizable and detectable, respectively.
We proceed by emulation and we first construct a stabilizing
controller for system (1) given by

xc(t+ 1) = Acxc(t) +Bcy(t)
u(t) = Ccxc(t) +Dcy(t),

(2)

where xc(t) ∈ Rnx is the controller state. Such a stabilizing
controller always exists since (Ap, Bp) is stabilizable and
(Ap, Cp) is detectable.

We are interested in the scenario where plant (1) and con-
troller (2) communicate over a wireless channel as illustrated
in Figure 1 1. As a result, the feedback loop is no longer

1The forthcoming results can be extended to the case where the network is
used to communicate both the sensors data and the control input, at the price
of more technicalities. We do not address it in this publication to not blur our
main message.

closed at every time instant t ∈ Z≥0, but only at the instants
ti, i ∈ Z>0, when communication is successful. Note that we
ignore delays and quantization effects, but an alternate network
configuration or the effect of delays can be easily treated as
explained later in Remark 1.

System Controller

Wireless Network

u

y ŷ

Fig. 1: Schematic of the networked control system.

When the wireless network is present as shown in Fig. 1,
system (1) remains unchanged, but (2) becomes

xc(t+ 1) = Acxc(t) +Bcŷ(t)
u(t) = Ccxc(t) +Dcŷ(t),

(3)

where ŷ(t) denotes the networked version of the output y(t).
Between two successive successful transmission instants, ŷ

is held using general holding functions of the form

ŷ(t) = Cg ŷ(t− 1) +Dgxc(t) (4)

when t ∈ Z≥0 \ {ti}i∈Z>0 . For instance, zero-order-hold
devices lead to (Cg, Dg) = (I, 0), and the zeroing strategy
[16] corresponds to (Cg, Dg) = (0, 0). When the xc-system
in (2) is a Luenberger observer, we can also use a model-based
holding strategy like in [13], which gives

ŷ(t) = CpBpDcŷ(t− 1) + Cp(Ap +BpCc)xc(t) (5)

that is, (Cg, Dg) = (CpBpDc, Cp(Ap + BpCc)). Our results
cover all these cases. At ti, i ∈ Z>0, the controller receives
the current value of the plant output, hence ŷ(ti) = y(ti). We
concatenate all the state variables, for any t ∈ Z≥0, as

χ(t) :=
[
xp(t)

T xc(t)
T ŷ(t− 1)T

]T
(6)

with ŷ(−1) being chosen arbitrarily in Rny . The overall
system is given by

χ(t+ 1) =


A1χ(t)

if transmission is successful at t
A0χ(t)

otherwise
(7)

where

A1 :=

 Ap +BpDcCp BpCc 0
BcCp Ac 0
Cp 0 0

 , (8)

and

A0 :=

 Ap Bp(Cc +DcDg) BpDcCg
0 Ac +BcDg BcCg
0 Dg Cg

 . (9)

To complete model (7), we need to formalize the definition
of the successful transmission instants ti’s, and thus to describe
the wireless network in more detail: this is the purpose of the



next subsection.
Remark 1: Note that model (7) can also be easily adapted to

situations where the wireless network is between the commu-
nication between the controller and the plant actuators instead
of with the sensor as explained in [15]. Additionally, when the
network has a fixed known delay, the framework of this paper
can be easily extended by augmenting χ(t) to keep track of
the delayed versions of the state without any change in the
analysis presented in the remaining part of this paper. The
model can also be easily adapted to the case. �

B. Wireless network

Plant sensors are associated to a node, which is connected
to the wireless network. This node sends packet containing
the current measurements to the controller using a power
p(t) ∈ [0, pmax] at time t ∈ Z≥0, with pmax > 0 denoting
the maximum power at which the transmitting antenna can
operate in. We assume in the first place that the probability
that a packet is received by the controller at time t ∈ Z≥0

depends on the transmission power p(t) as follows.
Assumption 1: The probability of a packet to be dropped

when the transmitting antenna uses a power of p(t) at time t
is given by

e(p(t)) = exp(−cp(t)) (10)

where c ∈ R>0 is a constant, which depends on the channel
statistics. �

Assumption 1 is often used in the communication literature
for Rayleigh channel fading as seen in [4], [17] when the
actual wireless channel state is not known to the transmitter.
We also assume that the sensors know if a transmission
was successful via a simple acknowledgment scheme (ACK),
which is common in digital communication protocols [1].

Assumption 2: The event of a successful transmission is
known at the sensor when the NCS is like in Figure 1 via
ACK. �

The ACK only requires a few bits and so the energy
required to send it in comparison to the sensor measurement
(of much larger data size) is negligible. Additionally, we are
concerned with the energy expenditure of the sensor node
which may have a limited energy capacity while the ACK
is sent by the controller which may have a larger energy
supply. A consequence of Assumption 1 is that the successful
transmission instants ti, i ∈ Z>0, are stochastic variables [17].
As a result, (7) can be rewritten as, for any t ∈ Z≥0,

χ(t+ 1) =

{
A1χ(t) with probability 1− e(p(t)),
A0χ(t) with probability e(p(t)).

(11)
The maximum power that can be used by the transmitter is

bounded by pmax, which implies that the maximum probability
for a packet to be successfully received is given by δ :=
1− e(pmax) according to Assumption 1. Parameter 0 < δ < 1
represents the physical limitations of the communication sys-
tem in terms of packet success [18]. However transmitting with
this success probability will consume a lot of communication
resources. This motivates us to design communication schemes
that do not always require operating at pmax, specifically the
SATI as explained in the following.

C. Stochastic allowable transmission interval

Time-triggered control results are traditionally based on the
MATI in the NCS literature, see e.g. [19], [20], which means
that

ti+1 − ti ≤ N (12)

where N is the so called MATI, for all i ∈ Z>0. Condition
(12) is impossible to ensure under Assumption 1 as the ti’s are
stochastic variables. We therefore need a new notion, which
should still involve a certain length of the inter-transmission
intervals N as in (12), but also the probability that a successful
transmission occurs within this interval, and the probability of
successful transmission after this interval. We call this new
notion (η, δ)-SATI. Parameter η ∈ [0, 1] is the cumulative
probability that communication was successful within N steps
since the last successful transmission, and δ is the probability
of successful transmission when the time since the previous
transmission is larger than N . The parameter N basically
denotes a critical limit: if this limit is crossed at some t, all the
available resources must be used for attempting transmission,
i.e., use p(t) = pmax and therefore a transmission success rate
of δ.

To formalize the concept of SATI, we first introduce the
clock τ(t) ∈ Z≥0 which counts the number of time instants
since the last successful transmission, i.e.

τ(t+ 1) =

{
τ(t) + 1 if transmission failed,
1 otherwise.

(13)
Let N ∈ Z≥0 be a given transmission interval length.

The time-triggered power control policies we envision are
such that p(t) depends on τ(t). Due to Assumption 2, the
sensor always has access to τ(t) and therefore, this type of
policies are always possible. The (η, δ)-SATI notion imposes
that p(t) = pmax when τ(t) > N , so that the probability of
successful transmission after N steps have passed since the
last transmission is δ. However, when τ(t) ≤ N , we have a
certain degree of flexibility in choosing p(t). A time-triggered
power control law p(p̄) satisfying the SATI constraints is
therefore described using a power control policy vector p̄,
where p̄ ∈ [0, pmax]N , which implies

pp̄(t) =


p̄n
if τ(t) = n and τ(t) ≤ N
pmax

if τ(t) > N.

(14)

Since the probability to transmit within the interval of length
N is η, p̄ must also satisfy the following constraint

1−
N∏
n=1

e(p̄n) = η. (15)

We can thus describe τ(t) with the following stochastic
process

Pr(τ(t+ 1) = n+ 1|τ(t) = n, n ∈ {1, . . . , N}) = e(p̄n),
Pr(τ(t+ 1) = 1|τ(t) = n, n ∈ {1, . . . , N}) = 1− e(p̄n),
Pr(τ(t+ 1) = 1|τ(t) = n, n ∈ {N + 1, . . . }) = δ,
Pr(τ(t+ 1) = n+ 1|τ(t) = n, n ∈ {N + 1, . . . }) = 1− δ.

(16)



We also define

P̂N,η :=

{
p̄ ∈ [0, pmax]N |

N∏
n=1

e(p̄n) = 1− η

}
, (17)

which is the set of policies which satisfy the SATI constraints.
If the associated power control law p(p̄) satisfies the desired
stability or performance criteria for (11) for any p̄ ∈ P̂N,η, we
say that N is an (η, δ)-SATI. Now, we proceed to formally
state the objectives of this work.

D. Objectives
The two main objectives of this work are as follows.

1) Provide conditions on N, η and δ such that we can
guarantee mean-square stability (MSS) of (11), according
to definition 3.8 in [21]. Moreover, we want to ensure a
specified bound on the control performance cost defined
for any χ(0) ∈ R2nx+ny as

JCONT(χ(0)) :=

∞∑
t=0

E[χ(t)TQχ(t)], (18)

for a given real, symmetric and positive semi-definite
matrix Q, and p(t) is given by the SATI rule (14).

2) Minimize the expected average communication energy,
see for instance [22], defined as

JCOMM(p̄) := lim
T→∞

∑T
t=1 E[pp̄(t)]

T
, (19)

when pp̄(t) is given by (14).
The expectation E in both 1) and 2) is to account for the
stochastic nature of packet drops. Note that MSS automatically
implies robustness with respect to additive noise in (1)-(2) as
shown by Theorem 3.3 in [21]. In the next section, we provide
conditions on η, δ and N such that the item 1) is satisfied.

III. MAIN RESULTS

A. The Markov jump linear model
For the purpose of analysis, we first rewrite the model (11)

with the power control law p(p̄), p̄ ∈ P̂N,η as a Markov
jump linear system (MJLS). System (11) is a linear jump
system with two modes, depending on whether a successful
transmission occurs at time t ∈ Z≥0, but this is not an
MJLS as the transition probabilities depend on the power
control law. Nevertheless, when the power control law is
determined by the policy (14), we can still formulate (11) as
an MJLS by artificially increasing the number of modes. When
communication is successful, i.e. τ(t) = 1, χ(t+1) = A1χ(t)
and χ(t + 1) = A0χ(t) otherwise. Therefore, we have a
MJLS with 2 distinct dynamics, but N + 1 virtual modes (the
dynamics are identical for N of these modes) as shown in
Figure 2. Then, the Markov chain θ(t) ∈ {1, 2, . . . , N + 1}
is defined as θ(t) = τ(t) when τ(t) ≤ N and θ(t) = N + 1
when τ(t) > N . The associated jump probability matrix is Π
given by

Π(p̄) :=

 1− e(p̄1) e(p̄1) 0 . . . 0
...
δ 0 0 . . . 1− δ

 (20)

1,A1

2,A0 3,A0

N,A0

N + 1,A0
1− e(p̄1)

1− δ

e(
p̄

1
)

1− e(p̄2)

e(p̄2)

e(p̄
N

)
δ

1− e(p̄3)

1− e(p̄N )

e(p̄3)

e(p̄N−1)

Fig. 2: The Markov chain with the modes representing the
states

which follows from Figure 2. There is a probability to jump
to mode 1, i.e., to communicate, given by 1 − e(p̄θ(t)) from
any mode θ(t). The only other mode that can be reached from
θ(t) is one with τ(t+1) = τ(t)+ 1, resulting in 0 probability
of jumps to all the other states. Finally, it is also possible to
jump from θ(t) = N +1 to θ(t+1) = N +1 as θ(t) = N +1
represents any τ(t) > N . As a result, the dynamics (7) are
rewritten as

χ(t+ 1) = A1{1}(θ(t))χ(t),

Pr(θ(t+ 1) = j|θ(t) = i) = Πij(p̄), 1 ≤ i, j ≤ N + 1,
(21)

for p̄ ∈ P̂N,η.
Our first objective in the following is to provide explicit and

computable bounds on the quadratic cost defined as in (18) for
a given η, δ, intervals N , an initial condition χ(0), and for all
p̄ ∈ P̂N,η while ensuring MSS for (11). This bound must be
independent of the actual power control policy p̄ as long as
p̄ ∈ P̂N,η. For convenience, we define for N ∈ Z≥0,

QN (n) :=

N∑
i=n

(
AT0
)i−n

QAi−n0 , (22)

for n ∈ {2, . . . , N}, along with

PN (n) := (AT0 )N+1−nPN+1AN+1−n
0 + ηS +QN (n), (23)

for all n ∈ {2, . . . , N}, PN (1) := P1 and PN (N + 1) :=
PN+1.

B. Stability and performance

The next theorem provides LMI conditions for obtaining
bounds on the cost (18) and ensuring MSS for system (11).

Theorem 1: Given N ∈ Z>0, η ∈ [0, 1) and δ ∈ [0, 1),
suppose that there exist symmetric positive definite matrices
P1, PN+1, and S of compatible dimensions such that

P1 >AT1
[
(1− η)(AT0 )N−1PN+1AN−1

0 + ηS
]
A1

+AT1 QN (2)A1 +Q, (24)

PN+1 >AT0 [(1− δ)PN+1 + δP1]A0 +Q, (25)

S >(AT0 )i−1P1Ai−1
0 , (26)



hold for all i ∈ {1, . . . , N}. Then, for any χ(0) ∈ R2nx+ny

and all p̄ ∈ P̂N,η, system (21) is MSS and the cost
JCONT(χ(0)) in (18) is upper bounded as follows

JCONT(χ(0)) ≤ max
n∈{1,...,N+1}

χ(0)TPN (n)χ(0), (27)

for PN (n) defined in (23). �

Theorem 1 can be used directly to compute performance
bounds on JCONT(χ(0)) once Q,N, δ, η are fixed. These
LMIs are different with respect to the ones found in the
classical MJLS literature [21] since they involve the powers of
A0, along with the summation QN (n) in order to yield tailored
conditions for the SATI formulation. Besides, the upper bound
defined by PN (n) in (27) is also not standard, since it depends
on the powers of A0 and the only variables of the problem
defined by (24)-(26). Furthermore, the use of MJLS classic
conditions such as the ones given in [23] is not possible, since
the policies in the transition probability matrix (20) are not
known a priori, but must respect p̄ ∈ P̂N,η.

When the original controller (2) has been designed to
minimize the cost associated to a linear-quadratic regulator
(LQR) problem in the absence of network, one may wonder, in
view of Theorem 2, how this cost is impacted by the wireless
channel. To answer this question, we concentrate on the case
where the controller (2) is chosen as a state-feedback type,
which minimizes a linear quadratic (LQ) cost. Specifically,
we want to compare the SATI performance bound with the
optimal cost given by the classic, that can be found by solving,
for a given xp(0),

JLQR(xp(0)) := min
u

∞∑
t=0

[
xp(t)
u(t)

]T [
QLQR 0

0 RLQR

] [
xp(t)
u(t)

]
(28)

for a given positive semi-definite matrix QLQR and a positive
definite matrix RLQR. The solution of (28) is a state-feedback
controller with the form,

u(t) = KLQRxp(t),

that is associated with a discrete-time algebraic Riccati equa-
tion whose solution we denote by PLQR, see, for instance,
[24]. In this context, we set Cp = I in (1), as well as
Ac = 0, Bc = 0, Cc = 0, and Dc = KLQR in (2). We
also consider that the networked version of the state denoted
by x̂p(t) is generated by a zero-order-hold scheme between
two successful transmissions, i.e., Cg = I and Dg = 0 in (4)
and χ(t) = [xp(t)

T x̂(t− 1)T ]T in (6). In order to establish a
comparison between the deterministic LQR cost in (28) and
the upper bound of the SATI cost in (27), we present the
following corollary.

Corollary 1: Given µ > 0, N ∈ Z>0, η ∈ [0, 1), δ ∈ [0, 1),
and xp(0) ∈ Rn, we have that by setting the initial conditions
of the problem (18) as x̂(−1) = xp(0), θ(0) = 1, and Q in
(18) as

Q =

[
QLQR 0

0 KT
LQRRLQRKLQR

]
(29)

we have that, if (24)-(26) and

P1 <
µ

2

[
PLQR 0

0 PLQR

]
, (30)

hold for symmetric positive definite matrices P1, PN+1, and
S, then JCONT(χ(0)) ≤ µJLQR(xp(0)). �.

Corollary 1 provides us with the bound JCONT(χ(0)) ≤
µJLQR(xp(0)), which implies that under the presence of the
wireless network and the SATI conditions, the control cost is
bounded by the LQR cost of the system without the network
multiplied by the attenuation factor µ. The matrix Q in (29)
is chosen so that the cost evaluated with (18) will correspond
to JLQR(xp(0)) in the absence of the network. Note that by
imposing the additional LMI (30) to (24)-(26), we are able to
compare the SATI upper bound with the optimal LQR cost. We
consider θ(0) = 1, i.e., a successful transmission is assumed
to have occurred at t = 0, which is required to simplify the
bound in (27). Besides, as (30) is linear in µ, the minimum
attenuation µ∗ can be found by minimizing µ over (24)-(26)
and (30) by standard LMI solvers.

C. Communication optimization

Theorem 1 provides conditions on a set of transmission
policies p̄ ∈ P̂N∗,η , which ensures the MSS of (7) and bounds
on the control cost given in (18), respectively. We can then
exploit this information to minimize the communication cost
in (19). Let ωn(p̄) := Pr(θ(t) = n) for n ∈ {1, . . . , N +1} at
the steady state of the Markov chain defined by the transition
matrix Π(p̄). The communication cost (19) can be evaluated
as

JCOMM(p̄) = pmaxωN+1(p̄) +

N∑
n=1

p̄nωn(p̄) (31)

where we can use the transition matrix Π(p̄) to evaluate

ωn(p̄) =

∏n−1
i=1 e(p̄i)

1−η
δ +

∑N
j=1

∏j−1
i=1 e(p̄i)

, (32)

for any n{1, . . . , N} and

ωN+1(p̄) =
1−η
δ

1−η
δ +

∑N
j=1

∏j−1
i=1 e(p̄i)

. (33)

Therefore, JCOMM(p̄) is a continuous and differentiable func-
tion w.r.t p̄ and goal is to solve the following optimization
problem.

minimize
p̄∈RN

JCOMM(p̄),

subject to
∏N
i=1 e(p̄n) ≤ 1− η∗,

0 ≤ p̄n ≤ pmax.

(34)

This is solved numerically by using the Lagrangian algorithm
[25] as illustrated in the next section.

IV. ILLUSTRATIVE EXAMPLES

We consider the exactly discretized model of the unstable
batch reactor given in [26]. Systems matrices A and B,



obtained with sampling period T = 50 ms, are as follows

Ap =


1.0795 −0.0045 0.2896 −0.2367
−0.0272 0.8101 −0.0032 0.0323

0.0447 0.1886 0.7317 0.2354
0.0010 0.1888 0.0545 0.9115


BTp =

[
0.0006 0.2567 0.0837 0.0837
−0.0239 0.0002 −0.1346 −0.0046

]
,

and we assume that the states of system (1) can be measured,
that is, Cp = I . We consider the topology described in (8)-
(9) that models the case in which the wireless network is in
between the sensor and the controller, along with only state
feedback controllers, and thus Ac = 0, Bc = 0, Cc = 0. We
calculate the controller by means of the LQR problem in (28)
with QLQR = I and RLQR = I resulting in the following
state-feedback gain

Dc =

[
0.0153 −0.8159 −0.2394 −0.7515
2.3250 0.0801 1.6225 −1.0657

]
,

and the solution PLQR given by

PLQR =


27.7052 −0.2971 16.1405 −13.6650
−0.2971 3.3808 0.4508 2.1041
16.1405 0.4508 11.9388 −7.4574
−13.6650 2.1041 −7.4574 12.2756

 .
We now study the WNCS in (3), using a zero-order hold,
i.e., Cg = I and Dg = 0. The wireless network is described
by c = 0.9 and pmax = 1 in (10) that leads to δ = 1 −
exp(−0.9) ≈ 0.6.

For the first numerical study, we fix the attenuation param-
eter µ and investigate the behavior of the remaining SATI
parameters. Figure 3 shows the minimum value of η such that
the conditions in Corollary 1 hold as a function of N for
µ ∈ {10, 30}. As expected, by restricting µ, we have smaller
feasible values of N as µ decreases, i.e., taking µ = 10 will the
feasible set of N has a maximum value of N = 5, whereas for
µ = 30, it is possible to have feasible conditions up to N = 6.
On the other hand, it is necessary to increase the minimum
values of η for larger values of N , that is, we are increasing
the energy spent on communication power in order to achieve
feasibility for the chosen values of µ.
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Fig. 3: The smallest feasible η againt N for δ = 0.6 and
µ ∈ {10, 30} obtained through Corollary 1.

We next investigate the minimum communication cost pos-
sible, obtained numerically by running a Lagrangian algorithm

for the minimum values of η as a function of N in Figure 3.
In this context, Figure 4 shows the minimum communication
costs JCOMM(p̄∗) for a given N and η plotted in Figure
3. The costs in Figure 4 are decreasing up to N = 4 for
µ = 10, and N = 5 for µ = 30. This decrease is expected
since (19) will naturally reduce by decreasing the frequency
of communication (as the minimum η required is 0 for small
values of N ). However, after a certain range there is an
increase in the communication cost due to a drastic increase
in the minimum η required for satisfying the control cost
attenuation µ as seen in Figure 4. For this situation, we show
in Table I the optimal power control policies for µ = 10
and N = 4, as well as µ = 30 and N = 5 (the minimum
communication cost from Figure 4).
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Fig. 4: Communication costs for the best feasible η.

TABLE I: Optimal power policies p̄∗τ for µ = 10 and N = 4,
as well as µ = 30 and N = 5, of Figure 4.

µ N∗ η∗ p̄∗1 p̄∗2 p̄∗3 p̄∗4 p̄∗5

10 4 0.54 0 0 0.24 0.58 -

30 5 0.68 0 0 0.14 0.42 0.75

We now perform a comparison with the SATI based
approach and event-triggered control (ETC). For that, we
consider a modified version of the ETC rule presented in
[27] described as follows. When ‖x̂(t) − x(t)‖ > γ‖x(t)‖,
we set p(t) = pmax and otherwise p(t) = 0. We set
c = 10 and pmax = 1 in (10) resulting in δ = 0.9999,
which is the probability of successful transmission when
p(t) = pmax. We compute via simulations the expected
control and communication costs applying this ETC rule
with each point of the plot corresponding to certain values of
γ ∈ {0.10, 0.38, 0.66, 0.94, 1.22} (for γ > 1.22, the closed-
loop system becomes unstable). We compare this with a power
control based on SATI rules considering the pairs (N, η) ∈
{(1, 0.955), (2, 0.960), (3, 0.965), (4, 0.970), (5, 0.975)},
where the power control policy p̄ is calculated through (34)
for each pair. The resulting pairs E(JCOM) × E(JCON) for
ETC and SATI are shown in Figure 5 for a Monte Carlo
simulation of 4000 rounds with each round having random
initial conditions xp(0) sampled from a Gaussian distribution.
We assume that x̂(−1) = xp(0) for the ETC and SATI



control. We see that for a fixed control cost, the optimized
power control using the SATI approach is able to provide
a smaller communication cost compared to the ETC for the
considered set of simulations and associated parameters.
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Fig. 5: E(JCOM)×E(JCON) with each point corresponding to a
certain γ for ETC, and pair (N, η) (with optimal p̄) for SATI.

V. CONCLUSION

We have studied discrete-time linear systems in which the
communication with the controller occurs over a stochastic
wireless channel. The wireless communication system is such
that the probability of packet loss depends on the power of
the transmitting antenna. We consider a time-triggered power
control policy, i.e., the signal power is designed to be a func-
tion of the clock-state τ(t). We introduce the notion of (η,δ)-
SATI which is an interpretation of the traditional MATI in the
stochastic setting, where η denotes the cumulative probability
of a successful transmission within the (η, δ)-SATI and δ
denotes the instantaneous communication success probability
after the (η, δ)-SATI has passed. Under the assumption that the
system with perfect communication is stabilizable, we provide
conditions on the (η, δ)-SATI in terms of matrix inequalities
which imply MSS and certain performance bounds. We have
then presented algorithm using which a communication en-
gineer can optimize the transmission power control policy in
order to minimize the average expected communication energy
cost. Our numerical study demonstrates how control engineers
and communication engineers may exploit the provided results
in order to design energy-efficient policies for a wireless NCS.

APPENDIX

Before providing the proofs of Theorem 1 and Corollary 1,
we first introduce the following auxiliary result.

Lemma 1: Consider that 0 ≤ η < 1 and define

F (n) :=

N∑
i=n

(1− e(p̄i))
i−1∏
j=n

e(p̄j), n ∈ {1, . . . , N}. (35)

We have F (1) = η and F (n) ≤ η for all n ∈ {1, . . . , N}. �
Proof: Through simple manipulation on (35), we get that,

1− F (n) = e(p̄n)(1− F (n+ 1)) (36)

holds for any for any n < N . We know that F (N) = 1−e(p̄N )
by definition. Therefore we get through recursion and (15) that

1− F (1) =

N∏
i=1

e(p̄i) = 1− η. (37)

Since η 6= 1, then 0 < e(p̄j) ≤ 1, and thus 0 < 1−F (n) ≤ 1
for any n due to (36) and 0 < 1− F (N) ≤ 1. It follows that
1 − F (n) = e(p̄n)(1 − F (n + 1)) ≤ 1 − F (n + 1) for all n
(equality arises if e(p̄j) = 1). Therefore F (n) ≥ F (n + 1),
and particularly, η = F (1) ≥ F (n) for all n ∈ {1, . . . , N}.

In order to prove Theorem 1, we set, for m ∈ {2, . . . , N−1},

Γ(m) := AT0 [(1− e(p̄m))P1 + e(p̄m)Γ(m+ 1)]A0 +Q,
(38)

and Γ(N) := AT0 [(1− e(p̄N ))P1 + e(p̄N )PN+1]A0 +Q.

Proof of Theorem 1: For the stability part, by setting
Q = 0 in (24)-(25), we directly get the stability condition
in [28], and thus (21) is MSS for all p̄ ∈ P̂N,η. Considering
the performance part, the exact values of (18) for MJLS MSS
systems such that p̄ ∈ P̂N,η can be calculated from Lemma
A.1 of [23]. This is obtained by solving a set of coupled
Lyapunov equations whose solutions we denote by P ∗n(p̄) ≥ 0,
n ∈ {1, . . . , N + 1} for all p̄ ∈ P̂N,η. Recalling that(∏i−1

j=n e(p̄j)
)
≤ 1 for any n ∈ {1, . . . , N}, i ∈ {2, . . . , N},

we have that

QN (2) ≥
N∑
i=2

(
AT0
)i−2

QAi−2
0

i−1∏
j=1

e(p̄j). (39)

Besides, by multiplying (26) by (1− ei)
∏i−1
j=1 ej , summing it

up for all i ∈ {1, . . . , N}, and considering Lemma 1, we get
that

ηS ≥
N∑
i=1

(1− ei)
i−1∏
j=1

ej(AT0 )i−1P1Ai−1
0 . (40)

Considering (39) and (40), and after some tedious but straight-
forward manipulations, we can rewrite (24) as follows

Φ(1) := P1 −AT1 [(1− e(p̄1))P1 + e(p̄1)Γ(2)]A1 +Q > 0,
(41)

for Γ(2) defined in (38). The idea is to apply
a suitable perturbation ε2 in (41), that depends
on the eigenvalues of Φ(1) and A1, such that
P1−AT1 [(1− e(p̄1))P1 + e(p̄1)(Γ(2) + Iε2)]A1+Q > 0 still
holds. We define P2(p̄) > 0, Γ(2) + Iε2 > P2(p̄) > Γ(2) and
obtain that P1 > AT1 [(1− e(p̄1))P1 + e(p̄1)P2(p̄)]A1 +Q >
0 also holds. By using the recursive equations in (38) and the
previous similar reasoning, we are able to write the following
inequalities,

P1 > AT1 [(1− e(p̄1))P1 + e(p̄1)P2(p̄)]A1 +Q, (42)

Pn(p̄) > AT0 [(1− e(p̄n))P1 + e(p̄n)Pn+1(p̄)]A0 +Q, (43)

for n ∈ {2, . . . , N}, p̄ ∈ P̂N,η, along with (25). Summoning
Corollary 2.7 and Proposition 3.20 from [21], we get that
P ∗1 (p̄) < P1 and P ∗N+1(p̄) < PN+1, for all p̄ ∈ P̂N,η. From



Lemma A.1 of [23], we have that

JCONT(χ0) =

N∑
n=1

νnχ
T
0 P
∗
n(p̄)χ0 ≤ max

n∈{1,...,N+1}
χT0 P

∗
n(p̄)χ0

(44)

where νi = Pr(θ(0) = i). The inequality (44) results from
the fact that 0 ≤ νi ≤ 1 and χT0 P

∗
i (p̄)χ0 ≥ 0, i ∈

{1, . . . , N + 1}. From the previous discussion, it is direct that
P ∗1 (p̄) < PN (1) = P1 and P ∗N+1(p̄) < PN (N + 1) = PN+1,
thus it remains to show the bounds for n ∈ {2, . . . , N}.
Through Equation A.1 in [23], we can write any P ∗n(p̄),
n ∈ {2, . . . , N}, as follows,

P ∗n(p̄) =

N∏
i=n

e(p̄i)(AT0 )N+1−nP ∗N+1(p̄)(A0)N+1−n

+

N∑
i=n

(1− e(p̄i))
i−1∏
j=n

e(p̄j)(AT0 )i−n+1P ∗1 (p̄)Ai−n+1
0

+

N∑
i=n

(
AT0
)i−n

QAi−n0

i−1∏
j=n

e(p̄j). (45)

We now show that each term in (45) is bounded: (i)
Since 0 <

∏N
i=n e(p̄i) ≤ 1, and P ∗N+1(p̄) < PN+1, we

get that
∏N
i=n e(p̄i)(AT0 )N+1−nP ∗N+1(p̄)(A0)N+1−n ≤

(AT0 )N+1−nPN+1(A0)N+1−n, n ∈ {2, . . . , N}; (ii) By
changing the index in (26), multiplying the resulting
equation by (1 − e(p̄i))

∏i−1
j=n e(p̄j), summing it up for

i ∈ {n, . . . , N}, and considering Lemma 1, we get that∑N
i=n(1 − e(p̄i))

∏i−1
j=n e(p̄j)(AT0 )i−n+1P ∗1 (p̄)Ai−n+1

0 ≤∑N
i=n(1 − e(p̄i))

∏i−1
j=n e(p̄j)(AT0 )i−n+1P1Ai−n+1

0 ≤∑N
i=n(1− e(p̄i))

∏i−1
j=n e(p̄j)S ≤ ηS, for all n ∈ {2, . . . , N},

p̄ ∈ P̂N,η; (iii) Since 0 <
∏i−1
j=n e(p̄j) ≤ 1,

we get that
∑N
i=n

(
AT0
)i−n

QAi−n0

∏i−1
j=n e(p̄j) ≤∑N

i=n

(
AT0
)i−n

QAi−n0

∏i−1
j=n for all n ∈ {2, . . . , N},

p̄ ∈ P̂N,η. Thus, P ∗n(p̄) ≤ PN (n) for all n ∈ {1, . . . , N + 1}
and p̄ ∈ P̂N,η, and by considering (44), the claim follows.

Proof of Corollary 1: By taking x̂(−1) = xp(0)
and θ(0) = 1, and considering the zero-order-hold strategy
given in (4), we have, by multiplying (30) by χ(0)T from
the left hand side and χ(0) to the right hand side, that
χ(0)TP1χ(0) ≤ µxp(0)TPLQRxp(0) = JLQR(xp(0)). Note
that whenever we consider that θ(0) = 1, the optimal MJLS
cost in (44) becomes JCONT(χ(0), p̄) = χ(0)TP ∗1 (p̄)χ(0).
The claim follows recalling that P ∗1 (p̄) < P1 for all p̄ ∈ P̂N,η
from Theorem 1.
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