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Abstract

This paper deals with formal controller synthesis for discrete-time dynamical systems. We consider a specification provided
under the form of a discrete-time hybrid automaton with external inputs, which can represent, for instance, instructions or
informations received from a human user or from another system. The hybrid automaton describes the intended behavior of
the system and we first consider the problem of synthesizing a controller such that the maximal trajectories of the closed-
loop system are also maximal trajectories of the hybrid automaton. We show that the existence of an alternating simulation
relation from the specification to the open-loop system is a necessary and sufficient condition for the existence of such
controllers. To be able to solve this problem using symbolic (i.e. finite-state) abstractions, we provide a method to compute
a symbolic specification that under-approximates the behavior of the hybrid automata. Then, we extend our approach to
consider additional safety or reachability requirements so that some unsafe (e.g. blocking) states are avoided or some target
states are reached, respectively. The originality of the problem is that these additional requirements are not formulated over
the states of the system but over the states of the specification. Finally, we demonstrate the effectiveness of our approach with
two illustrative examples from autonomous vehicle control.
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1 Introduction

Recent years saw a burst in research on formal meth-
ods in control theory (see e.g. [21,4] and the references
therein). One of the key problems in this field is that
of synthesizing automatically a controller for a dynami-
cal system so that the closed-loop system has a certain
desired behavior, formally described by a specification.
The considered specifications can be complex and usu-
ally go beyond traditional stability properties. For exam-
ple, they can be given by regular languages [16,8] or by
linear temporal logic formulas [22,6,10,4]. In some other
cases, the specification itself can be given under the form
of a dynamical system: a trajectory is then accepted if
it can be related in some sense to a trajectory of the
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specification system: see e.g. [21,15] where specifications
are given by finite-state dynamical systems or [23,24,13]
where both the system and the specification are given by
linear systems. When a dynamical system has an infinite
number of states, a common approach in formal methods
is to transition from the original infinite system to an ap-
proximating finite-state system called symbolic abstrac-
tion (see e.g. [7,17,25,5,9,18]). To justify rigorously this
transition, a formal relation must be established between
the behaviors of these two systems. Different kinds of
relations, such as alternating simulation relations [2,21]
or feedback refinement relations [18], were introduced
to formalize whether a controller for the system can be
obtained from that of its symbolic abstraction.

In this paper, we consider a controller synthesis prob-
lem for discrete-time control systems where the specifi-
cation is provided under the form of a discrete-time hy-
brid automaton [20], which is a discrete-time dynamical
system with the state having discrete and continuous
components, similarly to their continuous-time counter-
parts [1,12]. In our setting, the specification hybrid au-
tomaton may have external inputs that can represent,
for example, an instruction issued by a human user or a
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message communicated by some other system. We con-
sider the problem of synthesizing a controller such that
the maximal trajectories of the closed-loop system are
also maximal trajectories of the hybrid automaton. The
first contribution of the paper is to show that for the
considered class of controllers, the existence of an alter-
nating simulation relation from the specification to the
open-loop system is not only a sufficient but also a nec-
essary condition for the existence of such a controller.
Computing an alternating simulation relation may be
difficult for a given system and specification. To address
this difficulty, we present an approach based on the use
of symbolic abstractions. Since both the system and the
specification are given by infinite-state dynamical sys-
tems, our solution includes the computation of symbolic
counterparts for both of them. While the construction of
the symbolic abstraction for the system ressembles ex-
isting approaches in the literature [5,18], the proposed
construction of a symbolic specification from a hybrid
automaton is, to the best of our knowledge, new. Note
that in this case, the direction of the alternating simula-
tion relation has to be reversed since the behavior of the
symbolic specification should “under-approximate” that
of the hybrid automaton. Under mild assumptions on
the hybrid automaton and on the partition of the state-
space used for abstraction, we describe an approach to
compute the symbolic specification. This constitutes the
second main contribution of the paper.

Then, we formulate two extensions of our controller syn-
thesis problems with additional safety or reachability
requirements so that some unsafe states are avoided or
some target states are reached, respectively. The origi-
nality of these problem formulations is that these addi-
tional requirements are not formulated over the states of
the system but over the states of the specification. This,
for instance, makes it possible to force the closed-loop
system to avoid blocking states of the specification or to
reach some states of the specification corresponding to
the accomplishment of a given task. To the best of our
knowledge, the combination of specifications under the
form of a dynamical system and of a logical statement,
have not been considered previously in the literature. So
our solutions, based on the symbolic abstractions defined
above, make another contribution of the paper. Finally,
we illustrate our approach with two examples taken from
autonomous vehicle control applications: we first con-
sider adaptive cruise control, and then a takeover ma-
neuver. The specifications are given by hybrid automata
with additional safety requirements in the case of adap-
tive cruise control and with additional reachability re-
quirements on the case of the takeover maneuver.

The paper is organized as follows. Section 2 formulates
the first controller synthesis problem under considera-
tion. Section 3 provides a characterization of the solution
in terms of alternating simulation relations. Section 4
discusses the abstraction algorithms for the system and
the specification. Section 5 extends the controller syn-

thesis problem with additional safety or reachability re-
quirements. Finally, Section 6 illustrates our approach
with autonomous vehicle control examples.

Notations: ‖.‖∞ is the infinity norm for vectors ofRn and
the associated induced norm for matrices. For A,B ⊆
Rn, h(A,B) denotes the Hausdorff distance between A
and B measured by the infinity norm. The inradius of A
is ρ−(A) = supx∈Rn (sup{r | x+ rB ⊆ A}), the circum-
radius of A is ρ+(A) = infx∈Rn (inf{r | A ⊆ x+ rB}),
where B is the unit ball in the infinity norm. Intu-
itively, the inradius and the circumradius represent the
radii of the largest ball that is included in A and of
the smallest ball that contains A, respectively. For a
set-valued map f : X ⇒ Y , its domain is defined as
dom(f) = {x ∈ X | f(x) 6= ∅}, its graph is defined as
graph(f) = {(x, y) ∈ X × Y | y ∈ f(x)}, the image of
X ′ ⊆ X is denoted by f(X ′) =

⋃
x∈X′ f(x).

2 Problem formulation

In this section, we start by introducing some prelimi-
nary definitions and then formulate the first controller
synthesis problem under consideration.

2.1 Transition systems

In this paper, we consider transition systems to model in
a common framework control systems and specifications.

Definition 1 A transition system S is a tuple
(X,U, Y,∆, H), where X is a set of states; U is a set of
inputs; Y is a set of outputs; ∆ : X × U ⇒ X is a set-
valued transition map; H: X −→ Y is an output map.

An input u ∈ U is called enabled at x ∈ X if ∆(x, u) 6= ∅.
Let enab∆(x) ⊆ U denote the set of all inputs enabled
at x. If enab∆(x) = ∅ the state x is called blocking.

Definition 2 A trajectory of S is a sequence
(xk, uk)Kk=0, where K ∈ N∪{+∞}, xk ∈ X, uk ∈ U , for
0 ≤ k ≤ K, and xk+1 ∈ ∆(xk, uk), for 0 ≤ k < K. A tra-
jectory (xk, uk)Kk=0 is called maximal if either K = +∞
or ∆(xK , uK) = ∅, it is complete if K = +∞.

2.2 Controller synthesis problem

We consider a discrete-time control system S1 defined
as a transition system S1 = (X,U,X, F,H1) with state
x ∈ X ⊆ Rnx , control input u ∈ U ⊆ Rnu , and the
output map given by H1(x) = x.

We consider a specification in the form of a discrete-
time hybrid automaton S2 defined as a transition system
S2 = (X × P, V,X,G,H2) where P and V are finite
sets of modes and external inputs, and the output map
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is given by H2(x, p) = x. The set of continuous states
of S2 coincides with the set of states of S1. Intuitively,
the specification describes how the closed-loop system
should react to external inputs v ∈ V . An example of
such specification is as follows:

Example 3 We define a hybrid automaton specifying
adaptive cruise control. We consider two vehicles mov-
ing on a road: the leader is uncontrollable while the fol-
lower is controllable. The continuous state is given by x =
(x1, x2, x3)T where x1 denote the relative position of the
follower with respect to the leader, x2 is the velocity of the
follower, x3 is the velocity of the leader. The set of contin-
uous states is X = (−∞, 0)× [x2

min, x
2
max]× [x3

min, x
3
max],

the set of discrete states P = {p1, p2} consists of 2 modes
(p1:“track velocity” and p2:“avoid collision”) and the set
of inputs V = {v1, . . . , vm} consists of finitely many ref-
erence velocities. The dynamics of the hybrid automaton
is given by (x′p′) ∈ G(x, p, v) if one of the following con-
dition holds

(1) p′ = p1, x1 + l ≤ 0 and x2′ ∈ [min(x2 + C, v −
ε),max(x2 − C, v + ε)].

(2) p′ = p2, x1+l ≤ 0, x2 ≤ v+ε and x2′ ∈ [x2
min, v+ε].

The parameters l > 0, C > 0 and ε > 0 specifying
the safety distance, the velocity settling speed and toler-
ance error. The dynamics does not impose any explicit
constraints on x1′ and x3′ (other than x1′ ∈ (−∞, 0),
x3′ ∈ [x3

min, x
3
max]). When p′ = p1, the follower has to

track the velocity v ∈ V , which is an external time-
varying input that can be provided for instance by the
human passenger or by the speed limit regulation. When
p′ = p2, the follower is allowed to reduce its speed to avoid
collision. A transition to p2 is possible only if x2 ≤ v+ε.
For any transition to be enabled, the following safety re-
quirement must be satisfied x1 + l ≤ 0 (i.e. the follower
is at a distance greater than l behind the leader).

In this paper, we consider a class of controllers given
by a pair of set-valued maps θ: X × P × V ⇒ U and
π : X × P ×X × V ⇒ P . Controller (θ, π) is said to be
compatible with S1 if for all x ∈ X, p ∈ P , v ∈ V ,

θ(x, p, v) ⊆ enabF (x) and

∀x′ ∈ F (x, θ(x, p, v)), π(x, p, x′, v) 6= ∅.

Then, the closed-loop system is given by Scl = (X ×
P, V,X,∆cl, H2) where for all x ∈ X, p ∈ P , v ∈ V ,

∆cl(x, p, v) =

{
(x′, p′)

∣∣∣∣∣∣ x
′ ∈ F (x, θ(x, p, v))

p′ ∈ π(x, p, x′, v)

}
. (1)

Let us remark that if (θ, π) is compatible with S1 then
v ∈ enab∆cl

(x, p) if and only if θ(x, p, v) 6= ∅. Let us em-
phasize that the considered controllers have an internal

variable p that takes its values in P , the set of modes of
the specification. Hence, the closed-loop system is also
a discrete-time hybrid automaton, with the same set of
states as the specification.

The first problem considered in this paper is to synthe-
size a controller (θ, π) and a non-empty set of control-
lable initial states Zc ⊆ X × P such that every trajec-
tory of the closed-loop system Scl initialized in Zc is a
trajectory of the specification S2.

Problem 4 Synthesize a controller (θ, π) compatible
with S1 and a non-empty controllable set Zc ⊆ X × P
such that for every (x0, p0) ∈ Zc, every maximal trajec-
tory (xk, pk, vk)Kk=0 of Scl is a maximal trajectory of S2.

3 Characterization using alternating simulation

In this section, we establish that the solution of Prob-
lem 4 is characterized by the existence of an alternating
simulation relation [21] from the specification S2 to the
system S1.

Definition 5 Let Sa = (Xa, Ua, Ya,∆a, Ha) and Sb =
(Xb, Ub, Yb,∆b, Hb) be two transition systems with Ya =
Yb. A relation R ⊆ Xa×Xb is an alternating simulation
relation from Sa to Sb if the following conditions are
satisfied:

(1) for every (xa, xb) ∈ R we have Ha(xa) = Hb(xb);
(2) for every (xa, xb) ∈ R and for every ua ∈

enab∆a(xa) there exists ub ∈ enab∆b
(xb) such

that for every x′b ∈ ∆b(xb, ub) there exists x′a ∈
∆a(xa, ua) satisfying (x′a, x

′
b) ∈ R.

It is said that Sb alternatingly simulates Sa, denoted by
Sa �AS Sb, if there exists an alternating simulation re-
lation R 6= ∅ from Sa to Sb.

Remark 6 Let R be an alternating simulation relation
from Sa to Sb and consider (xa, xb) ∈ R. If xa is a block-
ing state of Sa then condition 2) holds automatically. If
xb is blocking for Sb then xa must be blocking for Sa.

Within the setting defined in the previous section, the
existence of an alternating simulation relation can be in-
terpreted as follows. Let us consider the repeated two-
player game between the environment and the controller
where the goal of the controller is to keep the specifica-
tion and system outputs indistinguishable: at each time
step, the environment picks the specification input v,
then the controller picks the system input u, then the
environment picks the system successor state x′ that the
controller finally has to match with a specification suc-
cessor state of the form (x′, p′). Intuitively, an alternat-
ing simulation relation from S2 to S1 defines a set from
which the controller has a winning strategy.

3



3.1 Sufficiency

Let us assume that R ⊆ X × P × X, is an alternating
simulation relation from S2 to S1, then let us define the
set Zc ⊆ X × P and the controller (θ, π) as follows:

Zc = {(x, p) ∈ X × P | ((x, p), x) ∈ R}, (2)

θ(x, p, v) =

{
u ∈ enabF (x)

∣∣∣∣∣∣ ∀x
′ ∈ F (x, u), ∃p′ ∈ P :

(x′, p′) ∈ G(x, p, v) ∩ Zc

}
,

(3)
π(x, p, x′, v) = {p′ ∈ P | (x′, p′) ∈ G(x, p, v) ∩ Zc}. (4)

Theorem 7 Let R 6= ∅ be an alternating simulation re-
lation from S2 to S1, let set Zc and controller (θ, π) be
defined by (2), (3), (4). Then, (θ, π) and Zc solve Prob-
lem 4.

PROOF. The fact that Zc 6= ∅ follows from (2) and
R 6= ∅. We now prove that (θ, π) is compatible with S1.
By (3) it is clear that θ(x, p, v) ⊆ enabF (x). Moreover,
by (3) and (4), we get that for all x′ ∈ F (x, θ(x, p, v)),
π(x, p, x′, v) 6= ∅. Then, let us consider (x0, p0) ∈ Zc, and
a maximal trajectory (xk, pk, vk)Kk=0 of Scl. Then, by (1),
we get that pk+1 ∈ π(xk, pk, xk+1, vk) for 0 ≤ k < K.
By (4), we get that (xk+1, pk+1) ∈ G(xk, pk, vk)∩Zc for
0 ≤ k < K. Hence, it follows that (xk, pk, vk)Kk=0 is a
trajectory of S2 and that (xk, pk) ∈ Zc, for 0 ≤ k ≤ K.
Let us assume that (xk, pk, vk)Kk=0 is not maximal for S2,
then vK ∈ enabG(xK , pK). Since (xK , pK) ∈ Zc, we get
((xK , pK), xK) ∈ R, which is an alternating simulation
relation from S2 to S1. Therefore, from the condition 2)
in Definition 5, there exists u ∈ enabF (xK) such that for
all x′ ∈ F (xK , u), there exists (x′′, p′′) ∈ G(xK , pK , vK)
such that ((x′′, p′′), x′) ∈ R. Condition 1) of Definition 5
gives that x′′ = x′ and therefore (x′, p′′) ∈ Zc. Hence,
by (3), u ∈ θ(xK , pK , vK), which is therefore non-empty.
Since (θ, π) is compatible with S1, we obtain that vK ∈
enab∆cl

(xK , pK). It follows that (xk, pk, vk)Kk=0 is not
maximal for Scl, which leads to a contradiction. 2

3.2 Necessity

While Theorem 7 shows that solutions of Problem 4 can
be obtained from alternating simulation relations, the
following theorem shows the converse result:

Theorem 8 Let controller (θ, π) and set Zc 6= ∅ solve
Problem 4. Let us define a relation R by the following:
((x, p), x′) ∈ R if and only if x = x′ and there exists
(x0, p0) ∈ Zc and a trajectory (xk, pk, vk)Kk=0 of Scl, with
K ∈ N, such that xK = x, pK = p. Then R 6= ∅ and is
an alternating simulation relation from S2 to S1.

PROOF. For all (x, p) ∈ Zc, ((x, p), x) ∈ R, then R 6=
∅ follows from Zc 6= ∅. Condition 1) of Definition 5 does
obviously hold. Now, let ((x, p), x) ∈ R and consider the
corresponding trajectory (xk, pk, vk)Kk=0 of Scl, such that
(x0, p0) ∈ Zc and xK = x, pK = p. If (xK , pK) is block-
ing for S2, then by Remark 6, condition 2) of Definition 5
holds. Otherwise, let v ∈ enabG(xK , pK). Then let v′k =
vk for 0 ≤ k ≤ K−1 and v′K = v. Then, (xk, pk, v

′
k)Kk=0 is

a trajectory of Scl and also of S2.Moreover, it is not maxi-
mal for S2, which implies by Problem 4 that it is not max-
imal for Scl. Hence, there exists u ∈ θ(xK , pK , v′K). Let
x′ ∈ F (xK , u), since (θ, π) is compatible with S1 we get
that there exists p′ ∈ π(xK , pK , x

′, v′K). By (1), we get

that (x′, p′) ∈ ∆cl(xK , pK , v
′
K). Hence, (xk, pk, v

′
k)K+1
k=0

where xK+1 = x′, pK+1 = p′ and v′K+1 ∈ V is a tra-
jectory of Scl. Then, ((x′, p′), x′) ∈ R. Moreover Prob-

lem 4 implies that (xk, pk, v
′
k)K+1
k=0 is also a trajectory of

S2, which implies that (x′, p′) ∈ G(xK , pK , v
′
K). Hence,

condition 2) of Definition 5 holds. 2

4 Abstraction based approach

In the previous section, we have shown that solving Prob-
lem 4 is actually equivalent to computing an alternat-
ing simulation relation from S2 to S1. In this section,
we present an approach for computing such a relation.
Our approach is based on the computation of a sym-
bolic system Ŝ1 and a symbolic specification Ŝ2 such
that S2 �AS Ŝ2 and Ŝ1 �AS S1. Then, if we show that
Ŝ2 �AS Ŝ1, we get S2 �AS S1, by transitivity of alter-
nating simulation (as per Proposition 4.23 in [21]).

4.1 Abstraction for the control system

The construction of the symbolic system Ŝ1 ressembles
approaches in the literature [5,18] with the slight differ-
ence that we do not assume that enabF (x) = U , for all
x ∈ X. For this reason, we briefly present the abstrac-
tion method and state the main result without proof.

Let the state space X be covered by a finite partition
(Xq)q∈Q: X = ∪q∈QXq. Let Û ⊆ U be a finite subset
of control inputs, and let us define an abstract system
Ŝ1 = (X, Û ,X, F̂ ,H1) where the transition map F̂ is
given by:

x′ ∈ F̂ (x, û) ⇐⇒ x ∈ Xq, x
′ ∈ Xq′ , q

′ ∈ ∆̂1(q, û) (5)

with the finite transition map ∆̂1 : Q×Û ⇒ Q satisfying
for all q ∈ Q

enab∆̂1
(q) ⊆

⋂
x∈Xq

enabF (x) (6)
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and for all q, q′ ∈ Q, û ∈ enab∆̂1
(q)

Xq′ ∩ F (Xq, û) 6= ∅ =⇒ q′ ∈ ∆̂1(q, û). (7)

Condition (6) does not appear in [5,18], where it is as-
sumed that enabF (x) = U , for all x ∈ X. Indeed, in that
case (6) is automatically satisfied. With minor modifi-
cations to the proofs in these works, we can show that
the identity relation on X is an alternating simulation
relation and we get:

Proposition 9 For transition system S1 and symbolic
system Ŝ1 satisfying (5), (6), (7), we have Ŝ1 �AS S1.

4.2 Abstraction for the specification

We now present the construction of the symbolic spec-
ification Ŝ2 such that S2 �AS Ŝ2. Such construction is
not available in the literature, since the direction of the
alternating simulation relation is reversed in compari-
son to the system case. Let us introduce for all p, p′ ∈ P ,
v ∈ V , the map Gvp,p′ : X ⇒ X given by

Gvp,p′(x) =
{
x′ ∈ X| (x′, p′) ∈ G(x, p, v)

}
.

Then, G(x, p, v) =
⋃
p′∈P G

v
p,p′(x)× {p′}.

Let (Xq)q∈Q be the same partition as in the previous

section and let us define Ŝ2 = (X×P, V,X, Ĝ,H2) where

the transition map Ĝ is given by:

(x′, p′) ∈ Ĝ(x, p, v) ⇐⇒
x ∈ Xq, x

′ ∈ Xq′ , (q′, p′) ∈ ∆̂2(q, p, v)
(8)

with the finite transition map ∆̂2 : Q×P ×V ⇒ Q×P
satisfying for all q, q′ ∈ Q, p, p′ ∈ P , v ∈ V ,

(q′, p′) ∈ ∆̂2(q, p, v) ⇐⇒ Xq ×Xq′ ⊆ graph(Gvp,p′).
(9)

We now provide conditions under which the identity re-
lation on X × P is an alternating simulation relation
from S2 to Ŝ2.

Assumption 10 The transition map G satisfies the fol-
lowing conditions for some L > 0, δ > 0:

(1) for all p, p′ ∈ P , v ∈ V , x1, x2 ∈ dom(Gvp,p′),

h(Gvp,p′(x1), Gvp,p′(x2)) ≤ L‖x1 − x2‖∞;

(2) for all p, p′ ∈ P , v ∈ V , x ∈ dom(Gvp,p′),

ρ−
(
Gvp,p′(x)

)
≥ δ.

Assumption 10 concerns the maps Gvp,p′ . The first item
requires the mapsGvp,p′ to be Lipschitz on their domains,
which is a fairly mild assumption. The second item re-
quires that Gvp,p′(x) has a minimal inradius whenever it

is not empty. In particular, it means thatGvp,p′(x) cannot
be a singleton, and that the specification should enable
some non-determinism.

Assumption 11 The partition (Xq)q∈Q satifies:

(1) for all q ∈ Q, p ∈ P , v ∈ V ,

∃x ∈ Xq, G(x, p, v) 6= ∅ =⇒
∃p′ ∈ P, Xq ⊆ dom(Gvp,p′);

(2) for all q ∈ Q, ρ+ (Xq) < δ/(2 + L), where L and δ
are the same as in Assumption 10.

Remark 12 Let us point out that condition 1) in As-
sumption 11 can be replaced by the stronger (but easier
to check) condition that for all q ∈ Q, p, p′ ∈ P , v ∈ V ,

Xq ∩ dom(Gvp,p′) 6= ∅ =⇒ Xq ⊆ dom(Gvp,p′).

Assumption 11 concerns the partition (Xq)q∈Q. It should
be emphasized that it is always possible to choose a par-
tition such that this assumption is satisfied. From the
previous remark, condition 1) can be satisfied by having
the regions Xq either fully inside or outside dom(Gvp,p′).

Condition 2) can be satisfied by choosing the regions Xq

to be small enough. It is important to remark that if the
maps Gvp,p′ were deterministic then condition 2) of As-
sumption 10 would only hold for δ = 0. Then, it would
become impossible to find a finite partition (Xq)q∈Q such
that condition 2) of Assumption 11 is satisfied. We now
establish the following instrumental result:

Lemma 13 Under Assumptions 10 and 11, we have for
all x ∈ X, p ∈ P , enabG(x, p) = enabĜ(x, p).

PROOF. Consider an arbitrary (x, p, v) such that
G(x, p, v) 6= ∅. Let q be such that x ∈ Xq, then from
condition 1) of Assumption 11, there exists p′ ∈ P , such
that Xq ⊆ dom(Gvp,p′). From conditions 1) and 2) in As-
sumption 10, it follows that

ρ−
( ⋂
x∈Xq

Gvp,p′(x)

)
≥ δ − Lρ+(Xq).

By condition 2) of Assumption 11, we get for all q′ ∈ Q,

ρ−
( ⋂
x∈Xq

Gvp,p′(x)

)
> 2ρ+ (Xq′) ,
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which implies since (Xq)q∈Q is a partition that there
exists q′ ∈ Q such that Xq′ ⊆

⋂
x∈Xq

Gvp,p′(x). Then,

Xq × Xq′ ⊆ graph(Gvp,p′) and Ĝ(x, p, v) 6= ∅. Thus,

enabG(x, p) ⊆ enabĜ(x, p). The inclusion enabĜ(x, p) ⊆
enabG(x, p), is a direct consequence of (8) and (9). 2

Proposition 14 Under Assumptions 10 and 11, for
transition system S2 and symbolic system Ŝ2 satisfying
(8), (9), we have S2 �AS Ŝ2.

PROOF. Consider the identity relation on X ×P and
let us prove that it is an alternating simulation rela-
tion. Condition 1) of Definition 5 does obviously hold.
Condition 2) reads: for every (x, p) ∈ X × P and ev-
ery v1 ∈ enabG(x, p) there exists v2 ∈ enabĜ(x, p) such

that Ĝ(x, p, v2) ⊆ G(x, p, v1). Let us verify a stricter
statement when v2 = v1 = v. Consider an arbitrary
(x, p) ∈ X × P , v ∈ enabG(x, p), then from Lemma 13,

v ∈ enabĜ(x, p). Let (x′, p′) ∈ Ĝ(x, p, v), let q, q′ ∈ Q be
such that x ∈ Xq, x

′ ∈ Xq′ . Then (x, x′) ∈ graph(Gvp,p′).

Therefore, (x′, p′) ∈ G(x, p, v). 2

We now briefly describe a practical approach to compute
the abstract specification Ŝ2 when the original specifi-
cation S2 is described by a piecewise affine hybrid au-
tomaton. Let us assume that for all p, p′ ∈ P , v ∈ V ,
dom(Gvp,p′) = Dv

p,p′ , and that for all x ∈ dom(Gvp,p′)

Gvp,p′(x) = Avp,p′x + W v
p,p′ , where Avp,p′ is a matrix in

Rnx×nx ,Dv
p,p′ ,W

v
p,p′ are closed convex polytopes in Rnx .

For Assumption 10 to hold, it is sufficient that the sets
W v
p,p′ have non-empty interior for all p, p′ ∈ P , v ∈ V .

Then, L and δ satisfying Assumption 10 are given by

L = max
p,p′∈P,v∈V

‖Avp,p′‖, δ = min
p,p′∈P,v∈V

ρ−(W v
p,p′).

Let us assume that the partition (Xq)q∈Q is chosen so as
to satisfy Assumption 11. Let us remark that if X is a
polytope it is always possible to choose such a partition
where for all q ∈ Q, Xq is a polytope. Then according

to (9), (q′, p′) ∈ ∆̂2(q, p, v) if and only if

Xq ⊆ Dv
p,p′ and Xq′ −Avp,p′Xq ⊆W v

p,p′ .

These inclusions can be checked by verifying that for all
x and x′ belonging to the set of vertices of Xq and Xq′

respectively, x ∈ Dv
p,p′ and x′ −Avp,p′x ∈W v

p,p′ .

In this section, we have shown how to build a symbolic
system Ŝ1 and a symbolic specification Ŝ2 such that
S2 �AS Ŝ2 and Ŝ1 �AS S1. In both cases, the alter-
nating simulation relation is given by the identity re-
lation. Then, according to Proposition 4.23 in [21], if
R ⊆ X × P × X, R 6= ∅, is an alternating simulation

relation from Ŝ2 to Ŝ1, we get that R is also an alter-
nating simulation relation from S2 to S1, and provides
a solution to Problem 4 as per Theorem 7. The use of
a symbolic system and a symbolic specification is the
only source of conservatism of the proposed solution to
Problem 4. This conservatism can be reduced by choos-
ing finer partitions of X, at the expense of an increased
computational complexity.

We do not discuss the computation of the alternating
simulation relation from Ŝ2 to Ŝ1, which can be done
either by extending (to the alternated case) the algo-
rithms for discrete simulation games presented in [21], or
by using the approach presented in Section 5.1 to solve
Problem 16 of which Problem 4 is a special case.

Remark 15 Rigorously speaking, Ŝ1 and Ŝ2 are infi-
nite transition systems since they have infinite sets of
states. However, their transition relations are finitely
represented by the maps ∆̂1 : Q × Û ⇒ Q and ∆̂2 :
Q × P × V ⇒ Q × P . For this reason, we refer to Ŝ1

and Ŝ2 as symbolic system and specification, respectively.
Using Q and Q × P , instead of X and X × P , as sets
of states for Ŝ1 and Ŝ2, would make it impossible to get
S2 �AS Ŝ2 and Ŝ1 �AS S1 with X as output set (with-
out resorting to set valued output maps). Using X as the
output set instead of Q is important since it makes the
formulation of Problem 4 independent of the choice of
the partition. It is important to note that the controller
synthesis algorithms presented in the next section, only
operates on the finite objects Q, P , Û , V , ∆̂1 and ∆̂2.

5 Safety and reachability requirements

By solving Problem 4, we guarantee that the closed-loop
system Scl behaves in the same way as the specification
S2. In this section, we show how to take into account
additional requirements such as (generalized) safety and
reachability properties.

Safety requirements can often be encoded directly in S2

by blocking transitions starting from unsafe states: e.g.
in Example 3, there is no transition enabled if x1 + l > 0,
(i.e. the follower is at a distance less than l from the
leader). However, Problem 4 does not prevent reaching
such blocking states: actually, from Remark 6 and The-
orem 7, all blocking states of S2 are elements of the
controllable set Zc. Hence, to take into account safety
requirements, one needs to modify the formulation of
Problem 4 to prevent Scl from reaching blocking states
of S2. We actually formulate a more general problem,
which allows not only to enforce safety requirements but
also has Problem 4 as a special case. For that purpose, let
us consider a set of terminal states given by Zf ⊆ X×P .

Problem 16 (Safety requirements) Synthesize a
controller (θ, π) compatible with S1 and a controllable
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set Zc ⊆ X × P such that for every (x0, p0) ∈ Zc, for
every maximal trajectory (xk, pk, vk)Kk=0 of Scl, one of
the following condition holds:

(1) (xk, pk, vk)Kk=0 is a trajectory of S2, K ∈ N and
(xK , pK) ∈ Zf ;

(2) (xk, pk, vk)Kk=0 is a maximal trajectory of S2, and
eitherK = +∞, orK ∈ N and enabG(xK , pK) 6= ∅.

Some explanations on Problem 16 are in order. Let us
consider the following cases:

• If Zf = ∅, condition 1) is never satisfied and only
condition 2) is relevant. In that case, all states that are
reachable by trajectories of Scl are non-blocking states
of S2 (even though we can have vK /∈ enabG(xK , pK)).
Then, if the sequence of external inputs is enabled
in the specification (i.e. if vk ∈ enabG(xk, pk) for all
0 ≤ k ≤ K), then all maximal trajectories of Scl are
complete trajectories of S2. Hence, as explained above,
solving Problem 16 with Zf = ∅ makes it possible to
enforce the safety requirements encoded in S2.
• If Zf = {(x, p) ∈ X × P | enabG(x, p) = ∅} (i.e. Zf is

the set of blocking states of S2), then in condition 1)
the trajectory is also maximal for S2. Hence, all tra-
jectories that are maximal for Scl are also maximal for
S2, which is the requirement of Problem 4. Hence, the
solution provided in this section to solve Problem 16
can be readily used to solve Problem 4.
• In the general case, we have that all states outside
Zf that are reachable by trajectories of Scl are non-
blocking states of S2. Moreover, if the sequence of
external inputs is enabled in the specification, then
all maximal trajectories of Scl are trajectories of S2

and are either complete or end in a terminal state
Zf ⊆ X × P .

Problem 16 does not allow to enforce reachability prop-
erties. Indeed, from condition 2), complete trajectories
of S2 that never reach Zf are always accepted. Reacha-
bility requirement can be taken into account as follows:

Problem 17 (Reachability requirements)
Synthesize a controller (θ, π) compatible with S1

and a controllable set Zc ⊆ X × P such that for
every (x0, p0) ∈ Zc, for every maximal trajectory
(xk, pk, vk)Kk=0 of Scl, one of the following condition
holds:

(1) (xk, pk, vk)Kk=0 is a trajectory of S2, K ∈ N and
(xK , pK) ∈ Zf ;

(2) (xk, pk, vk)Kk=0 is a maximal trajectory of S2, and
K ∈ N and enabG(xK , pK) 6= ∅.

From condition 2) of Problem 17, all states outside Zf
that are reachable by trajectories of Scl are non-blocking
states of S2. Moreover, if the sequence of external inputs
is enabled in the specification, then from condition 1),

all maximal trajectories of Scl are trajectories of S2 and
end in a terminal state Zf ⊆ X × P .

It should be noted that any solution of Problem 17 is
also a solution of Problem 16. Intuitively, Problem 17
requires that Scl behaves as S2 until a final state in Zf
is reached. Problem 16 allows additionally for the possi-
bility of not reaching Zf . In that case, S2 must behave
as Scl forever. Essentially, the difference between Prob-
lem 17 and Problem 16 is the same as that between “un-
til” and “weak until” in Linear Temporal Logic [3]. Let
us remark that for Zf = ∅, Problem 17 does not admit
any solution while for Problem 16, this case corresponds
to pure safety requirements.

In the following, we provide solutions to Problems 16
and 17 based on symbolic abstractions. Let Ŝ1 and Ŝ2

be the symbolic system and specification defined in Sec-
tion 4. Given a controller (θ, π), we denote Ŝcl the closed-

loop abstract system with transition relation ∆̂cl, de-
fined as in (1). We first show the following result, which
shows that if (θ, π) and Zc solve Problem 16 or 17 for

Ŝ1 and Ŝ2, they also provide a solution for system and
specification S1 and S2.

Lemma 18 If a controller (θ, π) is compatible with Ŝ1

then it is compatible with S1. Any maximal trajectory of
Scl is also a maximal trajectory of Ŝcl. Under Assump-
tions 10 and 11, any (maximal) trajectory of Ŝ2 is a
(maximal) trajectory of S2.

PROOF. From (5), (6) and (7) it follows that for
all x ∈ X, enabF̂ (x) ⊆ enabF (x) and that for all

u ∈ enabF̂ (x), F (x, u) ⊆ F̂ (x, u). Therefore, (θ, π) be-

ing compatible with Ŝ1 implies that it is also compatible
with S1. Moreover, for all x ∈ X, p ∈ P , enab∆̂cl

(x, p) =

enab∆cl
(x, p) and consists of inputs v ∈ V such that

θ(x, p, v) 6= ∅. Then, we get that for all v ∈ enab∆cl
(x, p),

F (x, θ(x, p, v)) ⊆ F̂ (x, θ(x, p, v)), which implies that

∆cl(x, p, v) ⊆ ∆̂cl(x, p, v). Hence, any maximal trajec-

tory of Scl is also a maximal trajectory of Ŝcl. From
Lemma 13 and from the proof of Proposition 14, we get
that for all x ∈ X, p ∈ P , enabG(x, p) = enabĜ(x, p)

and that for all v ∈ enabĜ(x, p), Ĝ(x, p, v) ⊆ G(x, p, v).

Hence, any (maximal) trajectory of Ŝ2 is also a (maxi-
mal) trajectory of S2. 2

Before providing detailed solutions to Problems 16
and 17, we define the following operator:

Definition 19 For Ẑ ⊆ Q × P the controllable prede-
cessor of Ẑ is Pre Ẑ ⊆ Q×P where (q, p) ∈ Pre Ẑ if and
only if
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(1) enab∆̂2
(q, p) 6= ∅, and

(2) ∀v ∈ enab∆̂2
(q, p),∃u ∈ enab∆̂1

(q) :

∀q′ ∈ ∆̂1(q, u),∃p′ ∈ P : (q′, p′) ∈ ∆̂2(q, p, v) ∩ Ẑ.

Intuitively, Pre Ẑ consists of states from which the con-
troller can enforce the successor state to belong to Ẑ.
Let us remark that sinceQ×P is a finite set, the compu-
tation of Pre Ẑ does not present any difficulty. We also
define the set of symbolic terminal states:

Ẑf = {(q, p) ∈ Q× P | Xq × {p} ⊆ Zf}.
5.1 Safety requirements

We start by describing a solution approach to Prob-
lem 16. Let Ẑ∞ denote the limit of the sequence (Ẑk)k∈N
defined by:

Ẑ0 = Q× P, Ẑk+1 = Ẑf ∪ Pre Ẑk. (10)

Since for all k ∈ N, Ẑk is finite and Ẑk+1 ⊆ Ẑk, it
follows that the fixed point Ẑ∞ is reached in finite time.
Let Zc be defined as follows:

Zc =
{

(x, p) ∈ X × P
∣∣∣x ∈ Xq, (q, p) ∈ Ẑ∞

}
. (11)

Then we may define the controller (θ, π) as follows:

θ(x, p, v) =

{
u ∈ enabF̂ (x)

∣∣∣∣∣∣ ∀x
′ ∈ F̂ (x, u), ∃p′ ∈ P :

(x′, p′) ∈ Ĝ(x, p, v) ∩ Zc

}
,

(12)

π(x, p, x′, v) = {p′ ∈ P | (x′, p′) ∈ Ĝ(x, p, v) ∩ Zc}.
(13)

Theorem 20 Under Assumptions 10 and 11, let the set
Zc and the controller (θ, π) be defined by (11), (12), (13).
Then, (θ, π) and Zc solve Problem 16.

PROOF. Using the same arguments as in the begin-
ning of the proof of Theorem 7, we get that (θ, π) is

compatible with Ŝ1 and that any maximal trajectory
(xk, pk, vk)Kk=0 of Ŝcl with (x0, p0) ∈ Zc is a trajectory

of Ŝ2 and that (xk, pk) ∈ Zc for all 0 ≤ k ≤ K. If
K = +∞ or if K ∈ N and (xK , pK) ∈ Zf , the re-

quirements of Problem 16 are met for Ŝ1 and Ŝ2. Then,
let us assume that K ∈ N and (xK , pK) /∈ Zf . Since
(xK , pK) ∈ Zc \Zf , it follows by (11), (10) and (8) that
enabĜ(xK , pK) 6= ∅. Let us assume that (xk, pk, vk)Kk=0

is not maximal for Ŝ2, then vK ∈ enabĜ(xK , pK) and
from (11), (10), (8), (5), we get that there exists u ∈
enabF̂ (xK) such that for all x′ ∈ F̂ (xk, u), there ex-

its p′ ∈ P such that (x′, p′) ∈ Ĝ(x, p, v) ∩ Zc. Then,

from (12), u ∈ θ(xK , pK , vK), which is therefore non-

empty. Since (θ, π) is compatible with Ŝ1, we obtain that
vK ∈ enab∆̂cl

(xK , pK). It follows that (xk, pk, vk)Kk=0

is not maximal for Ŝcl, which leads to a contradiction.
Hence, it follows that (θ, π) and Zc solve Problem 16 for

Ŝ1 and Ŝ2. By Lemma 18, they also solve Problem 16 for
S1 and S2. 2

5.2 Reachability requirements

We now present a solution approach to Problem 17. Let
Ẑ∞ denote the limit of the sequence (Ẑk)k∈N defined by:

Ẑ0 = Ẑf , Ẑ
k+1 = Ẑf ∪ Pre Ẑk. (14)

Since Q × P is finite and for all k ∈ N, Ẑk ⊆ Ẑk+1 ⊆
Q × P , it follows that the fixed point Ẑ∞ is reached in
finite time. Let Zc be defined by (11), and for k ∈ N, let

Zk =
{

(x, p) ∈ X × P
∣∣∣x ∈ Xq, (q, p) ∈ Ẑk

}
.

Then, for (x, p) ∈ Zc we define

κ(x, p) = min
{
k ∈ N| (x, p) ∈ Zk

}
. (15)

Then, let (θ, π) be given, for (x, p) ∈ Z0, by θ(x, p, v) =
∅, π(x, p, x′, v) = ∅, and for (x, p) ∈ Zc \ Z0, by

θ(x, p, v) =

u ∈ enabF̂ (x)

∣∣∣∣∣∣∣∣
∀x′ ∈ F̂ (x, u), ∃p′ ∈ P :

(x′, p′) ∈ Ĝ(x, p, v)∩
Zκ(x,p)−1

 ,

(16)
π(x, p, x′, v) = {p′ ∈ P | (x′, p′) ∈ Ĝ(x, p, v) ∩ Zκ(x,p)−1}.

(17)

Theorem 21 Under Assumptions 10 and 11, let the set
Zc and the controller (θ, π) be defined by (11), (16), (17).
Then, (θ, π) and Zc solve Problem 17.

PROOF. Using the same arguments as in the begin-
ning of the proof of Theorem 7, we get that (θ, π) is

compatible with Ŝ1 and that any maximal trajectory
(xk, pk, vk)Kk=0 of Ŝcl with (x0, p0) ∈ Zc is a trajectory

of Ŝ2 and that κ(xk, pk) is strictly discreasing and non-
negative. Then, necessarily K ∈ N. If (xK , pK) ∈ Zf ,

the requirements of Problem 16 are met for Ŝ1 and
Ŝ2. Then, let us assume that (xK , pK) /∈ Zf . Then,
(xK , pK) /∈ Z0 and κ(xK , pK) > 0. Then, it follows
by (15), (14) and (8) that enabĜ(xK , pK) 6= ∅. Let

us assume that (xk, pk, vk)Kk=0 is not maximal for Ŝ2,
then vK ∈ enabĜ(xK , pK) and from (15), (14), (8),

8



(5), we get that there exists u ∈ enabF̂ (xK) such that

for all x′ ∈ F̂ (xk, u), there exits p′ ∈ P such that

(x′, p′) ∈ Ĝ(x, p, v) ∩ Zκ(xK ,pK)−1. Then, from (16),
u ∈ θ(xK , pK , vK), which is therefore non-empty. The
end of the proof is identical to that of Theorem 20. 2

We end this section by highlighting the duality between
Problems 16 and 17 whose respective solutions are ob-
tained by computing the greatest and least fixed points
of the same operator (see (10) and (14)). The implica-
tion on computational complexity is that Problems 16
and 17 can be solved in linear time of problem data by
adapting the method presented in [11].

6 Autonomous vehicle examples

In this section, we provide illustrations of our approach
by showing instances of Problems 16 and 17 in the con-
text of autonomous vehicle control. We first consider
adaptive cruise control and then a takeover maneuver.
Both problems have been solved using the MATLAB
toolbox Co4Pro 1 , which can perform automatic ab-
stractions of systems and specifications as well as sym-
bolic controller synthesis. We ran the algorithms on Intel
Core i7 2.8GHz CPU, 16 GB RAM.

6.1 Safety: adaptive cruise control

Let us consider the problem that was introduced in Ex-
ample 3. Let the system S1 of two vehicles be described
by discrete-time equations:

x1
k+1 = x1

k + (x2
k − x3

k)T0,

x2
k+1 = χ

(
x2
k + α(uk, x

2
k)T0, [x2

min, x
2
max]

)
,

x3
k+1 = χ

(
x3
k + wkT0, [x3

min, x
3
max]

)
.

where T0 > 0 is the sampling period, α(u, x) =
u − M−1(f0 + f1x + f2x

2) and χ(x, [x1, x2]) =
min{max{x, x1}, x2}. The vector of parameters f =
(f0, f1, f2) ∈ R3

+ describes the road friction and the ve-
hicle aerodynamics whose numerical values are taken
from [14]: f0 = 51 N, f1 = 1.2567 Ns/m, f2 =
0.4342 Ns2/m2. Here uk ∈ [umin, umax] is the torque
applied to the wheels of the follower and is the con-
trol input, wk ∈ [wmin, wmax] is the acceleration of the
leader and is an uncertain input. We recall that the state
space, already defined in Example 3 is X = (−∞, 0) ×
[x2

min, x
2
max] × [x3

min, x
3
max] We choose the following pa-

rameters: M = 1370 kg, x2
min = x3

min = 10 m/s, x2
max =

30 m/s, x3
max = 25 m/s, umin = wmin = −3 m/s2

umax = wmax = 3 m/s2, T0 = 0.5 s.

1 https://github.com/girardan/Co4Pro

The specification S2 is given as in Example 3. The safety
requirement that x1

k + l ≤ 0 for all k ∈ N is directly en-
coded in S2. To enforce the safety requirement, we then
solve Problem 16 with an empty set of terminal states
Zf = ∅, to avoid reaching blocking state of the specifica-
tion (in particular those where x1+l > 0). The numerical
values of the specification parameters are C = 0.4 m/s,
ε = 1 m/s and l = 10 m. The external input take val-
ues in the set of reference velocities V = {15, 20, 25}.
Let us remark that this specification S2 can be written
as a piecewise affine hybrid automaton. We then choose
an appropriate partition of the state space such that As-
sumptions 10 and 11 are satisfied.

A controller (θ, π) has been synthesized by the approach
presented in Section 5.1. The partition of X is ob-
tained using partitions on each subspace. The partition
of (−∞, 0) is given by (−∞,−100) and by a uniform
partition of [−100, 0) of step 2. We also use uniform par-
titions of [x2

min, x
2
max] and [x3

min, x
3
max] of step 0.5. The

resulting symbolic set Q has 61 200 states, the symbolic
set of inputs is Û = {−3,−2, . . . , 3}. The computation
time for this example is 3 119 seconds with 13 seconds
spent on abstracting the system, 2623 seconds spent on
abstracting the specification and 483 seconds spent on
controller synthesis.

Next, for the synthesized controller (θ, π), we simulate a
trajectory of the closed-loop system Scl. Note that the
controller is non-deterministic so we use the following
priorities: for θ, pick the first valid input in the ordered
list {0, 1,−1, 2,−2, 3,−3}; for π pick the first valid mode
on the ordered list {p1, p2}. Figure 1 depicts the time
evolution with respect to t = kT0 of the relative distance
x1, follower and leader velocities x2, x3, reference veloc-
ity v, control input u and mode p. One can check that
initially the follower tracks the desired velocity until the
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Fig. 1. Adaptive cruise control: relative distance x1, follower
and leader velocities x2, x3, reference velocity v, control input
u, mode p.
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distance between the two vehicles becomes insufficient
and the controller moves to mode p2, reducing the veloc-
ity of the follower to avoid collision, when the reference
velocity is decreased, the controller moves to mode p1

and so on. It should be noted that the safety requirement
x1
k + l ≤ 0 holds for all k. Let us remark that adaptive

cruise control has already been tackled by formal meth-
ods, most notably in [14], where the specification is pro-
vided by a linear temporal logic formula. In comparison,
our specification formalism allows to account for varia-
tion of the reference velocity using the input of the hy-
brid automaton, and to specify the speed at which this
target velocity is reached using the parameter C in the
dynamics of hybrid automaton.

6.2 Reachability: takeover maneuver

Consider now a similar setting with two vehicles on a
road with two lanes where the controllable vehicle is able
to perform a takeover maneuver. The state of the sys-
tem S1 of two vehicles is given by x = (x1, x2, x3, x4)T

where x1, x2, x3 have the same meaning as in the pre-
vious example and x4 ∈ {1, 2} corresponds to the lane
number of the controlled vehicle. The state space of S1

is X = (−∞,+∞)× [x2
min, x

2
max]× [x3

min, x
3
max]×{1, 2}.

The dynamics is given by the following discrete-time
equations:

x1
k+1 = x1

k + β(x2
k, x

3
k, x

4
k, u

2
k)T0,

x2
k+1 = χ

(
x2
k + α(uk, x

2
k)T0, [x2

min, x
2
max]

)
,

x3
k+1 = χ

(
x3
k + wkT0, [x3

min, x
3
max]

)
x4
k+1 = u2

k

where T0, α and χ are the same as before and

β(x2, x3, x4, u2) =

{
x2 − x3 if x4 = u2

1
T0

√
(x2T0)2 − r2 − x3 if x4 6= u2

The second case in β describes a lane-changing maneuver
where parameter r denote the distance between lanes. In
the following we consider r = 2 m and it is assumed for
simplicity that this maneuver takes time T0. The control
inputs are u1

k ∈ [umin, umax], which is the torque applied
to the wheels of the controlled vehicle and u2

k ∈ {1, 2}
which selects the lane number of the controlled vehicle
at the next time instant. As before wk ∈ [wmin, wmax]
is the acceleration of the uncontrolled vehicle and is an
uncertain input. The numerical values of the parameters
are the same as before.

The specification S2 for the takeover maneuver is de-
scribed by a discrete-time automaton with 3 modes
P = {p1, p2, p3} and no external input. In mode p1, the
controlled vehicle follows the uncontrolled vehicle. In

mode p2, the controlled vehicle is in lane 2 and is overtak-
ing the uncontrolled vehicle. In mode p3, the controlled
vehicle leads the uncontrollable vehicle. Formally, the
dynamics of S2 is given by (x′p′) ∈ G(x, p, v) if one of
the following condition holds:

(1) p = p1, p′ = p1, x1 + l ≤ 0, x4 = 1 and x1′ ≥ x1,
(2) p = p1, p′ = p2, x1 + l ≤ 0, x4 = 2 and x1′ ≥ x1,
(3) p = p2, p′ = p2, x4 = 2 and x1′ ≥ x1,
(4) p = p2, p′ = p3, x1 − l ≥ 0, x4 = 2 and x1′ ≥ x1.

The dynamics does not impose any explicit constraints
on x2′, x3′ and x4′ (other than x2′ ∈ [x2

min, x
2
max],

x3′ ∈ [x3
min, x

3
max] and x4′ ∈ {1, 2}). The parameters

l > 0 specifies the safety distance and its numerical value
is taken as l = 10 m. The condition in all transitions
that x1′ ≥ x1 enforces that the relative distance sepa-
rating the controlled and the uncontrolled vehicle grows
continuously. Note that the specification is a piecewise
affine hybrid automaton. We then choose an appropriate
partition of the state space such that Assumptions 10
and 11 are satisfied. The takeover maneuver ends when
the controllable vehicle is in the first lane leading the
uncontrollable vehicle with a minimal relative distance
of l. This corresponds to the terminal set

Zf = {(x, p) | p = p3, x1 − l ≥ 0, x4 = 2}.

The maneuver needs to end in finite time, so it is a reach-
ability requirement as in Problem 17.

A controller {θ, π} has been synthesized by the ap-
proach presented in Section 5.2. The partition of X is
obtained using partitions on each subspace. The parti-
tion of (−∞,+∞) is given by (−∞,−70), [30,+∞) and
by a uniform partition of [−70, 30) of step 2. We also
use uniform partitions of [x2

min, x
2
max] and [x3

min, x
3
max]

of step 0.5, and {1, 2} is kept as it is. The symbolic
set Q has 124 800 states, the symbolic set of inputs is
Û = {−3,−2, . . . , 3}. The computation time for this ex-
ample is 1 076 seconds with 61 seconds spent on ab-
stracting the system, 498 seconds spent on abstracting
the specification and 517 seconds spent on controller syn-
thesis.

Next, for the synthesized controller (θ, π), we simulate a
trajectory of the closed-loop system Scl. Note that the
controller is non-deterministic so we use the following
priorities: for θ, pick the first valid input in the ordered
list {0, 1,−1, 2,−2, 3,−3}; for π pick the first valid mode
on the ordered list {p1, p2, p3}. Figure 1 depicts the time
evolution with respect to t = kT0 of the relative distance
x1, velocities of the controlled and uncontrolled vehicles
x2, x3, control input u and mode p. One can check that
the controllable vehicle is in lane 2 when the overtaking
takes place and that x1 the relative distance between the
controlled and the uncontrolled vehicle grows continu-
ously.
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Fig. 2. Takeover maneuver: relative distance x1, velocities of
the controlled and uncontrolled vehicles x2, x3, control input
u, mode p.

7 Conclusion and future work

In this paper, we presented an approach to for-
mal controller synthesis from specifications given by
discrete-time hybrid automata, enriched with safety and
reachability requirements. Using illustrations from au-
tonomous vehicle control, we have shown the usefulness
of our specification formalism. In addition, we proposed
a fully automatic approach to controller synthesis using
symbolic abstractions of the system and of the specifica-
tion. These algorithms are available within the toolbox
Co4Pro. In our future work, we will use these two types
of problems as building blocks for control programs spec-
ifying even more complex behaviors (see e.g. [19]).
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