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DUALITY FOR DIFFERENTIAL OPERATORS OF
LIE-RINEHART ALGEBRAS

THIERRY LAMBRE AND PATRICK LE MEUR

Abstract. Let (S,L) be a Lie-Rinehart algebra over a commutative ring R.
This article proves that, if S is flat as an R-module and has Van den Bergh
duality in dimension n, and if L is finitely generated and projective with con-
stant rank d as an S-module, then the enveloping algebra of (S,L) has Van den
Bergh duality in dimension n + d. When, moreover, S is Calabi-Yau and the
d-th exterior power of L is free over S, the article proves that the enveloping
algebra is skew Calabi-Yau, and it describes a Nakayama automorphism of it.
These considerations are specialised to Poisson enveloping algebras. They are
also illustrated on Poisson structures over two and three dimensional polyno-
mial algebras and on Nambu-Poisson structures on certain two dimensional
hypersurfaces.
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Introduction

Rinehart introduced in [Rin63] the concept of Lie-Rinehart algebra (S,L) over
a commutative ring R and defined its enveloping algebra U . This generalises both
constructions of universal enveloping algebras of R-Lie algebras and algebras of
differential operators of commutative R-algebras. In [Hue99], Huebschmann in-
vestigated Poincaré duality on the (co)homology groups of (S,L). This duality is
defined by the existence of a right U -module C, called the dualising module of
(S,L) such that, for all left U -modules M and k ∈ N,

(0.1) ExtkU (S,M) ∼= TorUd−k(C,M) .

Chemla proved in [Che99] that for Lie-Rinehart algebras arising from affine complex
Lie algebroids, the algebra U has a rigid dualising complex, which she determined,
and has Van den Bergh duality [vdB98]. Having Van den Bergh duality in dimension
n for an R-algebra A means that
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• A is homologically smooth, that is A lies in the perfect derived category
per(Ae) of the algebra Ae := A⊗R Aop; and

• Ext•Ae(A,A
e) is zero for • 6= 0 and invertible as an A-bimodule if • = n.

When this occurs, there is a functorial isomorphism, for all A-bimodules M and
integers i (see [vdB98]),

ExtiAe(A,M) ∼= TorA
e

n−i(A,ExtnAe(A,A
e)⊗AM) ;

and ExtnAe(A,A
e) is called the inverse dualising bimodule of A. Two classes of

algebras with Van den Bergh duality are of particular interest, namely
• Calabi-Yau algebras, for which ExtnAe(A,A

e) is required to be isomorphic
to A as an A-bimodule (see [Gin06]); and

• skew Calabi-Yau algebras, for which there exists an automorphism

ν ∈ AutR−alg(A)

such that ExtnAe(A,A
e) ' Aν as A-bimodules (see [RRZ14]); here Aν de-

notes the A-bimodule obtained from A by twisting the action of A on the
right by ν.

The relevance of these algebras comes from their role in the noncommutative geom-
etry initiated in [AS87] and in the investigation of Calabi-Yau categories, and also
from the specificities of their Hochschild cohomology when R is a field. For instance,
it is proved in [Gin06, Lam10] that the Gerstenhaber bracket of the Hochschild co-
homology of Calabi-Yau algebras have a BV generator.

This article investigates when the enveloping algebra U of a general Lie-Rinehart
algebra (S,L) over a commutative ring R has Van den Bergh duality.

It considers Lie-Rinehart algebras (S,L) such that S has Van den Bergh duality
and is flat as an R-module, and L is finitely generated and projective with constant
rank d as an S-module. Under these conditions, it is proved that U has Van den
Bergh duality. Note that, when R is a perfect field, the former condition amounts to
saying that S is a smooth affine R-algebra [Krä07]. Note also that, under the latter
condition, it is proved in [Hue99, Theorem 2.10] that (S,L) has duality in the sense
of (0.1). Under the additional assumption that S is Calabi-Yau and ΛdL is free as
an S-module, it appears as a corollary that U is skew Calabi-Yau, and a Nakayama
automorphism may be described explicitly. These considerations are specialised to
the situation where the Lie-Rinehart algebra (S,L) arises from a Poisson structure
on S. Also they are illustrated by detailed examples in the following cases:

• For Poisson brackets on polynomial algebras in two or three variables;
• For Nambu-Poisson structures on two dimensional hypersurfaces of the

shape 1 + T (x, y, z) = 0, where T is a weight homogeneous polynomial.
Throughout the article, R denotes a commutative ring, (S,L) denotes a Lie-

Rinehart algebra over R and U denotes its enveloping algebra. Given an R-Lie
algebra g, its universal enveloping algebra is denoted by UR(g). For an R-algebra
A, the category of left A-modules is denoted by Mod(A) and Mod(Aop) is identified
with the category of right A-modules. For simplicity, the piece of notation ⊗ is used
for ⊗R. All complexes have differential of degree +1.

1. Main results

A Lie-Rinehart algebra over a commutative ring R is a pair (S,L) where S is
a commutative R-algebra and L is a Lie R-algebra which is also a left S-module,
endowed with a homomorphism of R-Lie algebras

(1.1) L → DerR(S)
α 7→ ∂α := α(−)
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such that, for all α, β ∈ L and s ∈ S,

[α, sβ] = s[α, β] + α(s)β .

Following [Hue99], the enveloping algebra U of (S,L) is identified with the algebra

(S o L)/I ,

where SoL is the smash-product algebra of S by the action of L on S by derivations
and I is the two-sided ideal of S o L generated by

{s⊗ α− 1⊗ sα | s ∈ S, α ∈ L}

(see Lemma 3.0.1); it is proved in [Hue99] that this set generates I as a right ideal.
As mentioned in the introduction, when L is a finitely generated S-module with

constant rank d, the Lie-Rinehart algebra (S,L) has duality in the sense of (0.1)
with C = ΛdSL

∨. Here −∨ is the duality HomS(−, S) and ΛdSL
∨ is considered as a

right U -module using the Lie derivative λα, for α ∈ L (see [Hue99, Section 2]),

λα : Λ•SL
∨ → Λ•SL

∨ ;

this is the derivation of Λ•SL
∨ such that, for all s ∈ S, ϕ ∈ L∨ and β ∈ L,

λα(s) = α(s) and λα(ϕ)(β) = α(ϕ(β))− ϕ([α, β]) .

The right U -module structure of ΛdSL
∨ is such that, for all ϕ ∈ ΛdSL

∨ and α ∈ L,

(1.2) ϕ · α = −λα(ϕ) .

The first main result of the article gives sufficient conditions for U to have Van
den Bergh duality. It also describes the inverse dualising bimodule. Here are some
explanations on this description. On one hand, R-linear derivations ∂ ∈ DerR(S)
act on ExtnSe(S, S

e), n ∈ N, by Lie derivatives (see Section 4),

L∂ : ExtnSe(S, S
e)→ ExtnSe(S, S

e) .

Combining with the action of L on S yields an action α ⊗ e 7→ α · e of L on
ExtnSe(S, S

e) such that, for all α ∈ L and e ∈ ExtnSe(S, S
e),

α · e = L∂α(e) ,

Although this is not a U -module structure on ExtnSe(S, S
e), it defines a left U -

module structure on ΛdSL
∨ ⊗S ExtnSe(S, S

e), d ∈ N, such that, for all α ∈ L,
ϕ ∈ ΛdSL

∨ and e ∈ ExtnSe(S, S
e),

α · (ϕ⊗ e) = −ϕ · α⊗ e+ ϕ⊗ α · e .

On the other hand, consider the functor

F : Mod(U)→ Mod(Ue)

(see Section 3.3) such that, if N ∈ Mod(U), then F (N) equals U ⊗S N in Mod(U)
and has a right U -module structure defined by the following formula, for all α ∈ L,
u ∈ U and n ∈ N ,

(u⊗ n) · α = uα⊗ n− u⊗ α · n .
This functor takes left U -modules which are invertible as S-modules to invertible
U -bimodules (see Section 3.6). The main result of this article is the following.

Theorem 1. Let R be a commutative ring. Let (S,L) be a Lie-Rinehart algebra
over R. Denote by U the enveloping algebra of (S,L). Assume that

• S is flat as an R-module,
• S has Van den Bergh duality in dimension n,
• L is finitely generated and projective with constant rank d as an S-module.
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Then, U has Van den Bergh duality in dimension n+d and there is an isomorphism
of U -bimodules

Extn+d
Ue (U,Ue) ' F (ΛdSL

∨ ⊗S ExtnSe(S, S
e)) .

Note that when R is Noetherian and S is finitely generated as an R-algebra and
projective as an R-module, then there is an isomorphism of S-(bi)modules

ExtnSe(S, S
e) ' ΛnSDerR(S) ;

this isomorphism is compatible with the actions by Lie derivatives (see Section 4.5).
The above theorem was proved in [Che99, Theorem 4.4.1] when R = C and S is
finitely generated as a C-algebra.

The preceding theorem specialises to the situation where the involved invertible
S-modules are free. On one hand, when (ΛdSL)∨ is free as an S-module with free
generator ϕL, there is an associated trace mapping

λL : L→ S

such that, for all α ∈ L,
ϕL · α = λL(α) · ϕL ,

where the action on the left-hand side is given by (1.2) and that on the right-hand
side is just given by the S-module structure. On the other hand, when S is Calabi-
Yau in dimension n, each generator of the free of rank one S-module ExtnSe(S, S

e)
determines a volume form ωS ∈ ΛnSΩS/R, and the divergence

div : DerR(S)→ S

associated with ωS is defined by the following equality, for all ∂ ∈ DerR(S)

L∂(ωS) = div(∂)ωS .

(see Section 4.5 for details). The second main result of the article then reads as
follows.

Theorem 2. Let R be a commutative ring. Let (S,L) be a Lie-Rinehart algebra
over R. Denote by U the enveloping algebra of (S,L). Assume that

• S is flat as an R-module,
• S is Calabi-Yau in dimension n,
• L is finitely generated and projective with constant rank d and ΛdSL is free
as S-modules.

Then, U is skew Calabi-Yau with a Nakayama automorphism ν ∈ AutR(U) such
that, for all s ∈ S and α ∈ L,{

ν(s) = s
ν(α) = α+ λL(α) + div(∂α),

where λL is any trace mapping on ΛdSL
∨ and div is any divergence.

Among all Lie-Rinehart algebras, those arising from Poisson structures on S play
a special role because of the connection to Poisson (co)homology. Recall that any
R-bilinear Poisson bracket {−,−} on S defines a Lie-Rinehart algebra structure on
(S,L) = (S,ΩS/R) such that, for all s, t ∈ S,

• ∂ds = {s,−};
• [ds, dt] = d{s, t}.

In this case, the formulations of Theorems 1 and 2 simplify because, when ΩS/R is
projective with constant rank n as an S-module, the right U -module structure of
ΛnSΩ∨S/R (see (1.2)) is given by classical Lie derivatives, that is, for all s ∈ S,

(1.3) λds(ϕ) = L{s,−}(ϕ) .

More precisely, these theorems specialise as follows.
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Corollary 1. Let R be a Noetherian ring. Let (S, {−,−}) be a finitely generated
Poisson algebra over R. Denote by U the enveloping algebra of the associated Lie
Rinehart algebra (S,ΩS/R). Assume that

• S is projective in Mod(R);
• S ∈ per(Se);
• ΩS/R, which is then projective in Mod(S), has constant rank n.

Then, U has Van den Bergh duality in dimension 2n and there is an isomorphism
of U -bimodules

Ext2n
Ue(U,U

e) ' U ⊗S ΛnSDerR(S)⊗S ΛnSDerR(S) ,

where the right-hand side term is a left U -module in a natural way and a right
U -module such that, for all u ∈ U , ϕ,ϕ′ ∈ ΛnSDerR(S) and s ∈ S,

(u⊗ ϕ⊗ ϕ′) · ds = u ds⊗ ϕ⊗ ϕ′ − u⊗ (L{s,−}(ϕ)⊗ ϕ′ + ϕ⊗ L{s,−}(ϕ′)) .
In particular, if S has a volume form, then U is skew Calabi-Yau with a Nakayama
automorphism ν : U → U such that, for all s ∈ S,{

ν(s) = s
ν(ds) = ds+ 2 div({s,−}) ,

where div is the divergence of the chosen volume form.

For the case where R = C and S is finitely generated as a C-algebra, the above
corollary is announced in [LWZ17, Theorem 0.7, Corollary 0.8] using the main
results of [Che99].

This article is structured as follows. Section 2 presents useful information on
the case where S has Van den Bergh duality. Section 3 is devoted to technical
lemmas on U -(bi)modules. In particular, it presents the above mentioned functor
F and its right adjoint G, which play an essential role in the proof of the main
results. Section 4 introduces the action of L on Ext•Se(S, S

e) by Lie derivatives.
This structure is used in Section 5 in order to describe Ext•Ue(U,U

e) and prove
Theorem 1, Theorem 2 and Corollary 1. Finally, Section 6 applies this corollary to
a class of examples of Nambu-Poisson surfaces.

2. Poincaré duality for S

As proved in [vdB98] when R is field, if S has Van den Bergh duality in dimension
n, then there is a functorial isomorphism, for all S-bimodules N ,

Ext•Se(S,N) ' TorS
e

n−•(S,ExtnSe(S, S
e)⊗S N) .

It is direct to check that this is still the case without assuming that R is a field. In
view of the proof of the main results of the article, 2.1 relates the above mentioned
isomorphism to the fundamental class of S, following [Lam10], and 2.2 relates Van
den Bergh duality to the regularity of commutative algebras, following [Krä07].

2.1. Fundamental class and contraction. Consider a projective resolution P •
in Mod(Se),

· · · → P−2 → P−1 → P 0 ε−→ S ,

and let p0 ∈ P 0 be such that ε(p0) = 1S . For all M,N ∈ Mod(Se) and n ∈ N,
define the contraction

TorS
e

n (S,M)× ExtnSe(S,N) → TorS
e

0 (S,M ⊗S N)
(ω, e) 7→ ιe(ω)

as the mapping induced by the following one

M ⊗Se P−n → HomR(HomSe(P
−n, N), (M ⊗S N)⊗Se P 0)

x⊗ p 7→ (ϕ 7→ (x⊗ ϕ(p))⊗ p0) .
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This makes sense because P • is concentrated in nonpositive degrees. The construc-
tion depends neither on the choice of p0 nor on that of P •.

Following the proof of [Lam10, Proposition 3.3], when S ∈ per(Se) and n is taken
equal to pdSe(S), the contraction induces an isomorphism for all N ∈ Mod(Se),

TorS
e

n (S,ExtnSe(S, S
e)) → HomSe(ExtnSe(S,N),TorS

e

0 (S,ExtnSe(S, S
e)⊗S N))

ω 7→ ι?(ω)

In the particular case N = Se, the fundamental class of S is the element cS ∈
TorS

e

n (S,ExtnSe(S, S
e)) such that

(ι?(cS))|Extn
Se

(S,Se) = IdExtn
Se

(S,Se) .

Following the arguments in the proof of [Lam10, Théorème 4.2], when S has Van
den Bergh duality in dimension n, which gives that n = pdSe(S), the contraction
with cS induces an isomorphism, for all N ∈ Mod(Se),

(2.1) ι?(cS) : ExtnSe(S,N)
∼−→ TorS

e

0 (S,ExtnSe(S, S
e)⊗S N) .

When S is projective in Mod(R), the Hochschild complex S⊗•+2 is a resolution
of S in Mod(Se) and the contraction

TorS
e

n (S,M)× ExtmSe(S,N) → TorS
e

n−m(S,M ⊗S N)
(ω, e) 7→ ιe(ω)

may be defined for all M,N ∈ Mod(Se) and m,n ∈ N, as the mapping induced at
the level of Hochschild (co)chains by

M ⊗ S⊗n ×HomR(S⊗m, N) → (M ⊗S N)⊗ S⊗(m−n)

((x|s1| · · · |sn), ψ) 7→ (x⊗ ψ(s1| · · · |sm)|sm+1| · · · |sn) .

When, in addition, S has Van den Bergh duality in dimension n, then [Lam10,
Théorème 4.2] asserts that the following mapping given by contraction with cS is
an isomorphism, for all N ∈ Mod(Se) and m ∈ N,

ι?(cS) : ExtmSe(S,N)→ TorS
e

n−m(S,ExtnSe(S, S
e)⊗S N) .

2.2. Relationship to regularity. The main results of this article assume that
S has Van den Bergh duality. For commutative algebras, this property is related
to smoothness and regularity. The relationship is detailed in [Krä07] for the case
where R is a perfect field and is summarised below in the present setting.

Proposition 2.2.1 ([Krä07]). Let R be a Noetherian commutative ring. Let S
be a finitely generated commutative R-algebra and projective as an R-module. Let
n ∈ N. The following properties are equivalent.
(i) S has Van den Bergh duality in dimension n.
(ii) gl.dim(Se) <∞ and ΩS/R, which is then projective in Mod(S), has constant

rank n.
When these properties are true, gl.dim(S) <∞ and ExtnSe(S, S

e) ' ΛnSDerR(S) as
S-modules.

Proof. See [Krä07] for full details. Since S is projective over R, then pd(Se)e(S
e) 6

2 pdSe(S) ([CE56, Chap. IX, Proposition 7.4]); besides, using the Hochschild reso-
lution of S in Mod(Se) yields that

gl.dim(S) 6 pdSe(S) 6 gl.dim(Se) ;

thus

(2.2) S ∈ per(Se) ⇔ gl.dim(Se) <∞
⇒ gl.dim(S) <∞ .
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Note also that, following [HKR62, Theorem 3.1],

(2.3) gl.dim(Se) <∞⇒ ΩS/R is projective in Mod(S).

Denote by µ the multiplication mapping S ⊗ S → S. Assume gl.dim(Se) < ∞,
let p ∈ Spec(S) (⊆ Spec(Se)) and denote by d the rank of (ΩS/R)p. Since ΩS/R '
Ker(µ)/Ker(µ)2 as modules over S (' Se/Ker(µ)) and gl.dim(Se) <∞, the (Se)p-
module Ker(µ)p is generated by a regular sequence having d elements. There results
a Koszul resolution of Sp in Mod((Se)p). Using this resolution and the isomorphism
Ext•Se(S, S

e)p ' Ext•(Se)p(Sp, (S
e)p) in Mod((Se)p) yields isomorphisms of (Se)p-

modules

(2.4) Ext•Se(S, S
e)p '

{
0 if • 6= d
Sp if • = d.

Now assume (i). Then, gl.dim(Se) <∞ (see (2.2)), ΩS/R is projective (see 2.3)
and has constant rank n (see (2.4)). Conversely, assume that gl.dim(Se) < ∞
and ΩS/R has constant rank n. Then, S ∈ per(Se) (see (2.2)) and the S-module
(equivalently, the symmetric S-bimodule) Ext•Se(S, S

e) is zero if • 6= n and is
invertible if • = n (see (2.4)). Thus,

(i)⇔ (ii) .

Finally, assume that both (i) and (ii) are true. Then, gl.dim(S) <∞ (see (2.2)).
Moreover, Van den Bergh duality [vdB98, Theorem 1] does apply here and provides
an isomorphism of S-modules

Ext0
Se(S,ExtnSe(S;Se)−1) ' TorS

e

n (S, S) ,

whereas [HKR62, Theorem 3.1] yields an isomorphism of S-modules

TorS
e

n (S, S) ' ΛnSΩS/R .

Thus, ExtnSe(S, S
e) ' ΛnSDerR(S) in Mod(S). �

3. Material on U-(bi)modules

The purpose of this section is to introduce an adjoint pair of functors (F,G)
between Mod(U) and Mod(Ue). In the proof of Theorem 1, the U -bimodule
Ext•Ue(U,U

e) is described as the image under F of a certain left U -module which
is invertible as an S-module. This section develops the needed properties of F .
Hence, 3.1 recalls the basic constructions of U -modules; 3.2 and 3.3 introduce the
functors G and F , respectively; 3.4 proves that (F,G) is adjoint; 3.5 introduces
and collects basic properties of compatible left S o L-modules, these are applied
in Section 4 to the action of L on Ext•Se(S, S

e) by Lie derivatives; and 3.6 proves
that the functor F transforms left U -modules that are invertible as S-modules into
invertible U -bimodules. These results are based on the description of U as a quo-
tient of the smash-product S o L given in the following lemma. This description
is established in [LOV17, Proposition 2.10] in the case of Lie-Rinehart algebras
arising from Poisson algebras.

Lemma 3.0.1. The algebra S o L has the following properties.
(1) The identity mappings IdS : S → S and IdL : L→ L induce an isomorphism

of R-algebras

(3.1) (S o L)/I → U ,

where I is the two-sided ideal of the smash-product algebra SoL generated
by

{s⊗ α− 1⊗ sα | s ∈ S , α ∈ L} .
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(2) If L is projective as a left S-module, then U is projective both as a left and
as a right S-module.

Proof. (1) Recall (see [Rin63]) that U is defined as follows: Endow S ⊕ L with an
R-Lie algebra structure such that, for all s, t ∈ S and α, β ∈ L,

[s+ α, t+ β] = α(t)− β(s) + [α, β] ;

then, U is the factor R-algebra of the subalgebra of the universal enveloping algebra
UR(S ⊕ L) generated by the image of S ⊕ L by the two-sided ideal generated by
the classes in UR(S ⊕ L) of the following elements, for s, t ∈ S and α ∈ L,

s⊗ t− st , s⊗ α− sα .
Recall also that S o L is the R-algebra with underlying R-module

S ⊗ UR(L) ,

such that the images of S ⊗ 1 and 1 ⊗ UR(L) are subalgebras, and the following
hold, for all s, t ∈ S and α, β ∈ S,{

(s⊗ 1) · (1⊗ α) = s⊗ α
(1⊗ α) · (s⊗ 1) = α(s)⊗ 1 + s⊗ α .

Therefore, the natural mappings S → U and L→ U induce an R-algebra homomor-
phism from S o L to U . This homomorphism vanishes on I whence the R-algebra
homomorphism (3.1).

Besides, the universal property of U stated in [Hue99, Section 2, p. 110] yields
an R-algebra homomorphism

(3.2) U → (S o L)/I

induced by the natural mappings S → (S o L/I) and L → (S o L)/I. In view of
the behaviour of (3.1) and (3.2) on the respective images of S ∪ L, these algebra
homomorphisms are inverse to each other.

(2) It is proved in [Rin63, Lemma 4.1] that U is projective as a left S-module.
Consider the increasing filtration of U by the left S-submodules

0 ⊆ F0U ⊆ F1U ⊆ · · ·
where FpU is the image of ⊕pi=0S ⊗L⊗i in U , for all p ∈ N. In view of the equality

αs = sα+ α(s) ,

in U for all s ∈ S and α ∈ L, the left S-module FpU is also a right S-submodule
of U , and FpU/Fp−1U is a symmetric S-bimodule for all p ∈ N. Therefore, the
considerations used in the proof of [Rin63, Lemma 4.1] may be adapted in order to
prove that U is projective as a right S-module. �

3.1. Basic constructions of U-modules. Left SoL-modules are identified with
R-modulesN endowed with a left S-module structure, and a left L-module structure
such that, for all n ∈ N , α ∈ L and s ∈ S,

α · (s · n) = α(s) · n+ s · (α · n) .

Left U -modules are identified with left S o L-modules N such that, for all n ∈ N ,
α ∈ L and s ∈ S,

s · (α · n) = (sα) · n .
Recall that the action of L endows S with a left U -module structure.

Right SoL-modules are identified with the R-modules M endowed with a right
S-module structure and a right L-module structure such that, for all m ∈M , α ∈ L
and s ∈ S,

(m · α) · s = m · α(s) + (m · s) · α .
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Right U -modules are identified with right S o L-modules M such that, for all
m ∈M , s ∈ S and α ∈ L,

(m · s) · α = m · (sα) .

The following constructions are classical. The corresponding U -module struc-
tures are introduced in [Hue99, Section 2].

Let M,M ′ be right S o L-modules. Let N,N ′ be left S o L-module. Then,
• N is a right S o L-module for the right L-module structure such that, for

all n ∈ N , s ∈ S and α ∈ L,

(3.3) n · s = s · n and n · α = −α · n ,

• HomS(N,N ′) is a left S o L-module for the left L-module structure such
that, for all f ∈ HomS(N,N ′), n ∈ N and α ∈ L,

(3.4) (α · f)(n) = α · f(n)− f(α · n) ,

moreover, this is a left U -module structure if N and N ′ are left U -modules,
• HomS(M,M ′) is a left S o L-module for the left L-module structure such

that, for all f ∈ HomS(M,M ′), m ∈M and α ∈ L,

(3.5) (α · f)(m) = −f(m) · α+ f(m · α) ,

• HomS(N,S) is a right SoL-module for the right L-module structure such
that, for all f ∈ HomS(N,S), n ∈ N and α ∈ L,

(3.6) (f · α)(n) = −α(f(n)) + f(α · n) ,

• N ⊗S N ′ is a left S o L-module for the left L-module structure such that,
for all n ∈ N , n′ ∈ N and α ∈ L,

(3.7) α · (n⊗ n′) = α · n⊗ n′ + n⊗ α · n′ ,

moreover, this is a left U -module structure if N and N ′ are left U -modules,
• M ⊗S N is a left S o L-module for the left L-module structure such that,

for all m ∈M , n ∈ N and α ∈ L,

(3.8) α · (m⊗ n) = −m · α⊗ n+m⊗ α · n .

3.2. The functor G = HomSe(S,−) : Mod(Ue)→ Mod(U). GivenM ∈ Mod(Ue),
recall that

MS = {m ∈M | for s ∈ S, (s⊗ 1− 1⊗ s) ·m = 0} .

This is a symmetric Se-submodule of M . Recall also the canonical isomorphisms
that are inverse to each other

(3.9)
MS ↔ HomSe(S,M)
m 7→ (s 7→ (s⊗ 1) ·m)

ϕ(1) ← [ ϕ .

Lemma 3.2.1. Let M ∈ Mod(Ue). Then,
(1) MS is a left U -module such that, for all m ∈MS and α ∈ L,

(3.10) α ·m := (α⊗ 1− 1⊗ α) ·m ;

(2) the corresponding left U -module structure on HomSe(S,M) (under the iden-
tification (3.9)) is such that, for all ϕ ∈ HomSe(S,M), α ∈ L and s ∈ S,

(α · ϕ)(s) = (α⊗ 1− 1⊗ α) · ϕ(s)− ϕ(α(s)) .
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Proof. (1) Given all s ∈ S and α ∈ L, denote

s⊗ 1− 1⊗ s ∈ Ue and α⊗ 1− 1⊗ α ∈ Ue

by ds and dα, respectively; in particular

dα · ds = ds · dα+ d(α(s)) ,

and, for all m ∈MS ,

ds · (dα ·m) = dα · (ds ·m)− d(α(s)) ·m
= 0 ,

which proves that dα ·m ∈MS . Therefore, (3.10) defines a left L-module structure
on MS . Now, for all m ∈MS , s ∈ S and α ∈ L,

α·(s⊗1)·m = dα·(s⊗1)·m = (α(s)⊗1 + sα⊗1− s⊗α)·m
= (α(s)⊗1)·m+ (s⊗1)(α⊗1− 1⊗α)·m
= (α(s)⊗1)·m+ (s⊗1)·(α·m)

(s⊗1)·(α·m) = (s⊗1)·(α⊗1− 1⊗α)·m = (sα⊗1)·m− (s⊗1)·(1⊗α)·m
= (sα⊗1)·m− (1⊗α)·(s⊗1)·m = (sα⊗1)·m− (1⊗α)·(1⊗s)·m
= (sα⊗1− 1⊗sα)·m = (sα)·m.

Hence, this left L-module structure on MS is a left U -module structure.

(2) By definition, HomSe(S,M) is endowed with the left U -module structure
such that (3.9) is an isomorphism in Mod(U). Let ϕ ∈ HomSe(S,M), α ∈ L and
s ∈ S. Then,

(α · ϕ)(s) = (1⊗ s) · (α · ϕ(1)) = ((1⊗ s)(α⊗ 1− 1⊗ α)) · ϕ(1)
= (α⊗ s− 1⊗ sα− 1⊗ α(s)) · ϕ(1)
= ((α⊗ 1− 1⊗ α)(1⊗ s)− 1⊗ α(s)) · ϕ(1)
= α · (1⊗ s) · ϕ(1)− (1⊗ α(s)) · ϕ(1) = α · ϕ(s)− ϕ(α(s)) .

�

Thus, the assignment M 7→MS defines a functor

(3.11) G : Mod(Ue) → Mod(U)
M 7→ MS .

3.3. The functor F = U ⊗S − : Mod(U)→ Mod(Ue). Let N ∈ Mod(U). In view
of [Hue99, (2.4)], UU ⊗S N is a right U -module such that, for all u ∈ U , n ∈ N ,
s ∈ S and α ∈ L,

(u⊗ n) · s = u⊗ sn = us⊗ n and (u⊗ n) · α = uα⊗ n− u⊗ α · n .

Besides, U ⊗S N is a left U -module such that, for all u, u′ ∈ U and n ∈ N ,

u′ · (u⊗ n) = u′u⊗ n .

Therefore, U ⊗S N is a U -bimodule, and hence a left Ue-module. These consider-
ations define a functor

(3.12) F : Mod(U) → Mod(Ue)
N 7→ U ⊗S N .
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3.4. The adjunction between F and G.

Proposition 3.4.1. The functors F = U ⊗S − and G = HomSe(S,−) introduced
in 3.2 and 3.3 form an adjoint pair

ModU

F
��

ModUe .

G

OO

In particular, there is a functorial isomorphism, for all M ∈ Mod(Ue) and N ∈
Mod(U),

HomU (N,G(M))
∼−→ HomUe(F (N),M) .

Proof. Given f ∈ HomU (N,G(M)), denote by Φ(f) the well-defined mapping

U ⊗S N → M
u⊗ n 7→ (u⊗ 1) · f(n) ;

consider F (N) (= U ⊗S N) as a U -bimodule. Then, for all u, u′ ∈ U , n ∈ N , s ∈ S
and α ∈ L,

Φ(f)(u′ · (u⊗ n)) = Φ(f)(u′u⊗ n) = (u′u⊗ 1) · f(n)
= (u′ ⊗ 1) · Φ(f)(u⊗ n) ,

Φ(f)((u⊗ n) · s) = Φ(f)(u⊗ s · n) = (u⊗ 1) · f(s · n)
= (u⊗ 1) · ((1⊗ s) · f(n)) = ((1⊗ s) · (u⊗ 1)) · f(n)
= (1⊗ s) · Φ(f)(u⊗ n) = (Φ(f)(u⊗ n)) · s

Φ(f)((u⊗ n) · α) = Φ(f)(uα⊗ n− u⊗ α · n)
= (uα⊗ 1) · f(n)− (u⊗ 1) · f(α · n)
= (uα⊗ 1) · f(n)− (u⊗ 1) · (α⊗ 1− 1⊗ α) · f(n)
= (u⊗ α) · f(n) = (1⊗ α) · Φ(f)(u⊗ n)
= (Φ(f)(u⊗ n)) · α ;

in other words,
Φ(f) ∈ HomUe(F (N),M) .

Given g ∈ HomUe(F (N),M), then, for all n ∈ N and s ∈ S,

(s⊗ 1− 1⊗ s) · g(1⊗ n) = g(s⊗S n− 1⊗S s · n) = 0 ;

hence, denote by Ψ(g) the well-defined mapping

N → MS

n 7→ g(1⊗ n) .

Therefore, for all n ∈ N , s ∈ S and α ∈ L,

Ψ(g)(s · n) = g(1⊗ s · n) = g(s⊗ n) = g((s⊗ 1) · (1⊗ n))
= (s⊗ 1) · g(1⊗ n) = (s⊗ 1) ·Ψ(g)(n)

Ψ(g)(α · n) = g(1⊗ α · n) = g(α⊗ n− (1⊗ α) · (1⊗ n))
= (α⊗ 1) · g(1⊗ n)− (1⊗ α) · g(1⊗ n) = α ·Ψ(g)(n) ;

in other words,
Ψ(g) ∈ HomU (N,G(M)) .

By construction, Ψ and Φ are inverse to each other. �
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3.5. Compatible left SoL-modules. As explained in Section 1, the main results
of this article are expressed in terms of the action of L on Ext•Se(S, S

e) by Lie
derivatives and will be presented in Section 4. Although this action does not define
a U -module structure on Ext•Se(S, S

e), it satisfies some compatibility with the S-
module structure. The actions of L satisfying such a compatibility have specific
properties that are used in the rest of the article and which are summarised below.

Define a compatible left S o L-module as a left S o L-module N such that, for
all n ∈ N , α ∈ L and s ∈ S, the elements sα ∈ L and α(s) ∈ S satisfy

(3.13) (sα) · n = s · (α · n)− α(s) · n .
Note that a left S o L-module is both compatible and a left U -module if and only
if L acts trivially, that is, by the zero action.

The two following lemmas present the properties of compatible left SoL-modules
used in the rest of the article.

Lemma 3.5.1. Let M be a right U -module. Let N be a compatible left S o L-
module. Then:

(1) The right S o L-module N∨ = HomS(N,S) is a right U -module,
(2) The left S o L-module HomS(N∨,M) is a left U -module,
(3) The left S o L-module M ⊗S N is a left U -module,
(4) The following canonical mapping is a morphism of left U -modules,

θ : M ⊗S N → HomS(N∨,M)
m⊗ n 7→ (θm⊗n : ϕ 7→ m · ϕ(n)) .

Proof. (1) Given ϕ ∈ N∨, s ∈ S and α ∈ L, then
ϕ · (sα) = (ϕ · s) · α .

Indeed, for all n ∈ N ,

(ϕ · (sα))(n) = −(sα)(ϕ(n)) + ϕ((sα) · n)
= −s α(ϕ(n)) + ϕ(s · (α · n)− α(s) · n)
= −s α(ϕ(n)) + sϕ(α · n)− α(s)ϕ(n)
= ((ϕ · α) · s)(n)− (ϕ · α(s))(n)
= ((ϕ · s) · α)(n) .

(2) This is precisely [Hue99, (2.3)].

(3) The SoL-module structure of M ⊗S N is described in (3.8). Given m ∈M ,
n ∈ N , s ∈ S and α ∈ L, then
(sα) · (m⊗ n) = −m · (sα)⊗ n+m⊗ (sα) · n

= −(m · α) · s⊗ n+m · α(s)⊗ n+m⊗ s · (α · n)−m⊗ α(s) · n
= s · (α · (m⊗ n)) .

(4) It suffices to prove that the given mapping is L-linear. Let m ∈ M , n ∈ N ,
α ∈ L and ϕ ∈ HomS(N,S). Then,

(α · θm⊗n)(ϕ) = −θm⊗n(ϕ) · α+ θm⊗n(ϕ · α) = −(m · ϕ(n)) · α+m · (ϕ · α)(n)
= −((m · α) · ϕ(n)−m · α(ϕ(n))) +m · (−α(ϕ(n)) + ϕ(α · n))
= −(m · α) · ϕ(n) +m · ϕ(α · n) = θα·(m⊗n)(ϕ) ;

thus, α · θm⊗n = θα·(m⊗n). �

Any left S o L-module N may be considered as a symmetric S-bimodule, or
equivalently a right Se-module, such that, for all n ∈ N and s, s′ ∈ S

n · (s⊗ s′) = (ss′) · n ;

accordingly, N ⊗Se Ue is a right Ue-module in a natural way.
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Lemma 3.5.2. Let N be a compatible left S o L-module

(1) The right Ue-module N ⊗Se Ue is actually a U -Ue-bimodule such that for
all n ∈ N , u, v ∈ U and α ∈ L,

α · (n⊗ (u⊗ v)) = α · n⊗ (u⊗ v) + n⊗ ((α⊗ 1− 1⊗ α) · (u⊗ v)) .

(2) Let M be a right U -module. Then, there exists an isomorphism of left
Ue-modules

F (M ⊗S N) → M ⊗U (N ⊗Se Ue)
v ⊗ (m⊗ n) 7→ m⊗ (n⊗ (1⊗ v)) .

Proof. (1) Following part (3) of Lemma 3.5.1, there is a left U -module structure on
U ⊗S N such that, for all α ∈ L, v ∈ U and n ∈ N ,

α · (v ⊗ n) = −vα⊗ n+ v ⊗ α · n .

Therefore, there is a left U -module structure on (U ⊗S N) ⊗S U (see (3.7)) such
that, for all α ∈ L, n ∈ N and u, v ∈ U ,

α · ((v ⊗ n)⊗ u) = α · (v ⊗ n)⊗ u+ (v ⊗ n)⊗ αu
= −(vα⊗ n)⊗ u+ (v ⊗ α · n)⊗ u+ (v ⊗ n)⊗ αu .

Under the canonical identification

N ⊗Se Ue → (U ⊗S N)⊗S U
n⊗ (u⊗ v) 7→ (v ⊗ n)⊗ u ,

N ⊗Se Ue inherits of a left U -module structure which is the one claimed in the
statement.

Now, N ⊗Se Ue inherits a right Ue-module structure from Ue. This structure
is compatible with the left U -module discussed previously so as to yield a left
U ⊗ (Ue)op-module structure.

(2) Due to (1), there is a right Ue-module structure on M ⊗U (N ⊗Se Ue). It
is considered here as a left Ue-module structure such that, for all u, v, u′, v′ ∈ U ,
m ∈M and n ∈ N ,

(3.14) (u′ ⊗ v′) · (m⊗ (n⊗ (u⊗ v))) = m⊗ (n⊗ (uv′ ⊗ u′v)) ;

For the ease of reading, note that in F (M ⊗S N),

(3.15) (u⊗ 1) · (v ⊗m⊗ n) = uv ⊗m⊗ n
(1⊗ α) · (v ⊗m⊗ n) = vα⊗m⊗ n+ v ⊗m · α⊗ n− v ⊗m⊗ α · n ,

and, in M ⊗U (N ⊗Se Ue),

(3.16) m · α⊗ n⊗ u⊗ v = m⊗ α · n⊗ u⊗ v +m⊗ n⊗ αu⊗ v −m⊗ n⊗ u⊗ vα .

The R-linear mapping from U ⊗M ⊗N to M ⊗U (N ⊗Se Ue) given by

v ⊗m⊗ n 7→ m⊗ (n⊗ (1⊗ v))

induces a morphism of S-modules from U ⊗S (M ⊗S N) to M ⊗U (N ⊗Se Ue) such
as in the statement of the lemma. Denote it by Ψ′:

Ψ′ : U ⊗S (M ⊗S N)→M ⊗U (N ⊗Se Ue) .
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This is a morphism of left Ue-modules. Indeed, for all u, v ∈ U , m ∈ M , n ∈ N
and α ∈ L,

Ψ′((u⊗1) · (v⊗m⊗n)) = Ψ′(uv⊗m⊗n) = m⊗n⊗1⊗uv
=

(3.14)
(u⊗1) ·Ψ′(v⊗m⊗n)

Ψ′((1⊗α) · (v⊗m⊗n)) = Ψ′(vα⊗m⊗n+ v⊗m · α⊗n− v⊗m⊗α · n)
= m⊗n⊗1⊗vα+m · α⊗n⊗1⊗v −m⊗α · n⊗1⊗v
=

(3.16)
m⊗n⊗α⊗v

=
(3.14)

(1⊗α) ·Ψ′(v⊗m⊗n) .

Consider the following morphism of S-modules

φ : M ⊗S (N ⊗Se Ue) → F (M ⊗S N)
m⊗ (n⊗ (u⊗ v)) 7→ (1⊗ u) · (v ⊗m⊗ n) .

Given m ∈M , n ∈ N , u, v ∈ U and α ∈ L, then the image under φ of the term

m⊗ α · n⊗ u⊗ v +m⊗ n⊗ αu⊗ v −m⊗ n⊗ u⊗ vα

is equal to

(1⊗ u) · (v ⊗m⊗ α · n) + (1⊗ αu) · (v ⊗m⊗ n)− (1⊗ u) · (vα⊗m⊗ n) ,

which is equal to

(1⊗ u) · (v ⊗m⊗ α · n) + (1⊗ u) · (1⊗ α) · (v ⊗m⊗ n)− (1⊗ u) · (vα⊗m⊗ n) .

In view of (3.15), this is equal to

(1⊗ u) · (v ⊗m · α⊗ n) = φ(m · α⊗ (n⊗ (u⊗ v))) .

Thus, φ induces a morphism of S-modules

Φ′ : M ⊗U (N ⊗Se Ue) → F (M ⊗S N)
m⊗ (n⊗ (u⊗ v)) 7→ (1⊗ u) · (v ⊗m⊗ n) .

It appears that Φ′ is left and right inverse for Ψ′. Indeed,
• Φ′ ◦Ψ′ = IdF (M⊗SN), and
• for all u, v ∈ U , m ∈M and n ∈ N ,

Ψ′ ◦ Φ′(m⊗ n⊗ u⊗ v) = Ψ′((1⊗ u) · (v ⊗m⊗ n))
= (1⊗ u) ·Ψ′(v ⊗m⊗ n) (Ψ′ is Ue-linear)

= (1⊗ u) · (m⊗ n⊗ 1⊗ v)
= m⊗ n⊗ u⊗ v .

�

3.6. Invertible U-bimodules. The following result is used in Section 5 in order
to prove that ExtiUe(U,U

e) is invertible as a U -bimodule, under suitable conditions.

Proposition 3.6.1. Let R be a commutative ring. Let (S,L) be a Lie-Rinehart
algebra over R. Denote by U its enveloping algebra. Let N be a left U -module.
Assume that N is invertible as an S-module. Then F (N) is invertible as a U -
bimodule.

The subsection is devoted to the proof of this proposition. Given a left U -
module N , then F (N) = U ⊗S N as left U -modules. Hence, there is a functorial
isomorphism

(3.17) θ : HomS(N,U)→ HomU (F (N), U) .

Note:
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• HomS(N,U) is a left U -module (see (3.4)), and it inherits a right U -module
structure from UU ; by construction, these two structures form a U -bimodule
structure.

• HomU (F (N), U) is a U -bimodule because so are F (N) and U .
• N ⊗S HomS(N,U) is a left U -module (see (3.7)), and it inherits a right
U -module structure from UU ; by construction, these two structures form a
U -bimodule structure.

Lemma 3.6.2. Let N be a left U -module. Then,
(1) θ : HomS(N,U)→ HomU (F (N), U) is an isomorphism in Mod(Ue),
(2) the mapping

Φ: N ⊗S HomS(N,U) → F (N)⊗U HomU (F (N), U)
n⊗ f 7→ (1⊗ n)⊗ θ(f)

is an isomorphism in Mod(Ue), and
(3) the diagram

N⊗SHomS(N,U) //

Φ

��

U

F (N)⊗UHom(F (N),U) // U

with horizontal arrows given by evaluation, is commutative.

Proof. (1) By definition, θ is a morphism of right U -modules. It is also a morphism
of left U -modules because, for all n ∈ N , f ∈ HomS(N,U), u ∈ U and α ∈ L,

θ(α · f)(u⊗ n) = u(α · f)(n)
= u(αf(n)− f(α · n)) = θ(f)(uα⊗ n− u⊗ α · n)
= θ(f)((u⊗ n) · α) = (α · θ(f))(u⊗ n) .

(2) By definition, Φ is a morphism of right U -modules. It is also a morphism of
left U -modules because, for all n ∈ N , f ∈ HomS(N,U) and α ∈ L,

Φ(α · (n⊗ f)) = Φ(α · n⊗ f + n⊗ α · f)
= (1⊗ α · n)⊗ θ(f) + (1⊗ n)⊗ θ(α · f)︸ ︷︷ ︸

=α·θ(f)

= (1⊗ α · n)⊗ θ(f) + (1⊗ n) · α︸ ︷︷ ︸
=α⊗n−1⊗α·n

⊗ θ(f)

= (α⊗ n)⊗ θ(f)
= α · Φ(n⊗ f) .

In order to prove that Φ is bijective, consider the linear mapping

ψ : F (N)⊗S HomU (F (N), U) → N ⊗S HomS(N,U)
(u⊗ n)⊗ g 7→ u · (n⊗ θ−1(g)) .

Note that, for all u ∈ U , α ∈ L, n ∈ N and g ∈ HomU (F (N), U),

ψ((u⊗ n) · α⊗ g) = ψ((uα⊗ n)⊗ g − (u⊗ α · n)⊗ g)
= uα · (n⊗ θ−1(g))− u · (α · n⊗ θ−1(g))
= u · (α · n⊗ θ−1(g) + n⊗ α · θ−1(g))− u · (α · n⊗ θ−1(g))
= u · (n⊗ θ−1(α · g)) (see part (1))
= ψ((u⊗ n)⊗ α · g) .

Hence, ψ induces a linear mapping

Ψ: F (N)⊗U HomU (F (N), U) → N ⊗S HomS(N,U)
(u⊗ n)⊗ g 7→ u · (n⊗ θ−1(g)) .
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Now, by definition of Φ and Ψ,

Ψ ◦ Φ = IdN⊗SHomS(N,U) .

Since
• Ψ is a morphism of left U -modules by construction;
• as a left U -module, F (N)⊗U HomU (F (N), U) is generated by the image of

(1⊗N)⊗HomU (F (N), U); and
• for all n ∈ N and g ∈ HomU (F (N), U),

Φ ◦Ψ((1⊗ n)⊗ g) = (1⊗ n)⊗ g ;

the following holds
Φ ◦Ψ = IdF (N)⊗UHomU (F (N),U) .

Altogether, these considerations show that Φ is an isomorphism in Mod(Ue).

(3) The diagram is commutative by definition of Φ. �

Like in the previous lemma, for all N ∈ Mod(U), HomS(N,U) is a U -bimodule,
and hence HomS(N,U) ⊗S N is a U -bimodule by means of (3.7) and the right
U -module structure of U .

Lemma 3.6.3. Let N be a left U -module. Then,
(1) the mapping

Φ′ : HomS(N,U)⊗S N → HomU (F (N), U)⊗U F (N)
f ⊗ n 7→ θ(f)⊗ (1⊗ n)

is an isomorphism in Mod(Ue); and
(2) the diagram

HomS(N,U)⊗SN //

Φ′

��

U

HomU (F (N),U)⊗UF (N) // U

with horizontal arrows given by evaluation, is commutative.

Proof. (1) First, since F (N) = U ⊗S N in Mod(Ue), then

HomU (F (N), U)⊗U F (N) ∼= HomU (F (N), U)⊗S N
as left U -modules. Under this identification, Φ′ expresses as

Φ′ : f ⊗ n 7→ θ(f)⊗ n .
Therefore, Φ′ is bijective because so is θ.

Next, Φ′ is a morphism of left U -modules because so is θ. And it is a morphism
of right U -modules because it is a morphism of right S-modules, and because, for
all f ∈ HomS(N,U), n ∈ N and α ∈ L,

Φ′((f ⊗ n) · α) = Φ′(f · α⊗ n− f ⊗ α · n)
= θ(f · α)︸ ︷︷ ︸

=θ(f)·α

⊗ (1⊗ n)− θ(f)⊗ (1⊗ α · n)

= θ(f)⊗ α · (1⊗ n)︸ ︷︷ ︸
=α⊗n

− θ(f)⊗ (1⊗ α · n)

= θ(f)⊗ ((1⊗ n) · α)
= (θ(f)⊗ (1⊗ n)) · α
= Φ′(f ⊗ n) · α .

This proves (1).

(2) The diagram commutes by definition of Φ′. �
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It is now possible to prove the result announced at the beginning of the subsec-
tion.

Proof of Proposition 3.6.1. Since N is invertible as an S-module, then the following
evaluation mappings are bijective

N ⊗S HomS(N,U)→ U and HomS(N,U)⊗S N → U .

According to Lemmas 3.6.2 and 3.6.3, the following evaluation mappings are iso-
morphisms of U -bimodules

F (N)⊗U HomU (F (N), U)→ U and HomU (F (N), U)⊗U F (N)→ U .

Thus, F (N) is invertible as a U -bimodule. �

4. The action of L on the inverse dualising bimodule of S

This section introduces an action of L on Ext•Se(S, S
e) by means of Lie deriva-

tives, which is used to describe Ext•Ue(U,U
e) in the next section. When S is projec-

tive in Mod(R), then Ext•Se(S,−) is the Hochschild cohomology H•(S;−); in this
setting, the Lie derivatives on H•(S;S) and H•(S;S) are defined in [Rin63, Section
9] and have a well-known expression in terms of the Hochschild resolution of S. For
the needs of the article, the definition is translated to arbitrary coefficients in terms
of any projective resolution of S in Mod(Se).

Hence, 4.1 introduces preliminary material, 4.2 deals with derivations on projec-
tive resolutions of S in Mod(Se), 4.3 defines the Lie derivatives, 4.4 presents the
action of L on Ext•Se(S, S

e), and 4.5 discusses particular situations.
For the section, a projective resolution of S in Mod(Se) is considered;

(P •, d)→ S .

Denote S by P 1 and the augmentation mapping P 0 → S by d0. For all M ∈
Mod(Se) and s ∈ S, denote by λs and ρs the multiplication mappings

λs : M −→M, m 7−→ (s⊗ 1) ·m
and

ρs : M −→M, m 7−→ (1⊗ s) ·m.

4.1. Data on the projective resolution. For all s ∈ S, the mappings λs, ρs on
P • are morphisms of complexes of left Se-modules and induce the same mapping

S → S
t 7→ st

in cohomology; Hence, there exists a morphism of graded left Se-modules

(4.1) ks : P • → P •[−1]

such that

(4.2) λs − ρs = ks ◦ d+ d ◦ ks .

Lemma 4.1.1. Let ∂ : S → S be an R-linear derivation. Let ψ : P • → P • be a
morphism of complexes of R-modules such that

• H0(ψ) : S → S is the zero mapping;
• there exists a morphism of graded left Se-modules

k : P • → P •[−1]

such that, for all p ∈ P • and s, t ∈ S,
(4.3) ψ((s⊗ t) · p) = (s⊗ t) · ψ(p)− (1⊗ ∂)(s⊗ t) · (k ◦ d+ d ◦ k)(p) .

Then, there exists a morphism of graded R-modules

h : P • → P •[−1]
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such that
– ψ = h ◦ d+ d ◦ h; and
– for all s, t ∈ S and p ∈ P •,

h((s⊗ t) · p) = (s⊗ t) · h(p)− (1⊗ ∂)(s⊗ t) · k(p) .

Proof. The proof is an induction on n 6 1, taking h1 : S → P 0 equal to 0. Let
n 6 0 and assume that there exist linear mappings, for all j such that n+1 6 j 6 1,

hj : P j → P j−1

such that, for all j satisfying n+ 1 6 j 6 0, p ∈ P j and s, t ∈ S,

(4.4) ψj = hj+1 ◦ dj + dj−1 ◦ hj
hj((s⊗ t) · p) = (s⊗ t) · hj(p)− (1⊗ ∂)(s⊗ t) · kj(p) .

Pn
dn //

ψn

��

Pn+1

ψn+1

��
hn+1

ww

dn+1
// Pn+2 dn+2

//

hn+2

vv

· · ·

Pn
dn // Pn+1 dn+1

// Pn+2 dn+2
// · · ·

Let

((pi, ϕ
i))i∈I

be a coordinate system of the projective left Se-module Pn. That is, let pi ∈ Pn
and ϕi ∈ HomSe(P

n, Se) for all i ∈ I, such that, for all p ∈ Pn,

p =
∑
i∈I

ϕi(p) · pi ,

where {i ∈ I | ϕi(p) 6= 0} is finite. Since ψ : P • → P • is a morphism of complexes,
it follows from (4.4) that, for all i ∈ I, there exists p′i ∈ Pn−1 such that

(4.5) ψn(pi) = dn−1(p′i) + hn+1 ◦ dn(pi) .

Denote by hn the linear mapping from Pn to Pn−1 such that, for all p ∈ Pn,

hn(p) =
∑
i∈I

ϕi(p) · p′i − (1⊗ ∂)(ϕi(p)) · kn(pi) .

Then, for all p ∈ Pn and s, t ∈ S,

hn((s⊗ t)·p)

=
∑
i∈I

(s⊗ t)·ϕi(p)·p′i−(s⊗ t)·(1⊗ ∂)(ϕi(p))·kn(pi)−(1⊗ ∂)(s⊗ t)·ϕi(p)·kn(pi)

=(s⊗ t)·hn(p)−(1⊗ ∂)(s⊗ t)·kn(
∑
i∈I ϕ

i(p)·pi)

=(s⊗ t)·hn(p)−(1⊗ ∂)(s⊗ t)·kn(p) .

Moreover,

ψn = hn+1 ◦ dn + dn−1 ◦ hn .
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Indeed, for all p ∈ Pn, p =
∑
i∈I ϕ

i(p) · pi, and hence

dn−1 ◦ hn(p) + hn+1 ◦ dn(p)

=
∑
i∈I

ϕi(p)·dn−1(p′i)− (1⊗ ∂)(ϕi(p))·dn−1 ◦ kn(pi) + hn+1(
∑
i∈I ϕ

i(p)·dn(pi))

=
(4.4)

∑
i∈I

ϕi(p)·dn−1(p′i)− (1⊗ ∂)(ϕi(p))·dn−1 ◦ kn(pi)

+ ϕi(p)·hn+1 ◦ dn(pi)− (1⊗ ∂)(ϕi(p))·kn+1 ◦ dn(pi)

=
(4.3)

∑
i∈I

ϕi(p)·dn−1(p′i) + ϕi(p)·hn+1 ◦ dn(pi) + ψn(ϕi(p)·pi)− ϕi(p)·ψn(pi)

=
(4.5)

∑
i∈I

ψn(ϕi(p)·pi)=ψn(p) .

�

4.2. Derivations on the projective resolution. Let ∂ : S → S be an R-linear
derivation. It defines an R-linear derivation on Se denoted by ∂e,

∂e : Se → Se

s⊗ t 7→ ∂(s)⊗ t+ s⊗ ∂(t) .

For every left Se-moduleM , a derivation ofM relative to ∂ is an R-linear mapping

∂M : M →M

such that, for all m ∈M and s, t ∈ S,

∂M ((s⊗ t) ·m) = ∂e(s⊗ t) ·m+ (s⊗ t) · ∂M (m) .

A derivation of P • relative to ∂ is a morphism of complexes of R-modules,

∂• : P • → P • ,

such that ∂n : Pn → Pn is a derivation relative to ∂ for all n, and such that
H0(∂•) = ∂. Note that a morphism of complexes of R-modules ∂• : P • → P • such
that H0(∂•) = ∂ is a derivation relative to ∂ if and only if

(4.6)
{
∂• ◦ λs = λ∂(s) + λs ◦ ∂• ,
∂• ◦ ρs = ρ∂(s) + ρs ◦ ∂• .

Remark. For all derivations ∂•1 , ∂•2 : P • → P • relative to ∂, the difference

∂•1 − ∂•2 : P • → P •

is a null-homotopic morphism of complexes of left Se-modules.

Lemma 4.2.1. There exists a mapping, which need not be linear,

(4.7) DerR(S) → HomR(P •, P •)
∂ 7→ ∂•

such that:
(1) For all ∂ ∈ DerR(S), the mapping ∂• is a derivation relative to ∂.
(2) For all ∂1, ∂2 ∈ DerR(S) and r ∈ R, there exist morphisms of graded left

Se-modules
`, `′ : P • → P •[−1]

such that

(4.8)
{

[∂1, ∂2]• − [∂•1 , ∂
•
2 ] = ` ◦ d+ d ◦ `

(∂1 + r∂2)• − (∂•1 + r∂•2) = `′ ◦ d+ d ◦ `′ .
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(3) For all s ∈ S and ∂ ∈ DerR(S), there exists a morphism of graded R-
modules

h : P • → P •[−1]

such that

(4.9) (s∂)• − λs ◦ ∂• = h ◦ d+ d ◦ h

and, for all p ∈ P • and t1, t2 ∈ S,

(4.10) h((t1 ⊗ t2) · p) = (t1 ⊗ t2) · h(p)− (t1 ⊗ ∂(t2)) · ks(p) .

Recall that ks : P • → P •[−1] is a morphism of graded left Se-modules such that
λs − ρs = ks ◦ d+ d ◦ ks (see (4.1) and (4.2)).

Proof. (1) Let ∂ ∈ DerR(S). For convenience, denote ∂ by ∂1 : S → S. The proof
is an induction on n 6 1. Let n 6 0, and assume that a commutative diagram is
given

Pn
dn // Pn+1 //

∂n+1

��

· · · // P 0 d0 //

∂0

��

P 1 //

∂1

��

0

Pn
dn // Pn+1 // · · · // P 0 d1 // P 1 // 0

where ∂i : P i → P i is a derivation relative to ∂ for all i ∈ {n+ 1, n+ 2, · · · , 0}. Let

((pi, ϕ
i))i∈I

be a coordinate system of the projective left Se-module Pn (see the proof in 4.1).
Then, for all i ∈ I, there exists o′i ∈ Pn such that

∂n+1 ◦ dn(pi) = dn(p′i) .

Denote by ∂n the R-linear mapping from Pn to Pn such that, for all p ∈ Pn,

∂n(p) =
∑
i∈I

∂(ϕi(p)) · pi + ϕi(p) · p′i .

Then, for all p ∈ Pn,

dn ◦ ∂n(p) =
∑
i∈I ∂(ϕi(p)) · dn(pi) + ϕi(p) · dn(p′i)

=
∑
i∈I ∂(ϕi(p)) · dn(pi) + ϕi(p) · ∂n+1 ◦ dn(pi)

= ∂n+1 ◦ dn(
∑
i∈I ϕ

i(p) · pi)

= ∂n+1 ◦ dn(p) .

Thus,
dn ◦ ∂n = ∂n+1 ◦ dn .

Moreover, ∂n is a derivation of Pn relative to ∂ because ∂ is a derivation of Se and
ϕi ∈ HomSe(P

n, Se) for all i ∈ I.

(2) Note that [∂1, ∂2]• and [∂•1 , ∂
•
2 ] (or, (∂1 + r∂2)• and ∂•1 + r∂•2 ) are derivations

of P • relative to [∂1, ∂2] (or, to ∂1 + r∂2, respectively). The conclusion therefore
follows from the remark preceding Lemma 4.2.1.

(3) Denote by ψ the mapping (s∂)• − λs ◦ ∂• given by

P • → P •

p 7→ (s∂)•(p)− (s⊗ 1) · ∂•(p) .
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Then, for all p ∈ P • and t ∈ S,

ψ((t⊗ 1)·p)

=(s∂)•((t⊗ 1)·p)− (s⊗ 1)·∂•((t⊗ 1)·p)

=(s∂(t)⊗ 1)·p+ (t⊗ 1)·(s∂)•(p)− (s⊗ 1)·(∂(t)⊗ 1)·p− (s⊗ 1)·(t⊗ 1)·∂•(p)

=(t⊗ 1)·ψ(p)

and

ψ((1⊗ t)·p)

= (s∂)•((1⊗ t)·p)− (s⊗ 1)·∂•((1⊗ t)·p)

= (1⊗ s∂(t))·p+ (1⊗ t)·(s∂)•(p)− (s⊗ 1)·(1⊗ ∂(t))·p− (s⊗ 1)·(1⊗ t)·∂•(p)

= (1⊗ t)·ψ(p) + (1⊗ ∂(t))·(ρs − λs)(p)

=
(4.2)

(1⊗ t)·ψ(p)− (1⊗ ∂(t))·(ks ◦ d+ d ◦ ks)(p) .

Hence, Lemma 4.1.1 may be applied, which yields (3). �

Remark. Using the remark preceding Lemma 4.2.1, it may be checked that, al-
though the mapping DerR(S) → HomR(P •, P •) of the lemma is not unique, two
such mappings induce the same mapping from DerR(S) toH0HomR(P •, P •), which
is R-linear.

When S is projective in Mod(R), it is possible to be more explicit on a possible
mapping ∂ 7→ ∂•. Indeed, the Hochschild complex B(S) = S⊗•+2 is a projective
resolution of S. For all ∂ ∈ DerR(S), define the following mapping:

L∂ : B(S) → B(S)

(s0| · · · |sn+1) 7→
n+1∑
i=0

(s0| · · · |si−1|∂(si)| · · · |si+1| · · · |sn) .

This is a derivation of B(S) relative to ∂. It is direct to check that the mapping

DerR(S) → HomR(B(S), B(S))
∂ 7→ L∂

is a morphism of Lie algebras over R. Now, consider homotopy equivalences of
complexes of Se-modules,

P •
f // B(S) ,
g

oo

and, for all ∂ ∈ DerR(S), define ∂• as

∂• = g ◦ L∂ ◦ f ;

this is a derivation relative to ∂ because so is L∂ and because f and g are morphisms
of resolutions of S in Mod(Se). The following mapping satisfies the conclusion of
the preceding lemma, it is moreover R-linear.

DerR(S) → HomR(P •, P •)
∂ 7→ ∂• .
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4.3. Lie derivatives. Consider a mapping ∂ 7→ ∂• such as in Lemma 4.2.1. Let
M be an S-bimodule and ∂ : S → S be an R-linear derivation. Let ∂M : M → M
be a derivation relative to ∂. Given n ∈ N and ψ ∈ HomSe(P

−n,M), denote by
L∂(ψ) the mapping

(4.11) L∂(ψ) = ∂M ◦ ψ − ψ ◦ ∂−n .
This is a morphism in Mod(Se) because so is ψ and because ∂M and ∂−n are
derivations relative to ∂; moreover, it is a cocycle (or a coboundary) as soon as ψ
is because ∂• : P • → P • is a morphism of complexes. Denote by L∂ the resulting
mapping in cohomology

L∂ : Ext•Se(S,M)→ Ext•Se(S,M)

such that for all c ∈ Ext•Se(S,M), say represented by a cocycle ψ, then L∂(c) is
represented by the cocycle L∂(ψ). In the situations considered later in the article,
there is no ambiguity on ∂M , whence its omission in the notation.

Following similar considerations denote also by L∂ the mapping

L∂ : TorS
e

• (S,M)→ TorS
e

• (S,M)

such that for all ω ∈ TorS
e

• (S,M), say represented by a cocycle m⊗ p ∈M ⊗Se P •
with sum sign omitted, L∂(ω) is represented by the cocycle

L∂(m⊗ p) := m⊗ ∂•(p) + ∂M (m)⊗ p .

When S is projective in Mod(R), these operations may be written explicitly
in terms of the Hochschild resolution. When ψ is a Hochschild cocycle lying in
HomR(S⊗n,M), the mapping L∂(ψ) is given by

(4.12) (s1| · · · |sn) 7→ ∂M (f(s1| · · · |sn))−
n∑
i=1

f(s1| · · · |∂(si)| · · · |sn) .

Likewise, the operation in Hochschild homology is induced by the following mapping
at the level of Hochschild chains,

M ⊗ S⊗n → M ⊗ S⊗n

(m|s1| · · · |sn) 7→ (∂M (m)|s1| · · · |sn) +
n∑
i=1

(m|s1| · · · |∂(si)| · · · |sn) .

The operator L∂ is of course called the Lie derivative of ∂. When M = S
and S is projective in Mod(R), this is nothing else but the classical Lie derivative
defined in [Rin63, Section 9]. In view of the remark following Lemma 4.2.1, these
constructions depend only on ∂ and ∂M and not on the choices of P • and the
mapping ∂ 7→ ∂•.

In the sequel these constructions are considered mainly in the following cases:
• M = S and ∂M = ∂.
• M = Se and ∂M = ∂e.
• M = ExtnSe(S, S

e) (n ∈ N) and ∂M = L∂ , which makes sense according to
the result below.

In the sequel the following construction is also used. Consider S-bimodules M,N .
Let m,n ∈ N. Let ∂ ∈ DerR(S) and let ∂M : M →M and ∂N : N → N be R-linear
derivations relative to ∂. Then, for all f ∈ HomR(ExtmSe(S,M),TorS

e

n (S,N)), define
L∂(f) as

L∂ ◦ f − f ◦ L∂ .

Recall that for all M ∈ Mod(Se), the spaces Ext•Se(S,M) and TorS
e

• (S,M)
are left S-modules by means of λs : M → M for all s ∈ S; the corresponding
multiplication by s on these (co)homology spaces is denoted by λs.
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Lemma 4.3.1. Let M ∈ Mod(Se), n ∈ N and s ∈ S. Let ∂, ∂′ : S → S be R-linear
derivations. Let ∂M , ∂′M : M → M be R-linear derivations relative to ∂ and ∂′,
respectively. Then, the following hold in Ext•Se(S,M):

(1) L∂ ◦ λs = λ∂(s) + λs ◦ L∂ .
(2) L[∂,∂′] = [L∂ ,L∂′ ].
(3) let m ∈ N, let N be another S-bimodule and let ∂N : N → N be a derivation

relative to ∂. Consider the contraction mapping

TorS
e

m (S,M) → HomR(ExtnSe(S,N),TorS
e

m−n(S,M ⊗S N))
ω 7→ (c 7→ ιc(ω)) .

If m = n, then it is L∂-equivariant. When S is projective in Mod(R), it is
L∂ equivariant for all m,n ∈ N;

(4) If M is symmetric as an S-bimodule, Ls∂ = λs ◦ L∂ .
(5) When M = Se (and ∂M = ∂e), the following equality holds in Ext•Se(S,M):

Ls∂ = λs ◦ L∂ − λ∂(s) .

Proof. (1) The equality is checked on cochains. Let ψ ∈ HomSe(P
−n,M). Then,

L∂ ◦ λs(ψ) = ∂M ◦ λs ◦ ψ − λs ◦ ψ ◦ ∂•
= (λ∂(s) + λs ◦ ∂M ) ◦ ψ − λs ◦ ψ ◦ ∂•
= (λ∂(s) + λs ◦ L∂)(ψ) .

(2) Note that L[∂,∂′] is defined with respect to [∂M , ∂
′
M ], which is a derivation

of M relative to [∂, ∂′]. Following Lemma 4.2.1, there exists a morphism of graded
Se-modules

` : P • → P •[−1]

such that
[∂, ∂′]• − [∂•, ∂′•] = ` ◦ d+ d ◦ ` .

Let ψ ∈ HomSe(P
−n,M). If this is a cocycle, then

L[∂,∂′](ψ) = [∂M , ∂
′
M ] ◦ ψ − ψ ◦ ([∂•, ∂′•] + ` ◦ d+ d ◦ `)

= [L∂ ,L∂′ ](ψ)− ψ ◦ ` ◦ d− ψ ◦ d︸ ︷︷ ︸
=0

◦ ` ,

which is cohomologous to [L∂L∂′ ](ψ). This proves (2).

(3) Note that the mapping

∂M⊗SN : M ⊗S N → M ⊗S N
x⊗ y 7→ ∂M (x)⊗ y + x⊗ ∂N (y) ,

is a well-defined derivation relative to ∂, which defines L∂ on

TorS
e

m−n(S,M ⊗S N) .

Assume first that m = n. Let p0 be any element of the preimage of 1S under the
augmentation mapping P 0 → S. Let x⊗p ∈M⊗SeP−m and ψ ∈ HomSe(P

−m, N),
and use the notation

ιψ(x⊗ p) := (x⊗ ψ(p))⊗ p0 .

Recall that the contraction mapping is induced by the mapping

M ⊗Se P−m → HomR(HomSe(P
−m, N), (M ⊗S N)⊗Se P 0)

x⊗ p 7→ ι?(x⊗ p)



24 THIERRY LAMBRE AND PATRICK LE MEUR

Denote L∂(ιψ(x⊗ p))− ιL∂(ψ)(x⊗ p) by δ. Then,

δ = L∂((x⊗ ψ(p))⊗ p0)− (x⊗ L∂(ψ)(p))⊗ p0

= ∂M (x)⊗ ψ(p)⊗ p0 + x⊗ ∂N (ψ(p))⊗ p0 + x⊗ ψ(p)⊗ ∂0(p0)
−x⊗ ∂N (ψ(p))⊗ p0 + x⊗ ψ(∂−m(p))⊗ p0

= ιψ(L∂(x⊗ p)) + x⊗ ψ(p)⊗ ∂0(p0) .

Note that ∂0(p0) lies in the image of d : P−1 → P 0 because the image of p0 under
P 0 → S is 1 and H0(∂•) = ∂. These considerations therefore prove (3) when
m = n.

Now assume that S is projective in Mod(R). Then, the equivariance may be
checked at the level of Hochschild (co)chains. Let o = (x|s1| · · · |sm) ∈ S⊗m and
ψ ∈ HomR(S⊗n, N). Then,

L∂(ιψ(o))− ιL∂(ψ)(o)

=L∂(x⊗ ψ(s1| · · · |sn)|sn+1| · · · |sm)− (x⊗ L∂(ψ)(s1| · · · |sn)|sn+1| · · · |sm)

=(∂M (x)⊗ ψ(s1| · · · |sn)|sn+1| · · · |sm) + (x⊗ ∂N (ψ(s1| · · · |sn))|sn+1| · · · |sm)

+
m∑

j=n+1

(x⊗ ψ(s1| · · · |sn)|sn+1| · · · |∂(sj)| · · · |sm)

− (x⊗ ∂N (ψ(s1| · · · |sn))|sn+1| · · · |sm)

+
n∑
j=1

(x⊗ ψ(s1| · · · |∂(sj)| · · · |sn)|sn+1| · · · |sm)

=ιψ(L∂(o)) ,

which proves (3) for all m,n ∈ N when S is projective in Mod(R).

(4) Note that Ls∂ is defined with respect to the derivation s∂M (= λs ◦ ∂M ).
Assume that M is symmetric as an S-bimodule. Therefore, the mapping

λs ◦ ∂• : P • → P •

is a derivation relative to s∂. Let ψ ∈ HomSe(P
•,M) be a cocycle with cohomology

class denoted by c. Since ψ ◦ λs = λs ◦ ψ,

Ls∂(ψ) = (λs ◦ ∂M ) ◦ ψ − ψ ◦ (λs ◦ ∂•) = λs ◦ L∂(ψ) .

Taking cohomology classes yields that Ls∂(c) = λs ◦ L∂(c).

(5) Recall that, here, ∂M is taken equal to

(s∂)e : Se → Se

s1 ⊗ s2 7→ s∂(s1)⊗ s2 + s1 ⊗ s∂(s2) .

Let ψ ∈ HomSe(P
−n,M) be a cocycle with cohomology class denoted by c. Let h

be as in part (3) of Lemma 4.2.1. Then,

Ls∂(ψ) = (s∂)e ◦ ψ − ψ ◦ (s∂)•

= (s∂ ⊗ 1 + 1⊗ s∂) ◦ ψ − ψ ◦ (s∂)•

= λs ◦ (∂ ⊗ 1) ◦ ψ + ρs ◦ (1⊗ ∂) ◦ ψ − ψ ◦ (s∂)• .
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Using (4.9), the equality becomes

Ls∂(ψ)=λs ◦ (∂ ⊗ 1) ◦ ψ + ρs ◦ (1⊗ ∂) ◦ ψ − λs ◦ ψ ◦ ∂• − ψ ◦ h ◦ d− ψ ◦ d︸ ︷︷ ︸
=0

◦ h .

Using [∂, ρs] = ρ∂(s), it then becomes

Ls∂(ψ) =λs ◦ (∂ ⊗ 1) ◦ ψ + (1⊗ ∂) ◦ ρs ◦ ψ − ρ∂(s) ◦ ψ − λs ◦ ψ ◦ ∂• − ψ ◦ h ◦ d
=λs ◦ (∂ ⊗ 1) ◦ ψ − ρ∂(s) ◦ ψ + (1⊗ ∂) ◦ ψ ◦ (ρs − λs)

+(1⊗ ∂) ◦ ψ ◦ λs − λs ◦ ψ ◦ ∂• − ψ ◦ h ◦ d .

Using (4.2), this becomes

Ls∂(ψ) =λs◦(∂⊗1)◦ψ − ρ∂(s)◦ψ − (1⊗∂)◦ψ◦d︸︷︷︸
=0

◦ks

−(1⊗∂)◦ψ◦ks◦d+ (1⊗∂)◦ψ◦λs︸ ︷︷ ︸
=(1⊗∂)◦λs◦ψ=λs◦(1⊗∂)◦ψ

− λs◦ψ◦∂• − ψ◦h◦d

=λs◦(∂⊗1 + 1⊗∂)◦ψ − ρ∂(s)◦ψ − λs◦ψ◦∂• − (ψ◦h+ (1⊗∂)◦ψ◦ks)◦d

=λs◦(L∂(ψ))− ρ∂(s)◦ψ − (ψ◦h+ (1⊗∂)◦ψ◦ks)◦d .

Now, consider the following R-linear mapping denoted by f :

ψ ◦ h+ (1⊗ ∂) ◦ ψ ◦ ks : P−n+1 → Se .

This is a morphism of S-bimodules. Indeed,
• it is a morphism of left S-modules because so are ψ, 1 ⊗ ∂, ks and h (see

(4.10));
• since ψ and ks are morphisms of S-bimodules, then, for all t ∈ S,

f ◦ ρt = ψ ◦ h ◦ ρt + (1⊗ ∂) ◦ ρt ◦ ψ ◦ ks

=
(4.10)

ψ ◦ (ρt ◦ h− ρ∂(t) ◦ ks) + (1⊗ ∂) ◦ ρt ◦ ψ ◦ ks

= ρt ◦ ψ ◦ h− ρ∂(t) ◦ ψ ◦ ks + (1⊗ ∂) ◦ ρt ◦ ψ ◦ ks

= ρt ◦ ψ ◦ h+ ρt ◦ (1⊗ ∂) ◦ ψ ◦ ks

= ρt ◦ f .

Therefore, Ls∂(ψ) and λs◦L∂(ψ)−ρ∂(s)◦ψ are cohomologous. Since so are λ∂(s)◦ψ
and ρ∂(s) ◦ ψ it follows that

Ls∂(c) = λs ◦ L∂(c)− λ∂(s)(c) .

�

4.4. The action of L on Ext•Se(S, S
e). According to Lemma 4.3.1, the mapping

(4.13) L× ExtnSe(S, S
e) → ExtnSe(S, S

e)
(α, e) 7→ α · e := L∂α(e)

endows Ext•Se(S, S
e) with a compatible left S oL-module structure in the sense of

(3.13), that is, a left S o L-module structure such that, for all e ∈ Ext•Se(S, S
e),

α ∈ L and s ∈ S,

(4.14) (sα) · e = s · (α · e)− α(s) · e .
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This left S o L-module structure on Ext•Se(S, S
e) does not define a left U -module

structure in general. However, Lemma 3.5.1 yields that Ext•Se(S, S
e)∨ is a right

U -module by defining θ · α, for all θ ∈ Ext•Se(S, S
e)∨ and α ∈ L, as

θ · α : ExtnSe(S, S
e) → S
e 7→ −α(θ(e)) + θ(α · e) .

4.5. Particular case of Van den Bergh and Calabi-Yau duality. Recall that,
whenever TorS

e

n (S, S) ' S as S-(bi)modules, a volume form is a free generator ωS
of TorS

e

n (S, S); and the associated divergence

div : DerR(S)→ S

is defined such that, for all ∂ ∈ DerR(S),

(4.15) L∂(ωS) = div(∂)ωS .

When S is Calabi-Yau in dimension n, any free generator eS of the left S-module
ExtnSe(S, S

e) defines an isomorphism of S-bimodules

θ : S → ExtnSe(S, S
e)

s 7→ seS .

In such a situation, the fundamental class cS ∈ TorS
e

n (S,ExtnSe(S, S
e)) (see Sec-

tion 2.1) is a free generator of the left S-module TorS
e

n (S,ExtnSe(S, S
e)); and hence

the preimage ωS of cS under the bijective mapping

θ∗ : TorS
e

n (S, S)→ TorS
e

n (S,ExtnSe(S, S
e)) .

is a volume form for S, thus defining a divergence operator.

Proposition 4.5.1. The following properties hold.
(1) Assume the following:

• R is Noetherian and S is finitely generated as an R-algebra.
• S is projective in Mod(R).
• S has Van den Bergh duality with dimension n.

Then there is an isomorphism of S-modules compatible with Lie derivatives

ExtnSe(S, S
e) ' ΛnSDerR(S) .

(2) Assume that S is Calabi-Yau in dimension n. Let eS be a free generator of
the left S-module ExtnSe(S, S

e). Let div be the resulting divergence operator.
Then, for all ∂ ∈ DerR(S),

(4.16) L∂(eS) = −div(∂)eS .

Proof. In both cases, S lies in per(Se). Denote the fundamental class of S by cS .
In view of part (3) of Lemma 4.3.1, the definition of cS gives that

(4.17) L∂(cS) = 0 .

(1) Denote ExtnSe(S, S
e) by D. In view of Proposition 2.2.1, [HKR62, Theorem

3.1] applies and yields an isomorphism of S-modules

(4.18) TorS
e

n (S, S) ' ΛnSΩS/R .

Following [Rin63, Section 9], this isomorphism is compatible with Lie derivatives.
Identify D−1 with HomS(D,S) and define ∂D−1 as follows, for all ∂ ∈ DerR(S),

∂D−1 : HomS(D,S) → HomS(D,S)
f 7→ ∂ ◦ f − f ◦ L∂ .

The evaluation isomorphism

(4.19) ev : D ⊗S D−1 ∼−→ S
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is compatible with Lie derivatives in the following sense, where ∂ ∈ DerR(S),

(4.20) ∂ ◦ ev = ev ◦ (L∂ ⊗ Id + Id⊗ ∂D−1) .

Besides, the duality isomorphism

(4.21) ι?(cS) : Ext0
Se(S,D

−1)→ TorS
e

n (S,D ⊗S D−1)

is compatible with the action of Lie derivatives because of (4.17) (see part (3) of
Lemma 4.3.1). Combining (4.18), (4.19), (4.20) and (4.21) yields an isomorphism
that is compatible with Lie derivatives

D−1 ' ΛnSΩS/R .

This proves (1).

(2) Keep the notation cS , ωS , θ, θ∗ for the objects defined from eS before the
statement of the proposition. Let ∂ ∈ DerR(S). There exists λ ∈ S such that

L∂(eS) = λeS .

Now, for all s⊗ p ∈ S ⊗Se P−n,

L∂(θ∗(s⊗ p)) = L∂(seS ⊗ p)
= ∂(s)eS ⊗ p+ sL∂(eS)⊗ p+ seS ⊗ ∂•(p)
= θ∗(L∂(s⊗ p)) + λθ∗(s⊗ p) .

Therefore,

0 = L∂(cS) = L∂(θ∗(ωS)) = θ∗( L∂(ωS)︸ ︷︷ ︸
=div(∂)ωS

) + λθ∗(ωS) = (λ+ div(∂))cS .

Since cS is regular, λ = −div(∂). �

5. Proof of the main theorems

The main results of this article are proved in this section. For this purpose, a
description of Ext•Ue(U,U

e) is made in 5.1; the underlying S-module is expressed in
terms of Ext•Se(S, S

e) and Ext•U (S,U); and the U -bimodule structure is described
using the functor F : Mod(U) → Mod(Ue) and the action of L on Ext•Se(S, S

e)
introduced in Section 4. This description is applied in 5.2 in order to prove Theo-
rem 1. And Theorem 2 and Corollary 1 are proved in 5.3 and 5.4 by specialising
to the situations where Exttop

Se (S, Se) and Exttop
U (S,U) are free, and where (S,L)

arises from a Poisson bracket on S, respectively.
Throughout the section, Ext•Se(S, S

e) is endowed with its compatible left SoL-
module structure introduced in 4.4.

5.1. The inverse dualising bimodule of U . This subsection proves the following
result.

Proposition 5.1.1. Let R be a commutative ring and d ∈ N. Let (S,L) be a
Lie-Rinehart algebra over R. Assume the following:
(a) S is flat as an R-module.
(b) for all n ∈ N, the S-module ExtnSe(S, S

e) is projective.
(c) S ∈ per(Se).
(d) L is finitely generated and projective with constant rank equal to d in Mod(S).
Then, ΛdSL

∨ ⊗S Ext•Se(S, S
e) is a graded left U -module such that, for all α ∈ L,

c ∈ Ext•Se(S, S
e) and ϕ ∈ ΛdSL

∨,

α · (ϕ⊗ c) = −ϕ · α⊗ c+ ϕ⊗ α · c .
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Moreover, U is homologically smooth. Finally, there is an isomorphism of graded
right Ue-modules

Ext•Ue(U,U
e) ' F (ΛdSL

∨ ⊗S Ext•−dSe (S, Se)) .

For this subsection, assume (a), (b), (c) and (d) are true, and consider
• a bounded resolution Q• → S in Mod(U) by finitely generated and projec-

tive modules (see [Rin63, Lemma 4.1]),
• a bounded resolution π : P • → S in Mod(Se) by finitely generated and

projective modules,
• an injective resolution j : Ue → I• in Mod(Ue ⊗ (Ue)op).

Since S is flat over R and L is projective in Mod(S), part (2) of Lemma 3.0.1 gives
that Ue is flat over R. Therefore, the extension-of-scalars functor

−⊗ Ue : Mod(Ue)→ Mod(Ue ⊗ (Ue)op)

is exact. Hence, the restriction-of-scalars-functor transforms injective Ue-bimodules
into injective left Ue-modules. Thus, I• is an injective resolution of Ue in Mod(Ue).
Therefore, there is an isomorphism of graded right Ue-modules

(5.1) Ext•Ue(U,U
e) ' H•HomUe(U, I

∗) .

The right-hand side is a right Ue-module by means of I∗.
The proof of the above proposition is divided into separate lemmas.

Lemma 5.1.2. U is homologically smooth.

Proof. Since U is projective in Mod(S) (see part (2) of Lemma 3.0.1), the functor

F : Mod(U)→ Mod(Ue)

is exact. Moreover, F (S) ' U and S ∈ per(U). Therefore, in order to prove
that U is homologically smooth, it suffices to prove that F (U) ∈ per(Ue), which is
equivalent to F (U) being compact in the derived category D(Ue) of complexes of U -
bimodules. Here is a proof of this fact. Let (Mk)k∈K be a family in D(Ue), denote
⊕k∈KMk byM , and consider fibrant resolutions of complexes of U -bimodulesMk →
i(Mk), for all k ∈ K, and M → i(M). Since S is homologically smooth, then S is
compact in D(Se), and hence the following natural mapping is a quasi-isomorphism,⊕

k∈K

HomSe(P
•,Mk)→ HomSe(P

•,M) .

Since P • is a right bounded complex of projective S-bimodules, then the func-
tor HomSe(P

•,−) preserves quasi-isomorphisms, and hence the following natural
mapping is a quasi-isomorphism,⊕

k∈K

HomSe(P
•, i(Mk))→ HomSe(P

•, i(M)) .

Since U is projective over S on both sides, Ue is projective in Mod(Se). Therefore,
for all fibrant complexes I of U -bimodules, the functor HomSe(−, I) preserves quasi-
isomorphisms. Accordingly, the following natural mapping is a quasi-isomorphism:⊕

k∈K

HomSe(S, i(Mk))→ HomSe(S, i(M)) .

Since the pair (F,G) is adjoint and G is induced by the functor HomSe(S,−), the
following natural mapping is a quasi-isomorphism:⊕

k∈K

HomUe(F (U), i(Mk))→ HomUe(F (U), i(M)) .
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Taking cohomology in degree 0 yields that the following natural mapping is bijec-
tive: ⊕

k∈K

D(Ue)(F (U), i(Mk))→ D(Ue)(F (U), i(M)) .

This proves that F (U) is compact in D(Ue). Thus, U is homologically smooth. �

The authors thank Bernhard Keller for having pointed out an incorrect argument
in a previous version of this proof.

Lemma 5.1.3. There is an isomorphism of graded right Ue-modules

(5.2) Ext•Ue(U,U
e) ' H•(HomU (Q∗, U)⊗U G(I∗)) .

Proof. Because of the isomorphism F (S) ' U in Mod(Ue) and the adjunction
(F,G), there is a functorial isomorphism of complexes of right Ue-modules

(5.3) HomUe(U, I
•) ' HomU (S,G(I•)) .

Since F is exact and the pair (F,G) is adjoint, G(I•) is a left bounded complex
of injective left U -modules. Hence, HomU (−, G(I•)) preserves quasi-isomorphisms.
Thus, the quasi-isomorphism Q• → S induces a quasi-isomorphism of complexes of
right Ue-modules

(5.4) HomU (S,G(I•))→ HomU (Q•, G(I•)) .

Since Q• is bounded and consists of finitely generated projective left U -modules,
the following canonical mapping is a functorial isomorphism:

(5.5) HomU (Q•, U)⊗U G(I•)→ HomU (Q•, G(I•)) .

Note that, whether in (5.3), (5.4), or (5.5), the involved right Ue-module structures
are inherited from I•. Thus, the announced isomorphism is proved. �

In order to examine the right-hand side of (5.2) by means of a spectral sequence,
the following lemma describes H•(G(I∗)) as a graded U − Ue-bimodule.

Lemma 5.1.4. Consider Ext•Se(S, S
e) as a left S o L-module as in Section 4.4.

Then, there is a U − Ue-bimodule structure on Ext•Se(S, S
e) ⊗Se Ue such that the

Ue-module structure is inherited from Ue and for all α ∈ L, c ∈ Ext•Se(S, S
e) and

u, v ∈ U ,

α · (c⊗ (u⊗ v)) = α · c⊗ (u⊗ v) + c⊗ ((α⊗ 1− 1⊗ α) · (u⊗ v)) .

For this structure, there is an isomorphism of graded U − Ue-bimodules

H•(G(I∗)) ' Ext•Se(S, S
e)⊗Se Ue .

Proof. The object G(I•) is HomSe(S, I
•) as a complex of S-modules, its right Ue-

module structure is inherited from I•, and the one of left U -module is given in
Section 3.2.

First, since Ue is projective in Mod(Se) and I• consists of injective left Ue-
modules, then I• is a left bounded complex of injective left Se-modules. Hence,
HomSe(−, I•) preserves quasi-isomorphisms. Thus, π : P • → S induces a quasi-
isomorphism of complexes of right Se-modules

(5.6) π′ : HomSe(S, I
•)→ HomSe(P

•, I•) .

For all α ∈ L, let ∂•α : P • → P • be a derivation relative to ∂α : S → S (see
Section 4.2), and denote by δ•α the mapping from I• to I• given by

i 7→ (α⊗ 1− 1⊗ α) · i .
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Then, define α · f and α · g, for all f ∈ HomSe(S, I
•) and g ∈ HomSe(P

•, I•), by

α · f = δ•α ◦ f − f ◦ ∂α
α · g = δ•α ◦ g − g ◦ ∂•α ;

since π ◦ ∂•α = ∂α ◦ π,
π′(α · f) = α · π′(f) .

The hypotheses on P • yield an isomorphism of complexes of right Ue-modules,

(5.7) ev : HomSe(P
•, Se)⊗Se I• → HomSe(P

•, I•) .

Endow the left-hand side term with the following action of L. For all α ∈ L and
ϕ ⊗ i ∈ HomSe(P

•, Se) ⊗Se I•, denote by α · (ϕ ⊗ i) the (well-defined) element of
HomSe(P

•, Se)⊗Se I•,
α · ϕ⊗ i+ ϕ⊗ (δ•αi) .

The assignment ϕ⊗ i 7→ α · (ϕ⊗ i) is a morphism of complexes of R-modules from
HomSe(P

•, Se)⊗Se I• to itself. In view of (4.8) and of the identity

(α⊗ 1− 1⊗ α) · ((s⊗ t) · j) = ∂α(s⊗ t) · j + (s⊗ t) · (α⊗ 1− 1⊗ α) · j

in I•, for all s, t ∈ S and j ∈ I•, the following holds

(5.8) ev(α · (ϕ⊗ i)) = α · ev(ϕ⊗ i) .

HomSe(P
•, Se) is also a bounded complex of projective right Se-modules. Hence,

the functor HomSe(P
•, Se)⊗Se − preserves quasi-isomorphisms. Thus, j : Ue → I•

induces a quasi-isomorphism of right Ue-modules,

(5.9) Id⊗ j : HomSe(P
•, Se)⊗Se Ue → HomSe(P

•, Se)⊗Se I• .

Endow the left-hand side term with the following action of L. For all α ∈ L,
ϕ ∈ HomSe(P

•, Se) and u, v ∈ U , denote by α · (ϕ ⊗ (u ⊗ v)) the following (well-
defined) element of HomSe(P

•, Se)⊗Se Ue:

α · ϕ⊗ (u⊗ v) + ϕ⊗ ((α⊗ 1− 1⊗ α) · (u⊗ v)) ;

The assignment ϕ ⊗ (u ⊗ v) 7→ α · (ϕ ⊗ (u ⊗ v)) is a morphism of complexes of
R-modules from HomSe(P

•, Se)⊗Se Ue to itself, and

(Id⊗ j)(α · (ϕ⊗ (u⊗ v)) = α · ((Id⊗ j)(ϕ⊗ (u⊗ v)))

because j : Ue → I• is a morphism of complexes of Ue − Ue-bimodules.
Since Ue is projective in Mod(Se), there is an isomorphism of right Ue-modules,

(5.10) H•(HomSe(P
∗, Se)⊗Se Ue) ' Ext•Se(S, S

e)⊗Se Ue .

For all cocycles ϕ ∈ HomSe(P
•, Se), with cohomology class denoted by c, and for

all α ∈ L and u, v ∈ U , the image under (5.10) of the cohomology class of

α · (ϕ⊗ (u⊗ v))

is

(5.11) α · c⊗ (u⊗ v) + c⊗ ((α⊗ 1− 1⊗ α) · (u⊗ v))

where α · c is defined in 4.4 (see (4.13))
Combining (5.6), (5.7), (5.9), (5.10) yields an isomorphism of right Ue-modules,

(5.12) Ext•Se(S, S
e)⊗Se Ue

∼−→ H•(G(I∗)) ,

such that, for all α ∈ L, c ∈ Ext•Se(S, S
e) and u, v ∈ U , if γ denotes the image of

c⊗ (u⊗ v) under (5.12), then α · γ is the image of (5.11).
Thus, applying part (1) of Lemma 3.5.2 to N = Ext•Se(S, S

e) yields the an-
nounced conclusion. �
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Proof of Proposition 5.1.1. The statement relative to the left U -module structure
on ΛdSL

∨ ⊗ Ext•Se(S, S
e) follows from Lemma 3.5.1, and Lemma 5.1.2 shows that

U is homologically smooth. The (first quadrant, cohomological) spectral sequence
of the bicomplex

(5.13) (HomU (Qp, U)⊗U G(Iq))p,q

converges to H•(HomU (Q∗, U)⊗U G(I∗)) and its Ep,q2 -term is, for all p, q ∈ Z,

Hp
h(Hq

v (HomU (Q•, U)⊗U G(I•)) .

Since HomU (Q•, U) consists of projective right U -modules, there is an isomorphism
of right Ue-modules, for all p, q ∈ Z,

(5.14) Hq(HomU (Qp, U)⊗U G(I•)) ' HomU (Qp, U)⊗U Hq(G(I•)) .

The description of H•(G(I∗)) made in Lemma 5.1.4 combines with (5.14) into the
following isomorphism of right Ue-modules, for all p, q ∈ Z,

(5.15) Hq(HomU (Qp, U)⊗U G(I•)) ' HomU (Qp, U)⊗U (ExtqSe(S, S
e)⊗Se Ue) .

Using Lemma 3.5.2 (part (2)), this isomorphism yields isomorphism of right Ue-
modules, for all p, q ∈ Z:

(5.16) Hq(HomU (Qp, U)⊗U G(I•)) ' F (HomU (Qp, U)⊗S ExtqSe(S, S
e)) .

Given that F is an exact functor, that ExtqSe(S, S
e) is projective in Mod(S) for all

q and that (S,L) has duality in dimension d, it follows from (5.16) that there is an
isomorphism of right Ue-modules, for all p, q ∈ Z,

Hp
h(Hq

v (HomU (Q•, U)⊗UG(I•))) '
{
F (ExtdU (S,U)⊗S ExtqSe(S, S

e)) if p = d,
0 if p 6= d.

Therefore, the spectral sequence of the bicomplex (5.13) degenerates at E2. Thus,

H•(HomU (Q∗, U)⊗U G(I∗)) ' F (ExtdU (S,U)⊗S Ext•−dSe (S, Se)) in Mod(Se).

The conclusion follows from (5.2) and from the isomorphism ExtdU (S,U) ' ΛdSL
∨

in Mod(U) established in [Hue99, Theorem 2.10] �

5.2. Proof of the main theorem.

Proof of Theorem 1. Following Proposition 5.1.1, U is homologically smooth and
there is an isomorphism of graded right Ue-modules

Ext•Ue(U,U
e) ' F (ΛdSL

∨ ⊗S Ext•−dSe (S, Se)) .

According to Proposition 3.6.1, the functor F transforms left U -modules that are
invertible as S-modules into invertible U -bimodules. Note that

• ΛdSL
∨ is invertible as an S-module because L is projective with constant

rank and
• Ext•Se(S, S

e) is concentrated in degree n and ExtnSe(S, S
e) is invertible as

an S-module because S has Van den Bergh duality.

Thus, Ext•Ue(U,U
e) is concentrated in degree n+d and Extn+d

Ue (U,Ue) is invertible
as a U -bimodule. Hence, U has Van den Bergh duality in dimension n+ d. �
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5.3. Proof of Theorem 2. The hypotheses of Theorem 2 are assumed throughout
the subsection. Let ϕL be a free generator of the S-module ΛdSL

∨. Let eS be a free
generator of the S-module ExtnSe(S, S

e). Therefore, there exist mappings

λL, λS : L→ S

such that, for all α ∈ L, {
α · eS = λS(α) · eS
ϕL · α = λL(α) · ϕS .

Some basic properties of these are summarised below.

Lemma 5.3.1. Let λ be either one of λS or λL. Then, for all α, β ∈ L and s ∈ S,
(1) λ(sα) = sλ(α)− α(s);
(2) λ([α, β]) = α(λ(β))− β(λ(α)).

Proof. Assume that λ = λS . Let s ∈ S and α ∈ L. Then, using 4.4,

(sα) · eS = s · (α · eS)− α(s) · eS
= (sλ(α)− α(s)) · eS ,

which proves (1), and

α · (β · eS) = α · (λ(β) · eS)
= α(λ(β)) · eS + λ(β) · (α · eS)
= (α(λ(β)) + λ(α)λ(β)) · eS ,

from which (2) may be proved directly. The proof when λ = λL is analogous, using
the right U -module structure of ΛdSL

∨ instead of 4.4. �

As proved later, the following automorphism is a Nakayama automorphism for
U .

Lemma 5.3.2. There exists a unique R-algebra homomorphism,

ν : U → U ,

such that, for all s ∈ S and α ∈ L,{
ν(s) = s
ν(α) = α+ λL(α)− λS(α) .

This is an automorphism of R-algebra.

Proof. The uniqueness is immediate. For all α ∈ L, denote α + λL(α)− λS(α) by
να. Then, for all s ∈ S and α, β ∈ L,

[να, νβ ] = [α+ λL(α)− λS(α), β + λL(β)− λS(β)]
=

Lemma 5.3.1
[α, β] + λL([α, β])− λS([α, β]) = ν[α,β]

νsα = sα+ λL(sα)− λS(sα)
=

Lemma 5.3.1
sα+ sλL(α)− sλS(α) = sνα

[να, s] = [α+ λL(α)− λL(α), s] = α(s) .

This proves the existence of ν. Note that ν preserves the filtration of U by the
powers of L and that gr(ν) is the identity mapping of U . Accordingly, ν is bijective.

�

Now it is possible to prove Theorem 2.
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Proof of Theorem 2. From Theorem 1, U has Van den Bergh duality in dimension
n+ d and there is an isomorphism of U -bimodules

(5.17) Extn+d
Ue (U,Ue) ' F (ΛdSΛ∨ ⊗S ExtnSe(S, S

e)) ,

where the tensor product inside F (•) is a left U -module by (3.8).
Recall that ΛdSL

∨ and ExtnSe(S, S
e) are freely generated by ϕL and eS , respec-

tively. Therefore, the following mapping is an isomorphism of left U -modules (see
Section 3.3)

(5.18) Φ: U → F (ΛdSL
∨ ⊗S ExtnSe(S, S

e))
u 7→ u⊗ (ϕL ⊗ eS) .

For all s ∈ S, α ∈ L and u ∈ U ,

Φ(u)s = (u⊗ (ϕL ⊗ eS)) · s = us⊗ (ϕL ⊗ eS) = Φ(us) ,

Φ(u)α = (u⊗ (ϕL ⊗ eS)) · α
= uα⊗ (ϕL ⊗ eS)− u⊗ α · (ϕL ⊗ eS)
= uα⊗ (ϕL ⊗ eS)− (−u⊗ (ϕL · α⊗ eS) + u⊗ (ϕL ⊗ α · eS))
= (u(α+ λL(α)− λS(α)))⊗ (ϕL ⊗ eS)
= Φ(u(α+ λL(α)− λS(α))) .

Thus, denoting by ν the automorphism of U considered in Lemma 5.3.2, then, for
all u, v ∈ U ,

(5.19) Φ(u) · v = Φ(uν(v)) .

Combining (5.17), (5.18) and (5.19) yields that there is an isomorphism of bimodules

Extn+d
Ue (U,Ue) ' Uν .

Since λS = −div (see Proposition 4.5.1), this proves Theorem 2. �

5.4. Case of Poisson algebras.

Proof of Corollary 1. From Proposition 2.2.1, S has Van den Bergh duality in
dimension n. Moreover, Proposition 4.5.1 yields an isomorphism of S-modules
ΛnSDerR(S) ' ExtnSe(S, S

e) which is compatible with the action of Lie derivatives.
Finally, according to (1.3), the dualising module of (S,ΩS/R) is ΛnSDerR(S) with
right U -module structure such that, for all s ∈ S and ϕ ∈ ΛnSDerR(S),

ϕ · ds = −L{s,−}(ϕ) .

Using these considerations, the corollary follows from Theorems 1 and 2. �

6. Examples

6.1. The case where L is free as an S-module. In this subsection, it is assumed
that L is free as an S-module. Consider a basis (α1, . . . , αd) of L over S. Denote
the dual basis of L∨ by (α∗1, . . . , α

∗
d). In particular, ΛdSL

∨ is free of rank one in
Mod(S), with a generator denoted by ϕL,

ϕL = α∗1 ∧ · · · ∧ α∗d .

For all i ∈ {1, . . . , d}, consider the matrix of adαi , denoted by (sij,k)j,k ∈ Md(S).
Hence, for all i, k ∈ {1, . . . , d},

[αi, αk] =

d∑
j=1

sij,kαj .
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In this situation, the action of L on Λ•SL by Lie derivatives specialises as follows.
For all i, j, k ∈ {1, . . . , d},

(λαi(α
∗
j ))(αk) = αi(α

∗
j (αk))− α∗j ([αi, αk])

= −sij,k .

Hence, for all i, j ∈ {1, . . . , d},

λαi(α
∗
j ) = −

d∑
k=1

sij,kα
∗
k .

Thus, the right U -module structure of ΛdSL
∨ is such that, for all α ∈ L,

(6.1) ϕL · α = Tr(adα)ϕL .

Using this simplified description of ΛdSL
∨ yields the following corollary of the main

theorems of this article.

Corollary 6.1.1. Let R be a commutative ring. Let (S,L) be a Lie-Rinehart algebra
of R. Denote by U its enveloping algebra. Assume that

• S is flat as an R-module,
• S has Van den Bergh duality in dimension n,
• L is free of rank d as an S-module.

Let (α1, . . . , αd) be a basis of L over S as considered previously. Then, U has Van
den Bergh duality in dimension n+ d and there is an isomorphism of U -bimodules

Extn+d
Ue (U,Ue) ' U ⊗S ExtnSe(S, S

e) ,

where the left U -module structure on U ⊗S ExtnSe(S, S
e) is the natural one and the

right U -module structure is such that, for all u ∈ U , e ∈ ExtnSe(S, S
e) and α ∈ L,

(u⊗ e) · α = uα⊗ e+ u⊗ Tr(adα)e− u⊗ L∂α(e) .

If, moreover, S is Calabi-Yau, then U is skew Calabi-Yau and each volume form
on S determines a Nakayama automorphism ν ∈ AutR(U) such that, for all s ∈ S
and α ∈ L, {

ν(s) = s
ν(α) = α+ Tr(adα) + div(∂α) ,

where div denotes the divergence of the chosen volume form.

Proof. In view of (6.1), there is an isomorphism of right U -modules

ΛdSL
∨ ' S ,

where the right U -module structure on the right-hand side term is such that, for
all α ∈ L,

1 · α = Tr(adα) .

The corollary therefore follows directly from Theorems 1 and 2. �

The previous corollary applies to any Lie-Rinehart algebra arising from a Poisson
structure on R[x1, . . . , xn], n ∈ N\{0, 1}.

Example 6.1.2. Let S = R[x, y]. Let P ∈ S. This defines a Poisson structure on
S such that

{x, y} = P .

Let L := ΩS/R and consider (S,L) as a Lie-Rinehart algebra over R such that, for
all s, t ∈ S

• [ds, dt] = d{s, t};
• ∂ds = {s,−}.
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Then (dx, dy) is a basis of ΩS/R over S. Note that{
Tr(addx) = div(∂dx) = ∂P

∂y

Tr(addy) = div(∂dy) = −∂P∂x .

From Corollary 6.1.1, U is skew Calabi-Yau in dimension 4 and has a Nakayama
automorphism ν ∈ AutR(S) such that

ν(x) = x , ν(dx) = dx+ 2∂P∂y

ν(y) = y , ν(dy) = dy − 2∂P∂x .

By considering the filtration of U by the powers of the image of L in U , with
associated graded algebra the symmetric algebra of L over S (see [Rin63, Theorem
3.1]), it appears that U× = S× = R×. Accordingly, U has no nontrivial inner
automorphism. Consequently, U is Calabi-Yau if and only if ν = IdU , that is, if
and only if char(R) = 2, or else P ∈ R.

Example 6.1.3. Let S = R[x, y, z]. Let Px, Py, Pz ∈ S be such that

−→
P ∧ curl(

−→
P ) = 0 ,

where
−→
P denotes (

Px
Py
Pz

)
.

Hence, the following defines a Poisson bracket on S,

{x, y} = Pz , {y, z} = Px , {z, x} = Py .

As in the previous example, let (S,L := ΩS/R) be the associated Lie-Rinehart
algebra over R. As is well-known,

{x,−} = Pz
∂
∂y − Py

∂
∂z , {y,−} = Px

∂
∂z − Pz

∂
∂x , {z,−} = Py

∂
∂x − Px

∂
∂y .

Therefore, using the basis (dx, dy, dz) of ΩS/R over S,(
div(∂dx)
div(∂dy)

div(∂dz)

)
=

(
Tr(addx)
Tr(addy)

Tr(addz)

)
= curl(

−→
P ) .

Using Corollary 6.1.1, it follows that U is skew Calabi-Yau in dimension 6 and has
a Nakayama automorphism ν ∈ AutR(S) such that(

ν(x)
ν(y)
ν(z)

)
=
(
x
y
z

)
and

(
ν(dx)
ν(dy)
ν(dz)

)
=
(
dx
dy
dz

)
+ 2 curl(

−→
P ) .

As in the previous example, there are no nontrivial inner automorphisms for U .
Hence, U is Calabi-Yau if and only if char(R) = 2, or else curl(

−→
P ) = 0. In

particular, when R contains Q as a subring, then U is Calabi-Yau if and only if the
Poisson bracket is Jacobian, that is, there exists Q ∈ S such that P =

−−→
grad(Q).

By the Quillen-Suslin Theorem, when R is a field and n ∈ N, any R[x1, . . . , xn]-
module that is finitely generated and projective is free. Hence, Corollary 6.1.1 also
applies to all Lie-Rinehart algebras of the shape (R[x1, . . . , xn], L), where R is a
field.
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6.2. On two dimensional Nambu-Poisson structures. Following Corollary 1,
U is skew Calabi-Yau when S is flat over R and Calabi-Yau and (S,L) is given
by a Poisson bracket on S. Assuming these properties, this section computes a
Nakayama automorphism of U for a class of examples of two dimensional Nambu-
Poisson structures (see [LGPV13, Section 8.3]).

Let S = R[x, y, z]/(P ) where P = 1 +T for some T ∈ R[x, y, z] which is (p, q, r)-
homogeneous in the sense that p, q, r ∈ R and t := pα + qβ + rγ is a unit in R
which does not depend on the monomial xαyβzγ appearing in T . The hypotheses
imply the following equality in S

(6.2) px
∂P

∂x
+ qy

∂P

∂y
+ rz

∂P

∂z
= −t (∈ R×) .

Let Q ∈ R[x, y, z] and endow S with the Poisson structure such that

(6.3) {x, y} = Q
∂P

∂z
, {y, z} = Q

∂P

∂x
, {z, x} = Q

∂P

∂y
.

Consider (S,L := ΩS/R) as a Lie-Rinehart algebra such that, for all s, t, s′ ∈ S,
• [ds, dt] = d{s, t},
• (sdt)(s′) = s{t, s′}.

Consider the following 2-form on S

ωS = pxdy ∧ dz + qydz ∧ dx+ rzdx ∧ dy .

According to (6.2), ΩS/R is a projective S-module of rank 2. And the relation

∂P

∂x
dx+

∂P

∂y
dy +

∂P

∂z
dz = 0

in ΩS/R yields the following relations in Λ2
SΩS/R

∂P
∂x dx ∧ dy = ∂P

∂z dy ∧ dz

∂P
∂y dy ∧ dz = ∂P

∂x dz ∧ dx

∂P
∂z dz ∧ dx = ∂P

∂y dx ∧ dy .

Combining with (6.2) yields

dx ∧ dy = −t−1 ∂P
∂z ωS

dy ∧ dz = −t−1 ∂P
∂x ωS

dz ∧ dx = −t−1 ∂P
∂y ωS .

Thus, ωS is a volume form of S.
In order to determine the divergence of ωS , consider the derivations δx, δy, δz ∈

DerR(S) given by

δx : x 7→ 0

y 7→ ∂P
∂z

z 7→ −∂P∂y

δy : x 7→ −∂P∂z

y 7→ 0

z 7→ ∂P
∂x

δz : x 7→ ∂P
∂y

y 7→ −∂P∂x

z 7→ 0 .

Note that
{x,−} = Qδx, {y,−} = Qδy and {z,−} = Qδz.
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Then,

ιδx(ωS) = ιδx(pxdy ∧ dz + qydz ∧ dx+ rzdx ∧ dy)

= px(∂P∂z dz + ∂P
∂y dy)− qy ∂P∂y dx− rz

∂P
∂z dx

= tdx (see (6.2)).

Therefore, using the symmetry between x, y and z,

div(δx) = div(δy) = div(δz) = 0 .

Apply Lemma 5.3.1 taking into account that λS = −div (see (4.16); then,

div({x,−}) = div(Qδx) = Qdiv(δx) + δx(Q) .

Therefore,

(6.4) div({x,−}) =
∂Q

∂y

∂P

∂z
− ∂Q

∂z

∂P

∂y
.

Applying Corollary 1 gives that the enveloping algebra U of (S,ΩS/R) is skew
Calabi-Yau. It has a Nakayama automorphism ν : U → U such that, for all s ∈ S, ν(s) = s(

ν(dx)
ν(dy)
ν(dz)

)
=

(
dx
dy
dz

)
+ 2
−−→
grad(Q) ∧

−−→
grad(P ) .
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