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ABSTRACT

The supervised learning paradigm is limited by the cost - and
sometimes the impracticality - of data collection and labeling
in multiple domains. Self-supervised learning, a paradigm
which exploits the structure of unlabeled data to create learn-
ing problems that can be solved with standard supervised
approaches, has shown great promise as a pretraining or fea-
ture learning approach in fields like computer vision and time
series processing. In this work, we present self-supervision
strategies that can be used to learn informative representations
from multivariate time series. One successful approach relies
on predicting whether time windows are sampled from the
same temporal context or not. As demonstrated on a clinically
relevant task (sleep scoring) and with two electroencephalog-
raphy datasets, our approach outperforms a purely supervised
approach in low data regimes, while capturing important phys-
iological information without any access to labels.

Index Terms— Self-supervised learning, representation
learning, electroencephalography, time series

1. INTRODUCTION

The impressive success of deep learning in various domains
can in large part be explained by the availability of large la-
beled datasets, such as COCO [1] for object recognition or
LibriSpeech [2]] for speech recognition. While such annotated
datasets enable the use of supervised learning methods for
which experimentation and validation are well understood,
they must first be labeled - a generally costly and time con-
suming process if possible at all. Indeed, labeling can be par-
ticularly challenging for certain types of data that are highly
complex or noisy, resulting in poor quality human annotations
at best. When data are available in large amounts but labels
are missing, the classical approach is to rely on unsupervised
statistical models such as clustering or latent factor models.
However, choosing the unsupervised method remains a chal-
lenge as the right criterion may not be obvious.

Self-supervised learning (SSL) is a recently developed area
of research that provides a compelling approach to making
use of large unlabeled datasets. With SSL, the structure of the
data is used to turn an unsupervised learning problem into a
supervised learning problem, called a “pretext task™ [3]]. The
representation learned on the self-supervised pretext task can
then be reused on a supervised downstream task, potentially
greatly reducing the number of labeled examples required.

Learning paradigms that exploit the structure of unlabeled
data have been used in various domains such as computer vi-
sion (CV) (see [3] for a recent review) and time series analysis.
In [4], models were trained to predict the relative position
of image patches and then fine-tuned on various downstream
supervised tasks. With this approach, an R-CNN pretrained
on the target dataset (Pascal VOC) with SSL achieved similar
performance as a network pretrained on ImageNet labels. SSL
has also been used to learn visual representations from videos.
In the frame contiguity prediction task of Misra et al. [5], a
siamese network was trained to predict whether tuples of three
video frames were in the right temporal order. This approach
led to improved performance over purely supervised models
when SSL models were used to initialize network weights.

SSL has also been applied to time series data. For in-
stance, autoregressive models based on an encoding principle
achieved promising performances on speech data. In [6], an
encoder first projects windowed data into a latent space; an
autoregressive model then summarizes the previous encodings
into a contextual latent representation. Finally, the model is
trained to predict the next N encodings based on the current
context latent representation. The authors showed improved
downstream performance on a speaker identification task as
compared to other SSL approaches.

A general and theoretically grounded approach to SSL
was recently formalized by Hyvérinen et al. [[7, 8] from the
perspective of nonlinear independent components analysis.
Under that generalized framework, SSL tasks are constructed
by using an auxiliary variable u (e.g., the time index, the index
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of a segment or the history of the data) to train a contrastive
classifier. This classifier learns to predict whether a sample x
is paired with its correct auxiliary variable u or a perturbed
(random) one u*. Most of the previously introduced SSL tasks
can be framed under this formulation.

Although most applications to date have focused on tasks
for which plentiful annotated data are already available (ob-
ject detection, language modelling, etc.), SSL could prove
particularly useful in fields where low labeled data regimes
are common such as physiological signal analysis. Indeed,
labels for biosignals such as electroencephalography (EEG)
are often difficult to obtain as they require extensive expert
knowledge. For instance, sleep staging, i.e., the task of identi-
fying the different sleep stages in recordings of sleep, requires
trained technicians to manually annotate hours of data [9]. For
epilepsy and other pathological conditions, recordings must
be annotated by neurologists and other medical professionals.
Learning useful representations automatically from unlabeled
biosignals could therefore drastically reduce the cost and time
required to process such signals.

In this paper, we propose self-supervised strategies to learn
end-to-end features from unlabeled time series such as EEG.
We introduce two temporal contrastive learning tasks that we
refer to as “relative positioning” and “temporal shuffling”. Ex-
perimentally, we show that these contrastive learning tasks
based on predicting whether time windows are close in time
can be used to learn EEG features that capture multiple compo-
nents of the structure underlying the data. We demonstrate that
these features, when reused on a downstream sleep staging
task, outperform traditional unsupervised and purely super-
vised approaches, specifically in low-data regimes. Moreover,
we show that models trained with these approaches learn phys-
iologically meaningful representations.

The rest of the paper is structured as follows. Section 2]
describes the SSL tasks and learning problems considered.
Section 3] describes the data, the neural architectures and re-
sults on three experiments. Lastly, in Section@ we discuss the
results and conclude.

2. SELF-SUPERVISED LEARNING WITH
TEMPORAL CONTRASTIVE TASKS

Notation We denote by [¢] the set {1,...,q} for any in-
teger ¢ € N. We denote by i € [N] the i*" sample in the
training set of cardinality /V. The index ¢ refers to time indices
in the input multivariate time series S € RM*¢, where M
is the number of times samples and C' is the dimension of
samples (e.g., channels). We assume for simplicity that each
S has the same size. We denote by y € {—1, 1} a binary label
used in the learning task.

2.1. Deep time contrastive learning with relative position-
ing and temporal shuffling as pretext tasks

To produce labeled samples from the multivariate time series
S, we propose to sample pairs of time windows (¢, x ) where
each window x4, xy is in RT*C and T is the duration of each
window. The first window x; is referred to as the “anchor
window”. Our assumption is that an appropriate representation
of the data should evolve slowly over time suggesting that time
windows close in time should share the same label. Given
Tpos € N, which controls the duration of the positive context,
and 7,., € N, which corresponds to the negative context
around each window z;, we sample [V labeled pairs:

ZN = {((xtﬂxt’l)ayz)h € [INH7(tmt;) €T x Tayi € y}a

where Y = {-1,1}, T = {(t,t') e [M =T +1]?/|t-t'| <
Tpos OF [t — | > T,c4}. Here y; € Y is specified by the
positive or negative contexts parameters:

B [t — 1] < Thos
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We ignore window pairs where z+ falls outside of the positive
and negative contexts of the anchor window z;. In other words,
the label indicates whether two time windows are closer to-
gether than 7,4 or farther apart than 7,,.4 in time. We call this
pretext task “relative positioning” (RP).

We also introduce a variation of the RP task that we call
“temporal shuffling” (TS). In the TS task, we sample a third
window x,~ from the positive context of z; and use it to pro-
vide an additional point of reference to compare xy with. From
this perspective, the label y; now indicates whether the three
windows are temporally ordered (¢t < t' < t"") or whether the
windows have been shuffled (¢ < t ort’ > t), similar to [3]

In order to learn end-to-end how to discriminate tuples
of time windows based on their relative position or order,
we introduce a feature extractor h : RT X¢ — RP with
parameters © which maps a window z to its representation
on the feature space. A contrastive module is then used to
aggregate the feature representations of each window. For
the RP task, grp : RP x RP — RP combines representa-
tions from pairs of windows, for example by computing an
elementwise absolute difference, denoted by the abs opera-
tor: grp(h(z), h(z')) = abs(h(z) — h(z')) € RP. For TS,
grs : RP xRP xRP — R2P can be implemented by concate-
nating the absolute differences grg(h(z), h(z'), h(z")) =
(abs(h(z) — h(z')),abs(h(z’) — h(z"))) € R?D.

Finally, a linear context discriminative model with coef-
ficients w € RP, or € R?P, and bias term wy € R is re-
sponsible for predicting the associated target y. Using the
binary logistic loss on the predictions of g (either the RP or



TS variant), we can write a joint loss function £(0, w, wy) as

L(©,w,wy) =
> log(1 + exp(—ylw " g(h(zs), h(zv)) + wo])), (2)

(t,2,y)EZN

which we assume fully differentiable with respect to the pa-
rameters (©,w,wy). Given the convention used for y, the
predicted target is the sign of w " g(h(z;), h(xs)) + wo.
Both the RP and TS models can be seen as siamese neural
networks with two or three subnetworks, respectively.

3. APPLICATION TO EEG SLEEP DATA

3.1. Data and preprocessing steps

We conduct our experiments on two openly available datasets
of EEG sleep data (see Table[I). The Physionet Sleep EDF
expanded dataset [[10,[11] contains 153 sleep recordings from
83 healthy subjects (age 25 to 101). EEG channels Fpz-Cz and
Pz-Oz were recorded at 100 Hz. Windows of 30 s were labeled
by trained sleep technicians following the R&K definition of
sleep stages, however we combined sleep stages 3 and 4 to
follow the AASM manual [12]. This yields five labels: W
(wake), N1, N2 and N3 for different levels of sleep (N3 are
the deep sleep periods), and R (rapid eye movements, REM).
The second dataset is the MASS dataset session 3 [[13]]. It
contains a single whole-night sleep recording for 62 healthy
subjects from 20 to 69 years old. A total of 20 EEG channels
sampled at 256 Hz were recorded following the standard 10-20
system and using a linked-ear reference. The 30-s windows
were labeled following the five stages of the AASM manual.

Table 1: Description of the two datasets used in this study,
Sleep EDF and MASS, as well as the available number of
samples per class in each dataset.

Sleep EDF [10] MASS (SS3) [13]]

W 59,982 6,131

N1 21,522 4,709

N2 69,132 28,920

N3 13,039 7,362

R 25,835 10,323

# subjects 83 62

# recordings 153 62
Sampling frequency 100 Hz 256 Hz

# EEG channels 2 bipolar 20
Reference - Linked ears

For both datasets, the raw EEG channels were filtered using
a 30 Hz 4th-order FIR lowpass filter. MASS recordings were
downsampled to 128 Hz, and channels Fz, Cz and Oz were
extracted to reduce input dimensionality. Non-overlapping

windows of 30 s were extracted, yielding windows of size
T = 2000 and C' = 2 on Sleep EDF, and T' = 3840 with
C' = 3 on MASS. The windows were normalized so that
channels had mean O and standard deviation 1.

A total of 2000 anchor windows were sampled uniformly
within each recording. For each anchor window, three posi-
tive and three negative tuples were sampled. On Sleep EDF,
subjects 40 to 82 were used for training, subjects 0 to 19 for
validation, and subjects 20 to 39 for testin On MASS, sub-
jects 1 to 41 were used for training, 42 to 52 for validation, and
52 to 62 for testingE] This yielded a total of 512,622, 267,630
and 342,300 pairs in the training, validation and test splits for
Sleep EDF, and 237,882, 52,152 and 73,650 pairs for MASS.

3.2. Model architecture

For the feature extractor h, we adapt a previously published
architecture shown to perform well on sleep staging [14]].
For an input size (C,T, 1) where C' is the number of EEG
channels and 7" is the number of time points in a window, the
CNN is defined as: conv(C x 1,C) — permute(2,1,0) —
conv(l x k,8) — ReLU — maxpool(1 x m) — conv(1l x
k,8) — ReLU — maxpool(l x m) — flatten —
dropout(50%) — linear(C x (T//k//k) x 8,D). We
set the filter size k and maxpooling size m to 50 and 13 for
Sleep EDF, and to 64 and 16 for MASS. In both cases the
embedding dimension is D = 100. This results in 55,545
trainable parameters for Sleep EDF and 67,173 for MASS.

The Adam optimizer [15]] with 81=0.9, 8>=0.999 and learn-
ing rate 0.001 is used, while the batch size is 256. Training
runs up to 300 epochs, or until the validation loss does not
decrease anymore for a period of at least 30 epochs. Dropout
is applied to fully-connected layers at a rate of 50%.

3.3. Compared models

We compare the performance of our model trained on the SSL
tasks to three neural network baselines: 1) random initializa-
tion (rand init), 2) convolutional autoencoder (AE) [16] and
3) purely supervised learning. The AE model uses h as the
encoder and a four-layer convolutional decoder, along with
mean squared error as the reconstruction loss. In the case of
the purely supervised model, an additional softmax layer is
added to the feature extractor h to classify labeled epochs into
one of five sleep stages. We use pytorch [17] and scikit-learn
[[18] to build and train all models.

As an additional point of comparison, we also extract
human-engineered EEG features [[19]]: mean, variance, skew-
ness, kurtosis, standard deviation, frequency log-power bands
between (0.5, 4, 8,13, 30,49) Hz as well as all their possible
ratios, peak-to-peak amplitude, Hurst exponent, approximate

'Missing subjects and sessions were: subject 13 session 2, subject 36
session 1, subject 52 session 1, as well as subjects 39, 68, 69, 78 and 79.
2Subjects 43 and 49 were not available.



entropy and Hjorth complexity. This results in 34 features per
EEG channel, which are concatenated into a single vector.
To account for class imbalance, we use balanced accuracy
(bal acc), defined as the average per-class recall, to evaluate
model performance on the downstream task. Moreover, during
training, the loss is weighted to account for class imbalance.

3.4. Experiments

We present three experiments designed to evaluate the SSL
tasks in the context of EEG classification, and demonstrate
their usefulness for learning from unlabeled data in clinically
relevant scenarios. In the first experiment, in order to validate
to the SSL tasks, we analyze the performance of the CNN for
different SSL hyperparameter values as well as their impact on
the sleep staging downstream task. In the second experiment,
we probe the ability of the SSL tasks to improve prediction
performance with limited annotated data. Finally, in the third
experiment, we explore the features learned through SSL and
study their physiological relevance.

3.4.1. Experiment 1: SSL models learn representations of
EEG signals and facilitate sleep staging

We first evaluate the ability of the CNN architecture to learn
on the SSL tasks (see Table[2). We train the feature extractor h
on the entire training set using the RP and TS tasks with three
sets of hyperparameters 7,5 and 7,.4. Once h is trained, we
project the labeled samples into the networks’ respective fea-
ture space and then train multinomial linear logistic regression
models on each set of features to predict sleep stages.

On MASS, 7pos = 2, Tneg = 2 (in minutes) and 7,5 =
4, Theg = 15 both led to similar performances on the SSL
and downstream tasks. Making the task harder by using a
large positive context (7,,s = 120) however led to lower
performance on both SSL and sleep staging tasks. The same
conclusion was reached on Sleep EDF (results not shown). We
decided to use 7,05 = 4 and 7,4, = 15 in our experiments, as
this also increases the number of windows that can be sampled
from the positive context.

While these results are a few points below those of a
linear classifier trained on common handcrafted EEG fea-
tures (79.43%), they are slightly better than full supervision
(72.51%), showing our approach achieves comparable perfor-
mance to standard approaches but without labels or expert
knowledge. SSL performance was similar to full supervision
or common EEG features on Sleep EDF as well.

3.4.2. Experiment 2: SSL enables sleep staging with limited
annotated data

Next, in order to assess whether models trained with SSL can
learn informative features, we compare their performance to
the performance of various baselines, and explore the effect of
varying the quantity of labeled data (see Fig.[I).

Table 2: Test balanced accuracy obtained on the SSL tasks
(bal accssz,) and on the sleep staging task (bal accssqging) for
different sets of hyperparameters 7,5 and 7,4 (in minutes).
Results obtained on MASS.

Tpos Tneg balaccgsy  bal acCsiaging
RP 2 2 7949 75.73
4 15 78.60 76.66
120 120 56.30 65.71
TS 2 2 8142 75.90
4 15 82.12 75.37
120 120 66.59 66.66
EEG features - - - 79.43
Fully supervised - - - 72.51

The feature extractors h are trained using the different ap-
proaches (AE, RP and TS on unlabeled data; full supervision
on labeled data) and then used to obtain features. We also ex-
tract features using models with randomly initialized weights,
i.e., that have not been trained. The sleep staging performance
is finally evaluated using logistic regression models.

On MASS (Fig[T}A), the SSL features outperformed the
purely supervised model for all data regimes, with more than
25 points difference when a single example per class was avail-
able. Across most data regimes, RP was found to outperform
TS by a fraction of a percent. Finally, both AE and the ran-
domly initialized model led to much lower performance, albeit
over chance level (~ 20%). Similar results were obtained on
Sleep EDF (Fig[I}B), although the purely supervised model
outperformed SSL features above 500 examples per class. TS
also led to slightly higher performance than RP.

The model pretrained with an autoencoder obtained very
low performance because the reconstruction task, which uses
a mean squared error loss, encourages the model to focus on
the input signal’s low frequencies. Indeed, these frequencies
have higher power than high frequencies in biological signals
like EEG. While the autoencoder misses spectral information
important for the sleep staging task, the SSL models show
relatively high performance.

3.4.3. Experiment 3: SSL models learn physiologically mean-
ingful features

To further explore the features learned with SSL, we project
the 100-dimension embeddings obtained on the labeled Sleep
EDF dataset to two dimensions using UMAP [20]. We use
Sleep EDF as it contains subject metadata such as age.

In Fig. 2} A, we notice the emergence of a distinct structure
that closely follows the different sleep stages. Indeed, as
seen by color-coding samples using their labels, clear groups
emerge that not only correspond to the labeled sleep stages,
but that are also sequentially arranged: starting from the right
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Fig. 1: Impact of number of labeled examples per task on
sleep staging performance for feature extractors trained with
an autoencoder (AE), the relative positioning (RP) and the
temporal shuffling (TS) tasks, a fully supervised model, and a
randomly initialized model, (A) on MASS and (B) on Sleep
EDF. “All” means all available training examples were used.
While higher numbers of labeled examples lead to better per-
formance, SSL models achieve much higher performance as
supervised models when few examples are available.

of the figure and moving to the left, we can draw a trajectory
that passes through W, N1, N2 and N3 sequentially. Stage R,
finally, overlaps with W and N1.

Moreover, in Fig. |Z|-B, one can observe that the embedding
encodes age-related information. Samples from younger sub-
jects occupy the left outer part of the cloud of points, while
samples from older subjects are found in the inner part of
the U-shaped structure. This phenomenon is visible in stages
N1, N2 and N3 but not in W and R, where no apparent age-
dependent structure is visible. This might be explained by the
prevalence of sleep spindles, major features used to identify
N2 and N3, which are known to change with age [21]].

4. DISCUSSION

We introduced two self-supervised learning tasks, relative po-
sitioning and temporal shuffling, which we used to learn rep-
resentations from electroencephalography (EEG) multivariate
time series. Our approach achieves similar performance as su-

stages

® N
N2
® N3
R
A)
Age groups
® 2030
30-40
50-60
60-70
70-80
® 80-90
® 90-100
® 100-110
B)

Fig. 2: UMAP visualization of temporal shuffling (TS) fea-
tures on the whole Sleep EDF dataset. Each point corresponds
to the features extracted from a 30-s window of EEG. (A) Sam-
ples are color-coded by sleep stage. (B) Samples for stages N1,
N2 and N3 are color-coded by age group while other stages
are in grey. As seen from their gradient-like structure, the
features encode physiologically relevant information although
no labels were available during training.

pervised approaches when tested on a clinically relevant sleep
staging task, and largely outperforms a purely supervised ap-
proach in lower data regimes. The representation learned with
these tasks also encodes physiologically interesting structure
such as sleep stages and age, demonstrating their potential to
uncover meaningful latent structure in unlabeled data.

While both the SSL tasks proposed were shown to be use-
ful for unsupervised training of feature extractors and achieved
very similar performance, RP required fewer computations
as its implementation uses only two siamese subnetworks, in-
stead of three. It might therefore be a better choice thanks to its
relative simplicity. The quality of the representation obtained
with the RP task as well as its training efficiency could be
further improved by 1) modifying the contrastive module g
to compute other aggregates of the features (e.g., sum or dot



product) and 2) by using mining strategies, by which tuples
are not sampled uniformly but rather based on a predefined
criterion. Indeed, the number of training examples (i.e., tuples
of two or three windows) available to the RP and TS tasks can
be made very high as the number of possible tuples increases
exponentially with the number of available windows, which
also increases training time. Mining most useful examples
could therefore speed up model training.

By reducing the number of labeled data required to reach
high performance, the proposed SSL tasks are promising alter-
natives to an expensive and time-consuming labeling process,
as well as expert handcrafting of task-specific features. Future
work will focus on evaluating the usefulness of the SSL task for
other types of neural time series recordings, and on assessing
the impact of architecture variations and mining strategies.
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