Vladimir Sinyakov

Antoine Girard

Formal Controller Synthesis from

Keywords: Formal controller synthesis, alternating simulation relation, symbolic abstractions, hybrid automata

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Recent years saw a burst in research on formal methods in control theory (see e.g. [START_REF] Tabuada | Verification and Control of Hybrid Systems: a symbolic approach[END_REF][START_REF] Belta | Formal Methods for Discrete-Time Dynamical Systems[END_REF] and the references therein). One of the key problems in this field is that of synthesizing automatically a controller for a dynamical system so that the closed-loop system has a certain desired behavior, formally described by a specification. The considered specifications can be complex and usually go beyond traditional stability properties. For example, they can be given by regular languages [START_REF] Pola | Control of cyberphysical-systems with logic specifications: A formal methods approach[END_REF][START_REF] Gol | Language-guided controller synthesis for linear systems[END_REF] or by linear temporal logic formulas [START_REF] Tabuada | Linear time logic control of discrete-time linear systems[END_REF][START_REF] Fainekos | Temporal logic motion planning for dynamic robots[END_REF][START_REF] Liu | Synthesis of reactive switching protocols from temporal logic specifications[END_REF][START_REF] Belta | Formal Methods for Discrete-Time Dynamical Systems[END_REF]. In some other cases, the specification itself can be given under the form of a dynamical system: a trajectory is then accepted if it can be related in some sense to a trajectory of the This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 725144).

Email addresses: vladimir.siniakov@gmail.com (Vladimir Sinyakov), Antoine.Girard@l2s.centralesupelec.fr (Antoine Girard).

specification system: see e.g. [START_REF] Tabuada | Verification and Control of Hybrid Systems: a symbolic approach[END_REF][START_REF] Pola | Integrated design of symbolic controllers for nonlinear systems[END_REF] where specifications are given by finite-state dynamical systems or [START_REF] Van Der Schaft | Equivalence of dynamical systems by bisimulation[END_REF][START_REF] Vinjamoor | The achievable dynamics via control by interconnection[END_REF][START_REF] Megawati | Abstraction and control by interconnection of linear systems: A geometric approach[END_REF] where both the system and the specification are given by linear systems. When a dynamical system has an infinite number of states, a common approach in formal methods is to transition from the original infinite system to an approximating finite-state system called symbolic abstraction (see e.g. [START_REF] Girard | Approximately bisimilar symbolic models for incrementally stable switched systems[END_REF][START_REF] Reißig | Computing abstractions of nonlinear systems[END_REF][START_REF] Zamani | Symbolic models for nonlinear control systems without stability assumptions[END_REF][START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF][START_REF] Liu | Finite abstractions with robustness margins for temporal logic-based control synthesis[END_REF][START_REF] Reißig | Feedback refinement relations for the synthesis of symbolic controllers[END_REF]). To justify rigorously this transition, a formal relation must be established between the behaviors of these two systems. Different kinds of relations, such as alternating simulation relations [START_REF] Alur | Alternating refinement relations[END_REF][START_REF] Tabuada | Verification and Control of Hybrid Systems: a symbolic approach[END_REF] or feedback refinement relations [START_REF] Reißig | Feedback refinement relations for the synthesis of symbolic controllers[END_REF], were introduced to formalize whether a controller for the system can be obtained from that of its symbolic abstraction.

In this paper, we consider a controller synthesis problem for discrete-time control systems where the specification is provided under the form of a discrete-time hybrid automaton [START_REF] Stauner | Discrete-time refinement of hybrid automata[END_REF], which is a discrete-time dynamical system with the state having discrete and continuous components, similarly to their continuous-time counterparts [START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF][START_REF] Lygeros | Dynamical properties of hybrid automata[END_REF]. In our setting, the specification hybrid automaton may have external inputs that can represent, for example, an instruction issued by a human user or a message communicated by some other system. We consider the problem of synthesizing a controller such that the maximal trajectories of the closed-loop system are also maximal trajectories of the hybrid automaton. The first contribution of the paper is to show that for the considered class of controllers, the existence of an alternating simulation relation from the specification to the open-loop system is not only a sufficient but also a necessary condition for the existence of such a controller. Computing an alternating simulation relation may be difficult for a given system and specification. To address this difficulty, we present an approach based on the use of symbolic abstractions. Since both the system and the specification are given by infinite-state dynamical systems, our solution includes the computation of symbolic counterparts for both of them. While the construction of the symbolic abstraction for the system ressembles existing approaches in the literature [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF][START_REF] Reißig | Feedback refinement relations for the synthesis of symbolic controllers[END_REF], the proposed construction of a symbolic specification from a hybrid automaton is, to the best of our knowledge, new. Note that in this case, the direction of the alternating simulation relation has to be reversed since the behavior of the symbolic specification should "under-approximate" that of the hybrid automaton. Under mild assumptions on the hybrid automaton and on the partition of the statespace used for abstraction, we describe an approach to compute the symbolic specification. This constitutes the second main contribution of the paper.

Then, we formulate two extensions of our controller synthesis problems with additional safety or reachability requirements so that some unsafe states are avoided or some target states are reached, respectively. The originality of these problem formulations is that these additional requirements are not formulated over the states of the system but over the states of the specification. This, for instance, makes it possible to force the closed-loop system to avoid blocking states of the specification or to reach some states of the specification corresponding to the accomplishment of a given task. To the best of our knowledge, the combination of specifications under the form of a dynamical system and of a logical statement, have not been considered previously in the literature. So our solutions, based on the symbolic abstractions defined above, make another contribution of the paper. Finally, we illustrate our approach with two examples taken from autonomous vehicle control applications: we first consider adaptive cruise control, and then a takeover maneuver. The specifications are given by hybrid automata with additional safety requirements in the case of adaptive cruise control and with additional reachability requirements on the case of the takeover maneuver.

The paper is organized as follows. Section 2 formulates the first controller synthesis problem under consideration. Section 3 provides a characterization of the solution in terms of alternating simulation relations. Section 4 discusses the abstraction algorithms for the system and the specification. Section 5 extends the controller syn-thesis problem with additional safety or reachability requirements. Finally, Section 6 illustrates our approach with autonomous vehicle control examples.

Notations: . ∞ is the infinity norm for vectors of R n and the associated induced norm for matrices. For A, B ⊆ R n , h(A, B) denotes the Hausdorff distance between A and B measured by the infinity norm. The inradius of A is ρ

-(A) = sup x∈R n (sup{r | x + rB ⊆ A}), the circum- radius of A is ρ + (A) = inf x∈R n (inf{r | A ⊆ x + rB}),
where B is the unit ball in the infinity norm. Intuitively, the inradius and the circumradius represent the radii of the largest ball that is included in A and of the smallest ball that contains A, respectively. For a set-valued map f : X ⇒ Y , its domain is defined as dom

(f) = {x ∈ X | f (x) = ∅}, its graph is defined as graph(f) = {(x, y) ∈ X × Y | y ∈ f (x)}, the image of X ⊆ X is denoted by f (X) = x∈X f (x).

Problem formulation

In this section, we start by introducing some preliminary definitions and then formulate the first controller synthesis problem under consideration.

Transition systems

In this paper, we consider transition systems to model in a common framework control systems and specifications. Definition 1 A transition system S is a tuple (X, U, Y, ∆, H), where X is a set of states; U is a set of inputs; Y is a set of outputs; ∆ : X × U ⇒ X is a setvalued transition map; H: X -→ Y is an output map.

An input u ∈ U is called enabled at x ∈ X if ∆(x, u) = ∅. Let enab ∆ (x) ⊆ U denote the set of all inputs enabled at x. If enab ∆ (x) = ∅ the state x is called blocking. Definition 2 A trajectory of S is a sequence (x k , u k) K k=0 , where K ∈ N ∪ {+∞}, x k ∈ X, u k ∈ U , for 0 ≤ k ≤ K, and x k+1 ∈ ∆(x k , u k), for 0 ≤ k < K. A tra- jectory (x k , u k) K k=0 is called maximal if either K = +∞ or ∆(x K , u K) = ∅, it is complete if K = +∞.

Controller synthesis problem

We consider a discrete-time control system S 1 defined as a transition system S 1 = (X, U, X, F, H 1) with state x ∈ X ⊆ R nx , control input u ∈ U ⊆ R nu , and the output map given by H 1 (x) = x.

We consider a specification in the form of a discretetime hybrid automaton S 2 defined as a transition system S 2 = (X × P, V, X, G, H 2) where P and V are finite sets of modes and external inputs, and the output map is given by H 2 (x, p) = x. The set of continuous states of S 2 coincides with the set of states of S 1 . Intuitively, the specification describes how the closed-loop system should react to external inputs v ∈ V . An example of such specification is as follows:

Example 3 We define a hybrid automaton specifying adaptive cruise control. We consider two vehicles moving on a road: the leader is uncontrollable while the follower is controllable. The continuous state is given by x = (x 1 , x 2 , x 3) T where x 1 denote the relative position of the follower with respect to the leader, x 2 is the velocity of the follower, x 3 is the velocity of the leader. The set of continuous states is X = (-∞, 0) × [x 2 min , x 2 max] × [x 3 min , x 3 max], the set of discrete states P = {p 1 , p 2 } consists of 2 modes (p 1 :"track velocity" and p 2 :"avoid collision") and the set of inputs V = {v 1 , . . . , v m } consists of finitely many reference velocities. The dynamics of the hybrid automaton is given by (x p) ∈ G(x, p, v) if one of the following condition holds

(1) p = p 1 , x 1 + l ≤ 0 and x 2 ∈ [min(x 2 + C, v - ε), max(x 2 -C, v + ε)]. (2) p = p 2 , x 1 +l ≤ 0, x 2 ≤ v+ε and x 2 ∈ [x 2 min , v+ε].
The parameters l > 0, C > 0 and ε > 0 specifying the safety distance, the velocity settling speed and tolerance error. The dynamics does not impose any explicit constraints on x 1 and x 3 (other than x 1 ∈ (-∞, 0),

x 3 ∈ [x 3 min , x 3 max]
). When p = p 1 , the follower has to track the velocity v ∈ V , which is an external timevarying input that can be provided for instance by the human passenger or by the speed limit regulation. When p = p 2 , the follower is allowed to reduce its speed to avoid collision. A transition to p 2 is possible only if x 2 ≤ v + ε. For any transition to be enabled, the following safety requirement must be satisfied x 1 + l ≤ 0 (i.e. the follower is at a distance greater than l behind the leader).

In this paper, we consider a class of controllers given by a pair of set-valued maps θ: X × P × V ⇒ U and π :

X × P × X × V ⇒ P . Controller (θ, π) is said to be compatible with S 1 if for all x ∈ X, p ∈ P , v ∈ V , θ(x, p, v) ⊆ enab F (x) and ∀x ∈ F (x, θ(x, p, v)), π(x, p, x , v) = ∅.
Then, the closed-loop system is given by S cl = (X × P, V, X, ∆ cl , H 2) where for all x ∈ X, p

∈ P , v ∈ V , ∆ cl (x, p, v) = (x , p) x ∈ F (x, θ(x, p, v)) p ∈ π(x, p, x , v) . (1)
Let us remark that if (θ, π) is compatible with S 1 then v ∈ enab ∆ cl (x, p) if and only if θ(x, p, v) = ∅. Let us emphasize that the considered controllers have an internal variable p that takes its values in P , the set of modes of the specification. Hence, the closed-loop system is also a discrete-time hybrid automaton, with the same set of states as the specification.

The first problem considered in this paper is to synthesize a controller (θ, π) and a non-empty set of controllable initial states Z c ⊆ X × P such that every trajectory of the closed-loop system S cl initialized in Z c is a trajectory of the specification S 2 .

Problem 4 Synthesize a controller (θ, π) compatible with S 1 and a non-empty controllable set Z c ⊆ X × P such that for every (x 0 , p 0) ∈ Z c , every maximal trajectory (x k , p k , v k) K k=0 of S cl is a maximal trajectory of S 2 .

Characterization using alternating simulation

In this section, we establish that the solution of Problem 4 is characterized by the existence of an alternating simulation relation [START_REF] Tabuada | Verification and Control of Hybrid Systems: a symbolic approach[END_REF] from the specification S 2 to the system S 1 .

Definition 5 Let S a = (X a , U a , Y a , ∆ a , H a) and S b = (X b , U b , Y b , ∆ b , H b) be two transition systems with Y a = Y b . A relation R ⊆ X a × X b
is an alternating simulation relation from S a to S b if the following conditions are satisfied:

(1) for every

(x a , x b) ∈ R we have H a (x a) = H b (x b);
(2) for every (x a , x b) ∈ R and for every u a ∈ enab ∆a (x a) there exists

u b ∈ enab ∆ b (x b) such that for every x b ∈ ∆ b (x b , u b) there exists x a ∈ ∆ a (x a , u a) satisfying (x a , x b) ∈ R.
It is said that S b alternatingly simulates S a , denoted by S a AS S b , if there exists an alternating simulation relation R = ∅ from S a to S b .

Remark 6 Let R be an alternating simulation relation from S a to S b and consider (x a , x b) ∈ R. If x a is a blocking state of S a then condition 2) holds automatically. If x b is blocking for S b then x a must be blocking for S a .

Within the setting defined in the previous section, the existence of an alternating simulation relation can be interpreted as follows. Let us consider the repeated twoplayer game between the environment and the controller where the goal of the controller is to keep the specification and system outputs indistinguishable: at each time step, the environment picks the specification input v, then the controller picks the system input u, then the environment picks the system successor state x that the controller finally has to match with a specification successor state of the form (x , p). Intuitively, an alternating simulation relation from S 2 to S 1 defines a set from which the controller has a winning strategy.

Sufficiency

Let us assume that R ⊆ X × P × X, is an alternating simulation relation from S 2 to S 1 , then let us define the set Z c ⊆ X × P and the controller (θ, π) as follows:

Z c = {(x, p) ∈ X × P | ((x, p), x) ∈ R}, (2)
θ(x, p, v) = u ∈ enabF (x) ∀x ∈ F (x, u), ∃p ∈ P : (x , p) ∈ G(x, p, v) ∩ Zc , (3) π
(x, p, x , v) = {p ∈ P | (x , p) ∈ G(x, p, v) ∩ Z c }. (4)
Theorem 7 Let R = ∅ be an alternating simulation relation from S 2 to S 1 , let set Z c and controller (θ, π) be defined by (2), (3), (4). Then, (θ, π) and Z c solve Problem 4.

PROOF. The fact that Z c = ∅ follows from (2) and R = ∅. We now prove that (θ, π) is compatible with S 1 . By (3) it is clear that θ(x, p, v) ⊆ enab F (x). Moreover, by (3) and (4), we get that for all x ∈ F (x, θ(x, p, v)), π(x, p, x , v) = ∅. Then, let us consider (x 0 , p 0) ∈ Z c , and a maximal trajectory

(x k , p k , v k) K k=0 of S cl . Then, by (1), we get that p k+1 ∈ π(x k , p k , x k+1 , v k) for 0 ≤ k < K. By (4), we get that (x k+1 , p k+1) ∈ G(x k , p k , v k) ∩ Z c for 0 ≤ k < K. Hence, it follows that (x k , p k , v k) K k=0 is a trajectory of S 2 and that (x k , p k) ∈ Z c , for 0 ≤ k ≤ K. Let us assume that (x k , p k , v k) K k=0 is not maximal for S 2 , then v K ∈ enab G (x K , p K). Since (x K , p K) ∈ Z c , we get ((x K , p K), x K) ∈ R,
which is an alternating simulation relation from S 2 to S 1 . Therefore, from the condition 2) in Definition 5, there exists u ∈ enab F (x K) such that for all x ∈ F (x K , u), there exists (x , p) ∈ G(x K , p K , v K) such that ((x , p), x) ∈ R. Condition 1) of Definition 5 gives that x = x and therefore (x , p) ∈ Z c . Hence, by [START_REF] Baier | Principles of model checking[END_REF]

, u ∈ θ(x K , p K , v K), which is therefore non-empty. Since (θ, π) is compatible with S 1 , we obtain that v K ∈ enab ∆ cl (x K , p K). It follows that (x k , p k , v k) K k=0
is not maximal for S cl , which leads to a contradiction. 2

Necessity

While Theorem 7 shows that solutions of Problem 4 can be obtained from alternating simulation relations, the following theorem shows the converse result:

(x k , p k , v k) K k=0 of S cl , with K ∈ N, such that x K = x, p K = p. Then R = ∅ and is an alternating simulation relation from S 2 to S 1 .
PROOF. For all (x, p) ∈ Z c , ((x, p), x) ∈ R, then R = ∅ follows from Z c = ∅. Condition 1) of Definition 5 does obviously hold. Now, let ((x, p), x) ∈ R and consider the corresponding trajectory

(x k , p k , v k) K k=0 of S cl , such that (x 0 , p 0) ∈ Z c and x K = x, p K = p. If (x K , p K) is block- ing for S 2 , then by Remark 6, condition 2) of Definition 5 holds. Otherwise, let v ∈ enab G (x K , p K). Then let v k = v k for 0 ≤ k ≤ K -1 and v K = v. Then, (x k , p k , v k) K
k=0 is a trajectory of S cl and also of S 2 .Moreover, it is not maximal for S 2 , which implies by Problem 4 that it is not maximal for S cl . Hence, there exists u ∈ θ(x K , p K , v K). Let x ∈ F (x K , u), since (θ, π) is compatible with S 1 we get that there exists p ∈ π(x K , p K , x , v K). By (1), we get that (x , p

) ∈ ∆ cl (x K , p K , v K). Hence, (x k , p k , v k) K+1 k=0 where x K+1 = x , p K+1 = p and v K+1 ∈ V is a tra- jectory of S cl . Then, ((x , p), x) ∈ R. Moreover Prob- lem 4 implies that (x k , p k , v k) K+1
k=0 is also a trajectory of S 2 , which implies that (x , p) ∈ G(x K , p K , v K). Hence, condition 2) of Definition 5 holds. 2

Abstraction based approach

In the previous section, we have shown that solving Problem 4 is actually equivalent to computing an alternating simulation relation from S 2 to S 1 . In this section, we present an approach for computing such a relation. Our approach is based on the computation of a symbolic system Ŝ1 and a symbolic specification Ŝ2 such that S 2 AS Ŝ2 and Ŝ1 AS S 1 . Then, if we show that Ŝ2 AS Ŝ1 , we get S 2 AS S 1 , by transitivity of alternating simulation (as per Proposition 4.23 in [START_REF] Tabuada | Verification and Control of Hybrid Systems: a symbolic approach[END_REF]).

Abstraction for the control system

The construction of the symbolic system Ŝ1 ressembles approaches in the literature [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF][START_REF] Reißig | Feedback refinement relations for the synthesis of symbolic controllers[END_REF] with the slight difference that we do not assume that enab F (x) = U , for all x ∈ X. For this reason, we briefly present the abstraction method and state the main result without proof.

Let the state space X be covered by a finite partition (X q) q∈Q : X = ∪ q∈Q X q . Let Û ⊆ U be a finite subset of control inputs, and let us define an abstract system Ŝ1 = (X, Û , X, F , H 1) where the transition map F is given by: x ∈ F (x, û) ⇐⇒ x ∈ X q , x ∈ X q , q ∈ ∆1 (q, û) [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF] with the finite transition map ∆1 :

Q× Û ⇒ Q satisfying for all q ∈ Q enab ∆1 (q) ⊆ x∈Xq enab F (x) (6)
and for all q, q ∈ Q, û ∈ enab ∆1 (q)

X q ∩ F (X q , û) = ∅ =⇒ q ∈ ∆1 (q, û). (7)

Condition [START_REF] Fainekos | Temporal logic motion planning for dynamic robots[END_REF] does not appear in [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF][START_REF] Reißig | Feedback refinement relations for the synthesis of symbolic controllers[END_REF], where it is assumed that enab F (x) = U , for all x ∈ X. Indeed, in that case (6) is automatically satisfied. With minor modifications to the proofs in these works, we can show that the identity relation on X is an alternating simulation relation and we get:

Proposition 9 For transition system S 1 and symbolic system Ŝ1 satisfying (5), (6), (7), we have Ŝ1 AS S 1 .

Abstraction for the specification

We now present the construction of the symbolic specification Ŝ2 such that S 2 AS Ŝ2 . Such construction is not available in the literature, since the direction of the alternating simulation relation is reversed in comparison to the system case. Let us introduce for all p, p ∈ P , v ∈ V , the map G v p,p : X ⇒ X given by

G v p,p (x) = x ∈ X| (x , p) ∈ G(x, p, v) . Then, G(x, p, v) = p ∈P G v p,p (x) × {p }.
Let (X q) q∈Q be the same partition as in the previous section and let us define Ŝ2 = (X ×P, V, X, Ĝ, H 2) where the transition map Ĝ is given by: (x , p) ∈ Ĝ(x, p, v) ⇐⇒

x ∈ X q , x ∈ X q , (q , p) ∈ ∆2 (q, p, v)

with the finite transition map ∆2 :

Q × P × V ⇒ Q × P satisfying for all q, q ∈ Q, p, p ∈ P , v ∈ V , (q , p) ∈ ∆2 (q, p, v) ⇐⇒ X q × X q ⊆ graph(G v p,p
). (9) We now provide conditions under which the identity relation on X × P is an alternating simulation relation from S 2 to Ŝ2 .

Assumption 10

The transition map G satisfies the following conditions for some L > 0, δ > 0:

(1) for all p, p ∈

P , v ∈ V , x 1 , x 2 ∈ dom(G v p,p), h(G v p,p (x 1), G v p,p (x 2)) ≤ L x 1 -x 2 ∞ ; (2) for all p, p ∈ P , v ∈ V , x ∈ dom(G v p,p), ρ -G v p,p (x) ≥ δ.
Assumption 10 concerns the maps G v p,p . The first item requires the maps G v p,p to be Lipschitz on their domains, which is a fairly mild assumption. The second item requires that G v p,p (x) has a minimal inradius whenever it is not empty. In particular, it means that G v p,p (x) cannot be a singleton, and that the specification should enable some non-determinism.

Assumption 11

The partition (X q) q∈Q satifies:

(1) for all q ∈ Q, p

∈ P , v ∈ V , ∃x ∈ X q , G(x, p, v) = ∅ =⇒ ∃p ∈ P, X q ⊆ dom(G v p,p);
(2) for all q ∈ Q, ρ + (X q) < δ/(2 + L), where L and δ are the same as in Assumption 10.

Remark 12 Let us point out that condition 1) in Assumption 11 can be replaced by the stronger (but easier to check) condition that for all q ∈ Q, p, p ∈ P , v ∈ V ,

X q ∩ dom(G v p,p) = ∅ =⇒ X q ⊆ dom(G v p,p).
Assumption 11 concerns the partition (X q) q∈Q . It should be emphasized that it is always possible to choose a partition such that this assumption is satisfied. From the previous remark, condition 1) can be satisfied by having the regions X q either fully inside or outside dom(G v p,p). Condition 2) can be satisfied by choosing the regions X q to be small enough. It is important to remark that if the maps G v p,p were deterministic then condition 2) of Assumption 10 would only hold for δ = 0. Then, it would become impossible to find a finite partition (X q) q∈Q such that condition 2) of Assumption 11 is satisfied. We now establish the following instrumental result: Lemma 13 Under Assumptions 10 and 11, we have for all x ∈ X, p ∈ P , enab G (x, p) = enab Ĝ(x, p).

PROOF. Consider an arbitrary (x, p, v) such that G(x, p, v) = ∅. Let q be such that x ∈ X q , then from condition 1) of Assumption 11, there exists p ∈ P , such that X q ⊆ dom(G v p,p). From conditions 1) and 2) in Assumption 10, it follows that

ρ - x∈Xq G v p,p (x) ≥ δ -Lρ + (X q).
By condition 2) of Assumption 11, we get for all q ∈ Q,

ρ - x∈Xq G v p,p (x) > 2ρ + (X q) ,
which implies since (X q) q∈Q is a partition that there exists q ∈ Q such that X q ⊆ x∈Xq G v p,p (x). Then, X q × X q ⊆ graph(G v p,p) and Ĝ(x, p, v) = ∅. Thus, enab G (x, p) ⊆ enab Ĝ(x, p). The inclusion enab Ĝ(x, p) ⊆ enab G (x, p), is a direct consequence of (8) and (9). 2 Proposition 14 Under Assumptions 10 and 11, for transition system S 2 and symbolic system Ŝ2 satisfying (8), (9), we have S 2 AS Ŝ2 .

PROOF. Consider the identity relation on X × P and let us prove that it is an alternating simulation relation. Condition 1) of Definition 5 does obviously hold. Condition 2) reads: for every (x, p) ∈ X × P and every

v 1 ∈ enab G (x, p) there exists v 2 ∈ enab Ĝ(x, p) such that Ĝ(x, p, v 2) ⊆ G(x, p, v 1). Let us verify a stricter statement when v 2 = v 1 = v. Consider an arbitrary (x, p) ∈ X × P , v ∈ enab G (x, p), then from Lemma 13, v ∈ enab Ĝ(x, p). Let (x , p) ∈ Ĝ(x, p, v), let q, q ∈ Q be such that x ∈ X q , x ∈ X q . Then (x, x) ∈ graph(G v p,p). Therefore, (x , p) ∈ G(x, p, v). 2
We now briefly describe a practical approach to compute the abstract specification Ŝ2 when the original specification S 2 is described by a piecewise affine hybrid automaton. Let us assume that for all p, p ∈ P , v ∈ V , dom(G v p,p) = D v p,p , and that for all Let us assume that the partition (X q) q∈Q is chosen so as to satisfy Assumption 11. Let us remark that if X is a polytope it is always possible to choose such a partition where for all q ∈ Q, X q is a polytope. Then according to (9), (q , p) ∈ ∆2 (q, p, v) if and only if

x ∈ dom(G v p,p) G v p,p (x) = A v p,p x + W v p,p , where A v p,p is a matrix in R nx×nx , D v p,p , W v p,
X q ⊆ D v p,p and X q -A v p,p X q ⊆ W v p,p .
These inclusions can be checked by verifying that for all x and x belonging to the set of vertices of X q and X q respectively, x ∈ D v p,p and x -A v p,p x ∈ W v p,p .

In this section, we have shown how to build a symbolic system Ŝ1 and a symbolic specification Ŝ2 such that S 2 AS Ŝ2 and Ŝ1 AS S 1 . In both cases, the alternating simulation relation is given by the identity relation. Then, according to Proposition 4.23 in [START_REF] Tabuada | Verification and Control of Hybrid Systems: a symbolic approach[END_REF], if R ⊆ X × P × X, R = ∅, is an alternating simulation relation from Ŝ2 to Ŝ1 , we get that R is also an alternating simulation relation from S 2 to S 1 , and provides a solution to Problem 4 as per Theorem 7. The use of a symbolic system and a symbolic specification is the only source of conservatism of the proposed solution to Problem 4. This conservatism can be reduced by choosing finer partitions of X, at the expense of an increased computational complexity.

We do not discuss the computation of the alternating simulation relation from Ŝ2 to Ŝ1 , which can be done either by extending (to the alternated case) the algorithms for discrete simulation games presented in [START_REF] Tabuada | Verification and Control of Hybrid Systems: a symbolic approach[END_REF], or by using the approach presented in Section 5.1 to solve Problem 16 of which Problem 4 is a special case.

Remark 15 Rigorously speaking, Ŝ1 and Ŝ2 are infinite transition systems since they have infinite sets of states. However, their transition relations are finitely represented by the maps ∆1 : Q × Û ⇒ Q and ∆2 :

Q × P × V ⇒ Q × P .
For this reason, we refer to Ŝ1 and Ŝ2 as symbolic system and specification, respectively. Using Q and Q × P , instead of X and X × P , as sets of states for Ŝ1 and Ŝ2 , would make it impossible to get S 2 AS Ŝ2 and Ŝ1 AS S 1 with X as output set (without resorting to set valued output maps). Using X as the output set instead of Q is important since it makes the formulation of Problem 4 independent of the choice of the partition. It is important to note that the controller synthesis algorithms presented in the next section, only operates on the finite objects Q, P , Û , V , ∆1 and ∆2 .

Safety and reachability requirements

By solving Problem 4, we guarantee that the closed-loop system S cl behaves in the same way as the specification S 2 . In this section, we show how to take into account additional requirements such as (generalized) safety and reachability properties.

Safety requirements can often be encoded directly in S 2 by blocking transitions starting from unsafe states: e.g. in Example 3, there is no transition enabled if x 1 +l > 0, (i.e. the follower is at a distance less than l from the leader). However, Problem 4 does not prevent reaching such blocking states: actually, from Remark 6 and Theorem 7, all blocking states of S 2 are elements of the controllable set Z c . Hence, to take into account safety requirements, one needs to modify the formulation of Problem 4 to prevent S cl from reaching blocking states of S 2 . We actually formulate a more general problem, which allows not only to enforce safety requirements but also has Problem 4 as a special case. For that purpose, let us consider a set of terminal states given by Z f ⊆ X ×P .

Problem 16 (Safety requirements) Synthesize a controller (θ, π) compatible with S 1 and a controllable set Z c ⊆ X × P such that for every (x 0 , p 0) ∈ Z c , for every maximal trajectory (x k , p k , v k) K k=0 of S cl , one of the following condition holds:

(1) (x k , p k , v k) K k=0 is a trajectory of S 2 , K ∈ N and (x K , p K) ∈ Z f ; (2) (x k , p k , v k) K
k=0 is a maximal trajectory of S 2 , and either K = +∞, or K ∈ N and enab G (x K , p K) = ∅. Some explanations on Problem 16 are in order. Let us consider the following cases: and a controllable set Z c ⊆ X × P such that for every (x 0 , p 0) ∈ Z c , for every maximal trajectory (x k , p k , v k) K k=0 of S cl , one of the following condition holds:

• If Z f = ∅, condition
(1) (x k , p k , v k) K k=0 is a trajectory of S 2 , K ∈ N and (x K , p K) ∈ Z f ; (2) (x k , p k , v k) K
k=0 is a maximal trajectory of S 2 , and

K ∈ N and enab G (x K , p K) = ∅.
From condition 2) of Problem 17, all states outside Z f that are reachable by trajectories of S cl are non-blocking states of S 2 . Moreover, if the sequence of external inputs is enabled in the specification, then from condition 1), all maximal trajectories of S cl are trajectories of S 2 and end in a terminal state Z f ⊆ X × P .

It should be noted that any solution of Problem 17 is also a solution of Problem 16. Intuitively, Problem 17 requires that S cl behaves as S 2 until a final state in Z f is reached. Problem 16 allows additionally for the possibility of not reaching Z f . In that case, S 2 must behave as S cl forever. Essentially, the difference between Problem 17 and Problem 16 is the same as that between "until" and "weak until" in Linear Temporal Logic [START_REF] Baier | Principles of model checking[END_REF]. Let us remark that for Z f = ∅, Problem 17 does not admit any solution while for Problem 16, this case corresponds to pure safety requirements.

In the following, we provide solutions to Problems 16 and 17 based on symbolic abstractions. Let Ŝ1 and Ŝ2 be the symbolic system and specification defined in Section 4. Given a controller (θ, π), we denote Ŝcl the closedloop abstract system with transition relation ∆cl , defined as in [START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF]. We first show the following result, which shows that if (θ, π) and Z c solve Problem 16 or 17 for Ŝ1 and Ŝ2 , they also provide a solution for system and specification S 1 and S 2 .

Lemma 18 If a controller (θ, π) is compatible with Ŝ1 then it is compatible with S 1 . Any maximal trajectory of S cl is also a maximal trajectory of Ŝcl . Under Assumptions 10 and 11, any (maximal) trajectory of Ŝ2 is a (maximal) trajectory of S 2 .

PROOF. From (5), (6) and (7) it follows that for all x ∈ X, enab F (x) ⊆ enab F (x) and that for all u ∈ enab F (x), F (x, u) ⊆ F (x, u). Therefore, (θ, π) being compatible with Ŝ1 implies that it is also compatible with S 1 . Moreover, for all x ∈ X, p ∈ P , enab ∆cl (x, p) = enab ∆ cl (x, p) and consists of inputs v ∈ V such that θ(x, p, v) = ∅. Then, we get that for all v ∈ enab ∆ cl (x, p), F (x, θ(x, p, v)) ⊆ F (x, θ(x, p, v)), which implies that ∆ cl (x, p, v) ⊆ ∆cl (x, p, v). Hence, any maximal trajectory of S cl is also a maximal trajectory of Ŝcl . From Lemma 13 and from the proof of Proposition 14, we get that for all x ∈ X, p ∈ P , enab G (x, p) = enab Ĝ(x, p) and that for all v ∈ enab Ĝ(x, p), Ĝ(x, p, v) ⊆ G(x, p, v). Hence, any (maximal) trajectory of Ŝ2 is also a (maximal) trajectory of S 2 . 2 Before providing detailed solutions to Problems 16 and 17, we define the following operator:

Definition 19 For Ẑ ⊆ Q × P the controllable prede- cessor of Ẑ is Pre Ẑ ⊆ Q × P where (q, p) ∈ Pre Ẑ if and only if
(1) enab ∆2 (q, p) = ∅, and (2) ∀v ∈ enab ∆2 (q, p), ∃u ∈ enab ∆1 (q) : ∀q ∈ ∆1 (q, u), ∃p ∈ P : (q , p) ∈ ∆2 (q, p, v) ∩ Ẑ.

Intuitively, Pre Ẑ consists of states from which the controller can enforce the successor state to belong to Ẑ. Let us remark that since Q×P is a finite set, the computation of Pre Ẑ does not present any difficulty. We also define the set of symbolic terminal states:

Ẑf = {(q, p) ∈ Q × P | X q × {p} ⊆ Z f }.

Safety requirements

We start by describing a solution approach to Problem 16. Let Ẑ∞ denote the limit of the sequence (Ẑk) k∈N defined by:

Ẑ0 = Q × P, Ẑk+1 = Ẑf ∪ Pre Ẑk . (10)
Since for all k ∈ N, Ẑk is finite and Ẑk+1 ⊆ Ẑk , it follows that the fixed point Ẑ∞ is reached in finite time. Let Z c be defined as follows:

Z c = (x, p) ∈ X × P x ∈ X q , (q, p) ∈ Ẑ∞ . (11)
Then we may define the controller (θ, π) as follows:

θ(x, p, v) = u ∈ enab F (x) ∀x ∈ F (x, u), ∃p ∈ P : (x , p) ∈ Ĝ(x, p, v) ∩ Zc , (12) π(x, p, x , v) = {p ∈ P | (x , p) ∈ Ĝ(x, p, v) ∩ Z c }. (13)
Theorem 20 Under Assumptions 10 and 11, let the set Z c and the controller (θ, π) be defined by (11), (12), [START_REF] Megawati | Abstraction and control by interconnection of linear systems: A geometric approach[END_REF]. Then, (θ, π) and Z c solve Problem 16.

PROOF. Using the same arguments as in the beginning of the proof of Theorem 7, we get that (θ, π) is compatible with Ŝ1 and that any maximal trajectory

(x k , p k , v k) K k=0 of Ŝcl with (x 0 , p 0) ∈ Z c is a trajectory of Ŝ2 and that (x k , p k) ∈ Z c for all 0 ≤ k ≤ K. If K = +∞ or if K ∈ N and (x K , p K) ∈ Z f ,
the requirements of Problem 16 are met for Ŝ1 and Ŝ2 . Then, let us assume that K ∈ N and (x [START_REF] Liu | Simple linear-time algorithms for minimal fixed points[END_REF], [START_REF] Liu | Synthesis of reactive switching protocols from temporal logic specifications[END_REF] and (8) that enab

K , p K) / ∈ Z f . Since (x K , p K) ∈ Z c \ Z f , it follows by
Ĝ(x K , p K) = ∅. Let us assume that (x k , p k , v k) K k=0
is not maximal for Ŝ2 , then v K ∈ enab Ĝ(x K , p K) and from [START_REF] Liu | Simple linear-time algorithms for minimal fixed points[END_REF], [START_REF] Liu | Synthesis of reactive switching protocols from temporal logic specifications[END_REF], (8), (5), we get that there exists u ∈ enab F (x K) such that for all x ∈ F (x k , u), there exits p ∈ P such that (x , p) ∈ Ĝ(x, p, v) ∩ Z c . Then, from [START_REF] Lygeros | Dynamical properties of hybrid automata[END_REF], u ∈ θ(x K , p K , v K), which is therefore nonempty. Since (θ, π) is compatible with Ŝ1 , we obtain that

v K ∈ enab ∆cl (x K , p K). It follows that (x k , p k , v k) K k=0
is not maximal for Ŝcl , which leads to a contradiction. Hence, it follows that (θ, π) and Z c solve Problem 16 for Ŝ1 and Ŝ2 . By Lemma 18, they also solve Problem 16 for S 1 and S 2 . 2

Reachability requirements

We now present a solution approach to Problem 17. Let Ẑ∞ denote the limit of the sequence (Ẑk) k∈N defined by:

Ẑ0 = Ẑf , Ẑk+1 = Ẑf ∪ Pre Ẑk . (14)
Since Q × P is finite and for all k ∈ N, Ẑk ⊆ Ẑk+1 ⊆ Q × P , it follows that the fixed point Ẑ∞ is reached in finite time. Let Z c be defined by [START_REF] Liu | Simple linear-time algorithms for minimal fixed points[END_REF], and for k ∈ N, let

Z k = (x, p) ∈ X × P x ∈ X q , (q, p) ∈ Ẑk .
Then, for (x, p) ∈ Z c we define

κ(x, p) = min k ∈ N| (x, p) ∈ Z k . (15)
Then, let (θ, π) be given, for (x, p) ∈ Z 0 , by θ(

= ∅, and for (x, p) ∈ Z c \ Z 0 , by

θ(x, p, v) =      u ∈ enab F (x) ∀x ∈ F (x, u), ∃p ∈ P : (x , p) ∈ Ĝ(x, p, v)∩ Z κ(x,p)-1      , (16) π
(x, p, x , v) = {p ∈ P | (x , p) ∈ Ĝ(x, p, v) ∩ Z κ(x,p)-1 }. (17)
Theorem 21 Under Assumptions 10 and 11, let the set Z c and the controller (θ, π) be defined by (11), (16), [START_REF] Reißig | Computing abstractions of nonlinear systems[END_REF]. Then, (θ, π) and Z c solve Problem 17.

PROOF. Using the same arguments as in the beginning of the proof of Theorem 7, we get that (θ, π) is compatible with Ŝ1 and that any maximal trajectory (x k , p k , v k) K k=0 of Ŝcl with (x 0 , p 0) ∈ Z c is a trajectory of Ŝ2 and that κ(x k , p k) is strictly discreasing and nonnegative. Then, necessarily K ∈ N. If (x K , p K) ∈ Z f , the requirements of Problem 16 are met for Ŝ1 and Ŝ2 . Then, let us assume that (x K , p K) / ∈ Z f . Then, (x K , p K) / ∈ Z 0 and κ(x K , p K) > 0. Then, it follows by [START_REF] Pola | Integrated design of symbolic controllers for nonlinear systems[END_REF], (14) and (8) that enab Ĝ(x K , p K) = ∅. Let us assume that (x k , p k , v k) K k=0 is not maximal for Ŝ2 , then v K ∈ enab Ĝ(x K , p K) and from (15), (14), (8), [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF], we get that there exists u ∈ enab F (x K) such that for all x ∈ F (x k , u), there exits p ∈ P such that (x , p) ∈ Ĝ(x, p, v) ∩ Z κ(x K ,p K)-1 . Then, from [START_REF] Pola | Control of cyberphysical-systems with logic specifications: A formal methods approach[END_REF], u ∈ θ(x K , p K , v K), which is therefore non-empty. The end of the proof is identical to that of Theorem 20. 2

We end this section by highlighting the duality between Problems 16 and 17 whose respective solutions are obtained by computing the greatest and least fixed points of the same operator (see [START_REF] Liu | Synthesis of reactive switching protocols from temporal logic specifications[END_REF] and (14)). The implication on computational complexity is that Problems 16 and 17 can be solved in linear time of problem data by adapting the method presented in [START_REF] Liu | Simple linear-time algorithms for minimal fixed points[END_REF].

Autonomous vehicle examples

In this section, we provide illustrations of our approach by showing instances of Problems 16 and 17 in the context of autonomous vehicle control. We first consider adaptive cruise control and then a takeover maneuver. Both problems have been solved using the MATLAB toolbox Co4Pro 1 , which can perform automatic abstractions of systems and specifications as well as symbolic controller synthesis. We ran the algorithms on Intel Core i7 2.8GHz CPU, 16 GB RAM.

Safety: adaptive cruise control

Let us consider the problem that was introduced in Example 3. Let the system S 1 of two vehicles be described by discrete-time equations:

x 1 k+1 = x 1 k + (x 2 k -x 3 k)T 0 , x 2 k+1 = χ x 2 k + α(u k , x 2 k)T 0 , [x 2 min , x 2 max] , x 3 k+1 = χ x 3 k + w k T 0 , [x 3 min , x 3 max] .
where

T 0 > 0 is the sampling period, α(u, x) = u -M -1 (f 0 + f 1 x + f 2 x 2) and χ(x, [x 1 , x 2]) = min{max{x, x 1 }, x 2 }. The vector of parameters f = (f 0 , f 1 , f 2) ∈ R 3
+ describes the road friction and the vehicle aerodynamics whose numerical values are taken from [START_REF] Nilsson | Correct-byconstruction adaptive cruise control: Two approaches[END_REF]:

f 0 = 51 N, f 1 = 1.2567 N s/m, f 2 = 0.4342 N s 2 /m 2 .
Here u k ∈ [u min , u max] is the torque applied to the wheels of the follower and is the control input, w k ∈ [w min , w max] is the acceleration of the leader and is an uncertain input. We recall that the state space, already defined in Example 3 is The specification S 2 is given as in Example 3. The safety requirement that x 1 k + l ≤ 0 for all k ∈ N is directly encoded in S 2 . To enforce the safety requirement, we then solve Problem 16 with an empty set of terminal states Z f = ∅, to avoid reaching blocking state of the specification (in particular those where x 1 +l > 0). The numerical values of the specification parameters are C = 0.4 m/s, ε = 1 m/s and l = 10 m. The external input take values in the set of reference velocities V = {15, 20, 25}. Let us remark that this specification S 2 can be written as a piecewise affine hybrid automaton. We then choose an appropriate partition of the state space such that Assumptions 10 and 11 are satisfied.

X = (-∞, 0) × [x 2 min , x 2 max] × [x 3 min , x 3
A controller (θ, π) has been synthesized by the approach presented in Section 5.1. The partition of X is obtained using partitions on each subspace. The partition of (-∞, 0) is given by (-∞, -100) and by a uniform partition of [-100, 0) of step 2. We also use uniform partitions of [x 2 min , x 2 max] and [x 3 min , x 3 max] of step 0.5. The resulting symbolic set Q has 61 200 states, the symbolic set of inputs is Û = {-3, -2, . . . , 3}. The computation time for this example is 3 119 seconds with 13 seconds spent on abstracting the system, 2623 seconds spent on abstracting the specification and 483 seconds spent on controller synthesis.

Next, for the synthesized controller (θ, π), we simulate a trajectory of the closed-loop system S cl . Note that the controller is non-deterministic so we use the following priorities: for θ, pick the first valid input in the ordered list {0, 1, -1, 2, -2, 3, -3}; for π pick the first valid mode on the ordered list {p 1 , p 2 }. Figure 1 depicts the time evolution with respect to t = kT 0 of the relative distance x 1 , follower and leader velocities x 2 , x 3 , reference velocity v, control input u and mode p. One can check that initially the follower tracks the desired velocity until the distance between the two vehicles becomes insufficient and the controller moves to mode p 2 , reducing the velocity of the follower to avoid collision, when the reference velocity is decreased, the controller moves to mode p 1 and so on. It should be noted that the safety requirement x 1 k + l ≤ 0 holds for all k. Let us remark that adaptive cruise control has already been tackled by formal methods, most notably in [START_REF] Nilsson | Correct-byconstruction adaptive cruise control: Two approaches[END_REF], where the specification is provided by a linear temporal logic formula. In comparison, our specification formalism allows to account for variation of the reference velocity using the input of the hybrid automaton, and to specify the speed at which this target velocity is reached using the parameter C in the dynamics of hybrid automaton.

Reachability: takeover maneuver

Consider now a similar setting with two vehicles on a road with two lanes where the controllable vehicle is able to perform a takeover maneuver. The state of the system S 1 of two vehicles is given by x = (x 1 , x 2 , x 3 , x 4) T where x 1 , x 2 , x 3 have the same meaning as in the previous example and x 4 ∈ {1, 2} corresponds to the lane number of the controlled vehicle. The state space of

S 1 is X = (-∞, +∞) × [x 2 min , x 2 max] × [x 3 min , x 3 max] × {1, 2}.
The dynamics is given by the following discrete-time equations:

x 1 k+1 = x 1 k + β(x 2 k , x 3 k , x 4 k , u 2 k)T 0 , x 2 k+1 = χ x 2 k + α(u k , x 2 k)T 0 , [x 2 min , x 2 max] , x 3 k+1 = χ x 3 k + w k T 0 , [x 3 min , x 3 max] x 4 k+1 = u 2 k
where T 0 , α and χ are the same as before and

β(x 2 , x 3 , x 4 , u 2) = x 2 -x 3 if x 4 = u 2 1 T0 (x 2 T 0) 2 -r 2 -x 3 if x 4 = u 2
The second case in β describes a lane-changing maneuver where parameter r denote the distance between lanes. In the following we consider r = 2 m and it is assumed for simplicity that this maneuver takes time T 0 . The control inputs are u 1 k ∈ [u min , u max], which is the torque applied to the wheels of the controlled vehicle and u 2 k ∈ {1, 2} which selects the lane number of the controlled vehicle at the next time instant. As before w k ∈ [w min , w max] is the acceleration of the uncontrolled vehicle and is an uncertain input. The numerical values of the parameters are the same as before.

The specification S 2 for the takeover maneuver is described by a discrete-time automaton with 3 modes P = {p 1 , p 2 , p 3 } and no external input. In mode p 1 , the controlled vehicle follows the uncontrolled vehicle. In mode p 2 , the controlled vehicle is in lane 2 and is overtaking the uncontrolled vehicle. In mode p 3 , the controlled vehicle leads the uncontrollable vehicle. Formally, the dynamics of S 2 is given by (x p) ∈ G(x, p, v) if one of the following condition holds:

(1) p = p 1 , p = p 1 , x 1 + l ≤ 0, x 4 = 1 and x 1 ≥ x 1 , (2) p = p 1 , p = p 2 , x 1 + l ≤ 0, x 4 = 2 and x 1 ≥ x 1 , (3) p = p 2 , p = p 2 , x 4 = 2 and x 1 ≥ x 1 , (4) p = p 2 , p = p 3 , x 1 -l ≥ 0, x 4 = 2 and x 1 ≥ x 1 .

The dynamics does not impose any explicit constraints on x 2 , x 3 and x 4 (other than x 2 ∈ [x 2 min , x 2 max], x 3 ∈ [x 3 min , x 3 max] and x 4 ∈ {1, 2}). The parameters l > 0 specifies the safety distance and its numerical value is taken as l = 10 m. The condition in all transitions that x 1 ≥ x 1 enforces that the relative distance separating the controlled and the uncontrolled vehicle grows continuously. Note that the specification is a piecewise affine hybrid automaton. We then choose an appropriate partition of the state space such that Assumptions 10 and 11 are satisfied. The takeover maneuver ends when the controllable vehicle is in the first lane leading the uncontrollable vehicle with a minimal relative distance of l. This corresponds to the terminal set

Z f = {(x, p) | p = p 3 , x 1 -l ≥ 0, x 4 = 2}.
The maneuver needs to end in finite time, so it is a reachability requirement as in Problem 17.

A controller {θ, π} has been synthesized by the approach presented in Section 5.2. The partition of X is obtained using partitions on each subspace. The partition of (-∞, +∞) is given by (-∞, -70), [30, +∞) and by a uniform partition of [-70, 30) of step 2. We also use uniform partitions of [x 2 min , x 2 max] and [x 3 min , x 3 max] of step 0.5, and {1, 2} is kept as it is. The symbolic set Q has 124 800 states, the symbolic set of inputs is Û = {-3, -2, . . . , 3}. The computation time for this example is 1 076 seconds with 61 seconds spent on abstracting the system, 498 seconds spent on abstracting the specification and 517 seconds spent on controller synthesis.

Next, for the synthesized controller (θ, π), we simulate a trajectory of the closed-loop system S cl . Note that the controller is non-deterministic so we use the following priorities: for θ, pick the first valid input in the ordered list {0, 1, -1, 2, -2, 3, -3}; for π pick the first valid mode on the ordered list {p 1 , p 2 , p 3 }. Figure 1 depicts the time evolution with respect to t = kT 0 of the relative distance x 1 , velocities of the controlled and uncontrolled vehicles x 2 , x 3 , control input u and mode p. One can check that the controllable vehicle is in lane 2 when the overtaking takes place and that x 1 the relative distance between the controlled and the uncontrolled vehicle grows continuously.

Conclusion and future work

In this paper, we presented an approach to formal controller synthesis from specifications given by discrete-time hybrid automata, enriched with safety and reachability requirements. Using illustrations from autonomous vehicle control, we have shown the usefulness of our specification formalism. In addition, we proposed a fully automatic approach to controller synthesis using symbolic abstractions of the system and of the specification. These algorithms are available within the toolbox Co4Pro. In our future work, we will use these two types of problems as building blocks for control programs specifying even more complex behaviors (see e.g. [START_REF] Sinyakov | Formal synthesis from control programs[END_REF]).

Theorem 8

 8 Let controller (θ, π) and set Z c = ∅ solve Problem 4. Let us define a relation R by the following: ((x, p), x) ∈ R if and only if x = x and there exists (x 0 , p 0) ∈ Z c and a trajectory

 p are closed convex polytopes in R nx . For Assumption 10 to hold, it is sufficient that the sets W v p,p have non-empty interior for all p, p ∈ P , v ∈ V . Then, L and δ satisfying Assumption 10 are given by L = max p,p ∈P,v∈V A v p,p , δ = min p,p ∈P,v∈V ρ -(W v p,p).

 max] We choose the following parameters: M = 1370 kg, x 2 min = x 3 min = 10 m/s, x 2 max = 30 m/s, x 3 max = 25 m/s, u min = w min = -3 m/s 2 u max = w max = 3 m/s 2 , T 0 = 0.5 s.1 https://github.com/girardan/Co4Pro

Fig. 1 .

 1 Fig. 1. Adaptive cruise control: relative distance x 1 , follower and leader velocities x 2 , x 3 , reference velocity v, control input u, mode p.

Fig. 2 .

 2 Fig.2. Takeover maneuver: relative distance x 1 , velocities of the controlled and uncontrolled vehicles x 2 , x 3 , control input u, mode p.

 1) is never satisfied and only condition 2) is relevant. In that case, all states that are reachable by trajectories of S cl are non-blocking states of S 2 (even though we can have v K / ∈ enab G (x K , p K)). Then, if the sequence of external inputs is enabled in the specification (i.e. if v k ∈ enab G (x k , p k) for all 0 ≤ k ≤ K), then all maximal trajectories of S cl are complete trajectories of S 2 . Hence, as explained above, solving Problem 16 with Z f = ∅ makes it possible to enforce the safety requirements encoded in S 2 .• If Z f = {(x, p) ∈ X × P | enab G (x, p) = ∅} (i.e. Zf is the set of blocking states of S 2), then in condition 1) the trajectory is also maximal for S 2 . Hence, all trajectories that are maximal for S cl are also maximal for S 2 , which is the requirement of Problem 4. Hence, the solution provided in this section to solve Problem 16 can be readily used to solve Problem 4. • In the general case, we have that all states outside Z f that are reachable by trajectories of S cl are nonblocking states of S 2 . Moreover, if the sequence of external inputs is enabled in the specification, then all maximal trajectories of S cl are trajectories of S 2 and are either complete or end in a terminal state Z

f ⊆ X × P . Problem 16 does not allow to enforce reachability properties. Indeed, from condition 2), complete trajectories of S 2 that never reach Z f are always accepted. Reachability requirement can be taken into account as follows:

Problem 17 (Reachability requirements) Synthesize a controller (θ, π) compatible with S 1