
HAL Id: hal-02361275
https://hal.science/hal-02361275v1

Submitted on 13 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model driven programming of autonomous floats for
multidisciplinary monitoring of the oceans

Sébastien Bonnieux, Sébastien Mosser, Mireille Blay-Fornarino, Yann Hello,
Guust Nolet

To cite this version:
Sébastien Bonnieux, Sébastien Mosser, Mireille Blay-Fornarino, Yann Hello, Guust Nolet. Model
driven programming of autonomous floats for multidisciplinary monitoring of the oceans. OCEANS
2019 - Marseille, Jun 2019, Marseille, France. pp.1-10, �10.1109/OCEANSE.2019.8867453�. �hal-
02361275�

https://hal.science/hal-02361275v1
https://hal.archives-ouvertes.fr

Model driven programming of autonomous floats
for multidisciplinary monitoring of the oceans

Sébastien Bonnieux
I3S, Geoazur*

Université Côte d’Azur, CNRS, *OCA, *IRD
Valbonne, France

bonnieux@i3s.unice.fr

Sébastien Mosser
Université du Québec à Montréal

Montréal, Canada
mosser.sebastien@uqam.ca

Mireille Blay-Fornarino
I3S

Université Côte d’Azur, CNRS
Valbonne, France

mireille.blay@unice.fr

Yann Hello
Geoazur

Université Côte d’Azur, CNRS, OCA, IRD
Valbonne, France

yann.hello@geoazur.unice.fr

Guust Nolet
Geoazur

Université Côte d’Azur, CNRS, OCA, IRD
Valbonne, France

nolet@geoazur.unice.fr

Abstract—Monitoring of the oceans with autonomous floats is
of great interest for many disciplines. Monitoring on a global
scale needs a multidisciplinary approach to be affordable. For
this purpose, we propose an approach that allows oceanographers
from different specialities to develop applications for autonomous
floats. However, developing such applications usually requires
expertise in embedded systems, and they must be reliable and
efficient with regards to the limited resources of the floats (e.g.,
energy, processing power). We have followed a Model Driven
Engineering approach composed of i) a Domain Specific Language
to allow oceanographers to develop applications, ii) analysis
tools to ensure that applications are efficient and reliable, iii) a
composition tool to allow the deployment of different applications
on a same float, and iv) a code generator that produce efficient
and reliable code for the float. We present our approach with
a biological and a seismological application. We validate it with
technical metrics and an experiment.

Index Terms—Model Driven Engineering, Domain Specific
Language, embedded system, constrained resources

I. INTRODUCTION

Autonomous floats [1] are instruments designed to monitor
the oceans over long periods, as it is done for several years
by the Argo project [2]. These instruments drift at several
thousands of meters (e.g., 2000 meters) for several days (e.g.,
10 days) to conduct measurements and transmit the collected
data at the surface through satellite communication. Global
acoustic monitoring of the oceans with autonomous floats is
of great interests for the Passive Acoustic Monitoring (PAM)
community [3] but efforts are spread among the different
specialties such as i) biologists with cetacean click detection
applications [4], ii) meteorologists with rainfall detection [5]
or iii) seismologists with earthquake detection [6].

Large-scale experiments have already begun in the field of
seismology [7]. However, acoustic monitoring of the oceans
on a global scale cannot be done without a multidisciplinary

This work was funded by Region Sud and OSEAN S.A.S through a PhD
grant (Emplois Jeunes Doctorants).

collaboration. Indeed, even if the cost of one float is low
compared to other solutions (e.g., moored buoys), an array
of floats at the global scale is still expensive.

Our approach is to bring different monitoring efforts to-
gether with an adaptive float on which several applications
can be installed. In this article, we focus on applications for
passive acoustic monitoring of the oceans with a hydrophone,
but a float can include other arbitrary sensors for physical, or
chemical measurements, bringing together a broader commu-
nity.

There are actually no standard applications in the PAM com-
munity, each speciality has different needs that may change
over time. But developing such applications by traditional
means takes a lot of time and is expensive. Therefore, we want
to give oceanographers, the capacity to write applications by
themselves with a minimum of effort. Moreover, we want to
give them the guarantee that applications will work correctly
on the instrument, that they are reliable.

A float has typically four states of operations: the descent,
the park, the ascent and the surface. It uses actuators to
regulate it depth and uses communication devices at the
surface. The applications define the depth and duration of a
dive, and the measurements to realize and transmit by satellite.
These have an impact on the battery lifetime and on the
communication costs. Thus, we want to help oceanographers
to take these properties into consideration such that they can
produce efficient applications.

II. CHALLENGES

We illustrate our problem with an example: assume that
two oceanographers, a geoscientist and a biologist, want to
develop their own applications, the seismic application and
the whales applications that will be installed together on the
same instrument.

The seismic application consists of continuously listening
to the acoustic signal received by the hydrophone during the

Fig. 1. Modeling of applications.

park state of the float. If a change is detected in the acoustic
signal, an algorithm determines if the change corresponds to
a seismic wave; then, depending on the level of confidence,
the signal may be recorded for satellite transmission, and the
application may command the float to ascend.

The whales application consists of listening to the acoustic
signal during a short time at a fixed time interval (e.g., an
acquisition of 5 minutes every 15 minutes). For each acqui-
sition, an algorithm determines the probability of presence of
whales that is further transmitted by satellite. This application
is activated during the descent, park and ascent states of the
float.

From this example, we identify three challenges. The first
challenge is to allow oceanographers to develop applications
for the float by themselves, without the help of embedded
software experts (C1). Indeed, developing such applications
requires skills in embedded software to program the micropro-
cessor and to define a software architecture [8]. For example,
the seismic and the whales applications must be implemented
as tasks with appropriate execution priority and synchronisa-
tion mechanisms to access data from the hydrophone.

The second challenge is to help the production of efficient
and reliable applications (C2). For that purpose, we want
to help oceanographers to consider the battery lifetime, the
satellite communication costs and execution time constraints,
indeed if an application does not respect these constraints,
data from the hydrophone could be altered. Computing these
properties requires specific knowledge and analysis methods

that are not in the domain of expertise of our developers, the
oceanographers.

The third challenge is to allow several applications defined
separately to be executed on the same instrument (C3). Since
the applications operate concurrently, they must share the func-
tionalities of the instrument. In the example, the applications
must share the data coming from the hydrophone, as well as
the processing time of the processor.

III. MODELS OF APPLICATIONS

A. Overview

To overcome these challenges, we propose a Model Driven
Engineering (MDE) [9], [10], [11] approach, illustrated in
figure 1 and described below:

(1) Developers describe applications using a Domain Spe-
cific Language (DSL) [12] called MeLa, that stands for
Mermaid Language, where Mermaid is the name of the float
targeted by this contribution. The MeLa language responds to
C1, by allowing oceanographers to express applications for the
instrument. Applications expressed with the MeLa language
are transformed into models with a specialized tool (i.e., the
parser).

(2) These models are conform to a dedicated meta-model.
To manage the dependency on the platform itself, that is
the float, the application models use a platform model, itself
conform to a meta-model. The dependency between these
models is supported by the relation between the application
meta-model and the platform meta-model. The platform model

contains information about available functions and sensors
and the amount of resources they use (e.g., processing time
or power consumption). Models and meta-models are the
backbone for processing the applications.

(3) The analysis tool uses the application models and
associated platform model to compute the battery lifetime, the
satellite communication costs and verify real-time constraints
of the applications. The results of the analysis are returned
to the developer so that she can modify the application
accordingly, this responds to C2.

(4) The composition tool aims to merge several applications
into a single one, responding to C3. The developer can look
at the composition results with the MeLa code generated from
the model.

(5) To deploy these applications on the instrument, the
platform specific code is generated from the model; this code
follows an architecture defined in the platform meta-model.
This part is linked to C1, by allowing the deployment of
applications on the float, to C2, by producing efficient and
reliable code, and to C3, by allowing the concurrent execution
of applications.

In the next sections we present the MeLa DSL, then we
describe the architecture of the generated code, and finally
we give an overview of the analysis and composition methods
implemented in the tools processing the applications.

B. Introduction to MeLa

The goal of MeLa is to allow developers to write applica-
tions using features of the instrument without having to worry
about details of embedded software development.

Such features include: defining the depth and duration of a
dive, choosing a sensor among those available, a procedure to
acquire the data (e.g., continuously for the seismic application
or during a short time for the whales application), the algo-
rithms to process the data, selecting data to record for satellite
transmission, or for a later recovery of the float, and requesting
the float to ascend according to results of data processing.

The language does not allow for the definition of new pro-
cessing algorithms; however, common processing algorithms
such as filters or Fourier transforms are accessible at the level
of the platform model in the form of a library of functions.

C. Description of MeLa

We chose to describe the language through examples intro-
duced in the motivation part. The MeLa code for those two
applications is given in table I. An application written in MeLa
consists of different parts1:

(1) A mission configuration, Mission (lines s2, w2)2, that
contains the park time and depth of the float.

(2) A coordinator, Coordinator (lines s7, w7), that
defines politics of activation of acquisition modes. Acquisition
modes can be executed according to the active state of the

1The parts are identified in the comments of the table (e.g., # 1.)
2Reference to line numbers are given with an s for the seismic application

and a w for the whales application (e.g., s1, w1).

float (descent, park or ascent) and a period of execution can
be given for short time acquisition (lines w9-w13).

(3) One or more acquisition modes. There are of two types,
ContinuousAcqMode and ShortAcqMode (lines s12,
w16). The first one corresponds to the continuous acquisition
of the seismic application, the second one corresponds to the
short acquisition of the whales application. For the first one
the sensor is always active, whereas for the second one the
sensor is stopped after the acquisition. The seismic application
uses a continuous acquisition mode because it aims to detect
the beginning of a seismic signal. The whales application does
not have this constraint, and choosing a short acquisition mode
allows to save the batteries. An acquisition mode is constituted
of different parts:

(3.a) The Input (lines s15, w19) is associated to a sensor
and a variable containing the data to process. In this contri-
bution, we consider only periodic sensors (i.e., sensors that
send samples periodically), in this case a hydrophone. The
input variable, an array with a size chosen by the developer,
receives the data from the sensors.

(3.b) The Variables (lines s20, w24) part contains a list
of variables. They are only accessible from the acquisition
mode to which they belong. There are several variable types
available, for example, the type transmitFile allows to
define a file transmitted through satellite.

(3.c) The sequences of instructions (lines s27, s36, w30)
contains the instructions to process the data. The first sequence
defined in an application (lines s27, w30) is executed each
time the array defined in the Input is full. Sequences of
instructions can be of two types, RealTimeSequence or
ProcessingSequence. A real-time sequence (line s27)
has an execution time constraint to guarantee the continuous
acquisition of the acoustic signal. A processing sequence (lines
s36, w30) has no execution time constraint, thus it can contain
algorithms with a long execution time. A real-time sequence
can call a processing sequence (line s32), but in that case the
data possibly sent by the sensor are ignored, so that the input
variable containing the data can be used.

(4) An instruction can be a function call or a condition.
Functions allow to use algorithms (lines s29, w31), to record
data (lines s40, w34, w36) or to request the float to ascend
(line s44). Conditions allow to call different instructions
depending on variable values. Conditions must be annotated
with an average probability of execution (lines s31, w32).
For example, we specify line s31, that the condition is true
with an average of ten per weeks. This condition is true if
a signal that could have a seismic origin is detected by the
seisDetection algorithm. The @ stands for annotation.
The annotations do not change the behaviour of the code but
are used to estimate the energy consumption of applications
and quantity of data recorded in memory for satellite trans-
mission. It is up to the user to choose values in accordance
with realistic expectations.

TABLE I
MELA CODE FOR THE SEISMIC AND WHALES APPLICATIONS.

Seismic application Whales application
1 # 1 . M i s s i o n c o n f i g u r a t i o n
2 Mission :
3 ParkTime : 10 days ;
4 ParkDepth : 1500 m e t e r s ;
5

6 # 2 . C o o r d i n a t i o n o f a c q u i s i t i o n modes
7 Coordinator :
8 ParkAcqModes :
9 S e i s m i c ;

10

11 # 3 . D e f i n i t i o n o f a c o n t i n u o u s a c q u i s i t i o n mode
12 ContinuousAcqMode S e i s m i c :
13

14 # 3 . a . I n p u t
15 Input :
16 s ens or : Hydrophone ;
17 data : x [4 0] ;
18

19 # 3 . b . V a r i a b l e s
20 V a r i a b l e s :
21 i n t [2 4 0 0] l a s t m i n u t e ;
22 bool d e t e c t ;
23 f l o a t c r i t e r i o n ;
24 t r a n s m i t F i l e f ;
25

26 # 3 . c . Sequences o f i n s t r u c t i o n s
27 RealTimeSequence d e t e c t i o n :
28 appendArray (l a s t m i n u t e , x) ;
29 d e t e c t = s e i s D e t e c t i o n (x) ;
30 i f d e t e c t :
31 @probabi l i ty = 10 p e r week
32 c a l l d i s c r i m i n a t e ;
33 e n d i f ;
34 endseq ;
35

36 Process ingSequence d i s c r i m i n a t e :
37 c r i t e r i o n = s e i s D i s c r i m i n a t i o n (l a s t m i n u t e) ;
38 i f c r i t e r i o n > 0 . 2 5 :
39 @probabi l i ty = 4 p e r week
40 r e c o r d I n t A r r a y (f , l a s t m i n u t e) ;
41 e n d i f ;
42 i f c r i t e r i o n > 0 . 7 5 :
43 @probabi l i ty = 1 p e r week
44 a s c e n t () ;
45 e n d i f ;
46 endseq ;
47

48 endmode ;

1 # 1 . M i s s i o n c o n f i g u r a t i o n
2 Mission :
3 ParkTime : 20 days ;
4 ParkDepth : 1000 m e t e r s ;
5

6 # 2 . C o o r d i n a t i o n o f a c q u i s i t i o n modes
7 Coordinator :
8 DescentAcqModes :
9 Whales e v e r y 10 m i n u t e s ;

10 ParkAcqModes :
11 Whales e v e r y 3 h o u r s ;
12 AscentAcqModes :
13 Whales e v e r y 10 m i n u t e s ;
14

15 # 3 . D e f i n i t i o n o f a s h o r t a c q u i s i t i o n mode
16 ShortAcqMode Whales :
17

18 # 3 . a . I n p u t
19 Input :
20 s e ns or : Hydrophone ;
21 data : x [1 0 2 4] ;
22

23 # 3 . b . V a r i a b l e s
24 V a r i a b l e s :
25 f l o a t p r e s e n c e ;
26 i n t t imes t amp ;
27 t r a n s m i t F i l e f ;
28

29 # 3 . c . Sequences o f i n s t r u c t i o n s
30 Process ingSequence i d e n t i f y :
31 p r e s e n c e = w h a l e s D e t e c t i o n (x) ;
32 i f p r e s e n c e > 0 . 2 :
33 @probabi l i ty = 1 p e r day
34 r e c o r d F l o a t (f , p r e s e n c e) ;
35 t imes t amp = getTimes tamp ()
36 r e c o r d I n t (f , t imes t amp) ;
37 e n d i f ;
38 endseq ;
39

40 endmode ;

D. Platform model

Function prototypes and models of sensors are defined in the
platform model. Each function prototype is defined by a name
(i.e., the name of the function), a list of parameters types and a
return type. They also contain information about their resource
usage, like power consumption, memory usage or execution
time (processor usage), that can depend on parameters passed
to a function when it is called. Some information represent
the capacity of a function to request the float to ascend.
The models of sensors can contain specific information, for
example, the model of the hydrophone contains its sampling
period. Moreover the platform model contains information
about available resources of the instrument. This information
is used to compute energy consumption, cost of satellite
transmission and execution time constraints.

The platform model also has the advantage to enable the use
of different platform configurations without having to change
the MeLa application. For example, if the processor used by

the float is changed, the MeLa code remains valid. It is up to
experts in embedded software to create a new platform model
with adapted code generation.

E. Code generation

The code for the platform is generated from the application
models and the platform model. In this subsection we describe
the correspondence between the MeLa language and the gen-
erated code for which we have defined a suitable architecture.
Before that, we describe in more detail the design of the
instrument.

A Mermaid float contains two electronic boards, i) a con-
trol board that manages the actuators, the localization and
the satellite communication and ii) an acquisition board for
accessing sensors and processing data. They can communicate
such that the acquisition board can request the float to ascend
and send data through satellite communication, and the control
board can provide information about the state of the float.

Fig. 2. Code generation from MeLa applications.

The acquisition board is based on a single-core processor,
and contains a real-time operating system with a priority
based preemptive scheduling policy, allowing the applications
defined with the MeLa language to be executed concurrently.

The code generation from models is illustrated in Figure 2.
The mission configuration is used to generate a configura-
tion file containing commands for the control board (e.g.,
stage 1500m 10000min). The rest of the application is
used to generate the code for the acquisition board. The
coordinator is converted to a task containing a state machine
(i.e., a model of computation) reacting to messages sent by
the control board and managing the execution of acquisition
modes. Each acquisition mode is converted to a processing
task containing the sequences of instructions defined in the
MeLa language. Moreover, a sensor task receiving data from
sensors (one task for one sensor) is configured for each
acquisition mode using the sensor. A sensor task handles the
data sent by a sensor, fills the input variables of processing
tasks using the sensor, and triggers their execution when their
input variable is full. Global variables, not presented in the
figure, are used to share data between tasks.

A priority of execution is assigned to each task. The highest
priority is assigned to tasks with the shortest period, that is
a rate-monotonic priority assignment [13]. For a continuous
acquisition mode, the period of the task is the sampling period
of the sensor multiplied by the size of the input variable.
This priority is only used for the execution of the real-time
sequence. The processing sequence of a continuous acquisition
mode has a fixed low priority and is executed in background.
For a short acquisition mode the period of the task corresponds
to the periodicity defined in the coordinator.

For schedulability analysis, presented in the next section,
we assume that tasks are independent. When possible, we

implement the functions such that tasks can be executed
concurrently, without interfering. If not, the execution time
of functions must be estimated to take possible interferences
into account.

F. Analysis
The analysis computes properties of the applications from

the information contained in the application models and the
platform model. Since the models of applications are created
from the MeLa language, results of analysis can be reported
to the developer with a reference to the MeLa code.

To determine if the tasks are schedulable their worst case
execution time is computed from the model. Then, knowing
their period of execution, their processor utilization rate (e.g:
2%, 50%, 120%) is computed. Finally, we use the Liu and
Layland utilization bound [13], a schedulability test for the
rate monotonic scheduling algorithm. The Liu and Layland
utilization bound gives the maximum processor utilization rate
for a set of tasks (e.g., 100% for one task, 83% for two tasks)
that guarantee the schedulability of tasks. This test is only valid
if the scheduling algorithm is optimal, that is if the tasks have a
deadline equal to their period, and if they are independent from
each other. Both conditions are verified since we made the
assumption in the preceding section that tasks are independent.

The battery lifetime is estimated in several steps: i) power
consumption of each acquisition mode is computed from
each instruction, probabilities defined in conditions, sampling
frequencies of sensors and periods defined in the coordinator,
ii) power consumption of each state of the float is computed
according to activated acquisition modes, input sensors used
by acquisition modes, sleep time of the processor and actu-
ators utilization for depth regulation (e.g: ascent or descent),
iii) energy consumption of each state is computed from their
power consumption and their duration, which depends on
probabilities of ascent request for the park state, iv) the energy
for each float cycle is obtained by summing up the energy of
each state, including the surface step which consumes energy
for satellite transmission, v) knowing the battery capacity, the
duration of a cycle, and the consumption of each cycle, the
battery lifetime can be estimated.

The last property to estimate is the satellite transmission
cost. To this end, the quantity of data recorded in files of
type transmitFile is computed from variables passed as
parameters of recording functions.

The analysis results are displayed to the developer with
more or less details. For example, if the processor utilization
rate is above the Liu and Layland utilization bound, an error
is displayed with the instruction having the strongest impact
on processor utilization. The same can be done for the battery
lifetime and the satellite transmission costs. This allows the
developer to identify parts of the MeLa code that contribute the
most to processor utilization, energy consumption or satellite
transmission costs.

G. Composition
The composition of applications is done at the model level.

To be composed, the mission configuration of the two applica-

TABLE II
COMPOSED APPLICATION.

1 # 1 . M i s s i o n c o n f i g u r a t i o n
2 Mission :
3 ParkTime : 10 days ;
4 ParkDepth : 1500 m e t e r s ;
5

6 # 2 . C o o r d i n a t i o n o f a c q u i s i t i o n modes
7 Coordinator :
8 DescentAcqModes :
9 Whales e v e r y 10 minu te ;

10 ParkAcqModes :
11 S e i s m i c ;
12 Whales e v e r y 3 h o u r s ;
13 AscentAcqModes :
14 Whales e v e r y 10 minu te ;
15

16 # 3 . A c q u i s i t i o n modes
17 ContinuousAcqMode S e i s m i c :
18 # C o n t e n t i d e n t i c a l t o t h e o r i g i n a l a p p l i c a t i o n
19 endmode ;
20

21 ShortAcqMode Whales :
22 # C o n t e n t i d e n t i c a l t o t h e o r i g i n a l a p p l i c a t i o n
23 endmode ;

tions must be the same. Acquisition modes of each application
are copied into the composed application with their politics
of activation defined in the coordinator. Concurrent execution
of acquisition modes is handled at the implementation level
with schedulable tasks. The MeLa code generated from the
composition of the seismic and whales applications is shown
in table II.

IV. VALIDATION

A. Introduction to validation

In this section, we show that our approach responds to the
three challenges defined in the motivation section. We focus
on technical metrics and present results of an experiment.

Tools and meta-models presented on figure 1 are imple-
mented in Java. The syntax of the MeLa language and asso-
ciated tooling are created with ANTLR [14]. The generated
code has been deployed on an acquisition board in a controlled
environment. The experimental setup is described below.

B. Experimental setup

The seismic and whales applications are tested on a test
bench (figure 3). The acquisition board (1) is powered with a
9 V alkaline battery (2). A computer (3) emulates seismic
and whales signals, sent to the acquisition board with an
audio sound card (4). It is also used to monitor the execution
of applications through a serial communication port (5), and
record the voltage of the battery with an Arduino board (6).

Seismic events are emulated with a 1 Hz signal, or 2 Hz
for major events triggering the ascent of the float. Each
event has a fixed duration of 30 seconds. We generate four
events every hour. One of these events is randomly chosen
to be a major event. The algorithm to detect seismic events
seisDetection (line s29 in table I) is implemented as
an absolute average of the last forty samples send by the
hydrophone, and stored in the input variable (line s17). The
average is compared to a threshold. When the value of the

Fig. 3. Experimental setup.

average pass under the threshold, the detect boolean is set to
true (detection on the falling edge of the average). This trig-
gers the execution of the processing sequence that identifies if
the signal has a seismic origin. The seisDiscrimination
algorithm is implemented as a Fourier transforms processing
the last minute of signal (the lastminute variable). This
algorithm returns a criterion which represents the level of
confidence of the seismic origin of the signal. If the spectrum
amplitude at 1 Hz or 2 Hz is above a threshold, the criterion is
set respectively to 0.5 and 0.9. If the criterion is above 0.25,
the last minute of signal is recorded, and if the criterion is
above 0.75, the application requests an ascent (lines s38, s42).

Whales events are emulated with a frequency of 10 Hz
and a lower amplitude than seismic events so that the signals
do not interfere with the detection of seismic events. As
for the seismic application, whales events have a fixed time
of 30 seconds. The whalesDetection algorithm is also
implemented using a Fourier transform, processing the signal
acquired during a short time. If the spectrum amplitude at
10 Hz is above a threshold, the algorithm returns a probability
of presence equal to 1, triggering the recording of the value
and of a timestamp (line w32).

The seismic application is executed continuously during the
park state and the whales application is executed every 30s
during the descent, park and ascent state. The behavior of the
float is simulated by the acquisition board. We define a park
time of one hour, shortened if the seismic application request
to ascend. The ascent time and the descent time are fixed to
2 minutes and the surface time to 1 minute.

C. Functional validation

The two applications have been tested, first independently,
and then after composition to verify if both applications behave
as expected. The applications have worked correctly, seismic
and whales events have been recorded. This shows that the
language can be used to develop applications for the float (C1)

TABLE III
MELA CODE COMPARED TO GENERATED CODE.

MeLa code C

1 ContinuousAcqMode Simple :
2

3 Input :
4 s e ns or : Hydrophone ;
5 data : x [1 0] ;
6

7 V a r i a b l e s :
8 i n t y ;
9

10 RealTimeSequence :
11 y = mean (x , 1 0) ;
12 endseq ;
13

14 endmode ;

1 / / S e ns or t a s k − hydrophone . c
2 void h y d r o p h o n e t a s k (void * p a r a m e t e r s){
3 w a i t E x t I n t (a d c o n v e r t e r . d r d y e i n t i d) ;
4 x s i m p l e f i l l−>d a t a [x s i m p l e f i l l−>i] = r e a d s a m p l e () ;
5 x s i m p l e f i l l−>i += 1 ;
6 i f (x s i m p l e f i l l−>i s F u l l) {
7 i f (x s i m p l e f i l l == &x s i m p l e b u f f 1) {
8 x s i m p l e p r o c e s s = &x s i m p l e b u f f 1 ;
9 x s i m p l e f i l l = &x s i m p l e b u f f 2 ;

10 } e l s e {
11 x s i m p l e p r o c e s s = &x s i m p l e b u f f 2 ;
12 x s i m p l e f i l l = &x s i m p l e b u f f 1 ;
13 }
14 s e m a p h o r e S i g n a l (s imple Semaphore) ;
15 }
16 }
17

18 / / G loba l v a r i a b l e s − g l o b a l . c
19 i n t 3 2 a r r a y t * x s i m p l e f i l l ;
20 i n t 3 2 a r r a y t * x s i m p l e p r o c e s s ;
21 i n t 3 2 t x s imple 1 [1 0] ;
22 i n t 3 2 a r r a y t x s i m p l e b u f f 1 = {x s imple 1 , 0 , 10 , f a l s e } ;
23 i n t 3 2 t x s imple 2 [1 0] ;
24 i n t 3 2 a r r a y t s i m p l e x b u f f 2 = {x s imple 2 , 0 , 10 , f a l s e } ;
25

26 / / P r o c e s s i n g t a s k − s i m p l e t a s k . c
27 s t a t i c i n t 3 2 t y ;
28 void s i m p l e t a s k (void * p a r a m e t e r s){
29 whi le (1) {
30 semaphoreWai t (s imple Semaphore) ;
31 y = mean (x s i m p l e p r o c e s s , 1 0) ;
32 }
33 }

and that several applications can be deployed on the same float
and share its functionalities (C3).

D. Reduction of expertise

When an application is written in MeLa, the developer does
not have to consider the control board and the acquisition
board. The development of acquisition modes does not require
to think about embedded software concerns, for example
defining tasks, their initialization, their execution priority,
the way they are started and stopped or the synchronization
between tasks receiving data from sensors and tasks processing
the data. Thus, the MeLa language hides several embedded
software concerns.

Table III illustrates the reduction of expertise given by the
MeLa language compared to the generated code. This table
presents the generation of an acquisition mode into a sensor
task and a processing task, as shown in figure 2. For that
purpose, we use a simple application that reads data from the
hydrophone and computes an average. The Input part of the
MeLa code generates the sensor task. This task waits for data
from the hydrophone. When the hydrophone is ready to send
data, it sends a signal to the processor (a hardware interrupt)
that triggers the execution of the sensor task (line c3)3.

The input variable (line m5) is generated as two array
of data (lines c19-c24). One is filled by the sensor task
(line c4), while the other one is processed by the processing

3Reference to line numbers are given with an m for the MeLa code and a
c for the C code (e.g., m1, c1).

task (line c31). When the x_simple_fill array is full
(line c6), the array is switched with x_simple_process
(lines c7-c13) and the execution of the processing task is
triggered with a signal (line c14). The RealTimeSequence
part of the acquisition mode is converted in a processing task
(lines c28-c33), that is waiting for the sensor task (line 30).
The Variables part is converted to local variables contained
in the task (line 27). In the application written in MeLa, the
developer only defines the input sensor, the input variable,
and the algorithm to use. She can focus on the behavior of
applications rather than on embedded software concerns.

Another way to estimate the reduction expertise is to
compare the amount of code to write in MeLa, with the amount
of generated code, that would be written manually. Looking
at the total number of lines of the composed application, one
has to write 90 lines of code in MeLa, while 600 lines must
be written to develop the application with the C language.

By hiding embedded software concerns and reducing the
amount of code to write, the MeLa language allows oceanogra-
phers to develop applications for the float by themselves (C1).
Moreover, generating a code tailored for the MeLa applications
helps to produce efficient and reliable applications (C2). For
example, in MeLa the sensors are automatically shut down
when they are not used. In C, this behavior must be written
by the developer.

TABLE IV
MODEL ESTIMATIONS COMPARED TO MEASUREMENTS.

Application Battery lifetime Recorded data
Estimation Measure Estimation Measure

Seismic 14 h 15 h 35 kB/h 36 kB/h
Whales 22 h 20 h 79 B/h 72 B/h

Composed 14 h 13 h 35 kB/h 32 kB/h

E. Analysis validation

In this subsection we show that analysis results are con-
sistent with experiments so that they can be used to produce
efficient and reliable applications (C2). We compare the esti-
mation from the model with measurement performed on the
acquisition board. We do this comparison for the seismic and
the whales applications independently and for the composition
of both applications.

For the model estimation, probabilities defined in the ap-
plications must be coherent with the expected behavior of the
deployed applications. Thus, for our experimental setup, the
probability to detect and record a seismic event is set to 4
per hour (lines s31, s39 in table I), and the probability of
ascent request is set to 1 per hour (line s43). For the whales
application, the probability of presence of whales is set to 10
per hour (line w33).

We measure the battery lifetime by measuring the voltage of
the battery. When the voltage passes under 6 V the battery is
considered as discharged. Instead of giving a cost for satellite
transmission, we measure the size of files that would have been
transmitted. We do not measure the utilization of the processor
since the processor utilization is too low in our experiment to
be measured efficiently.

Results for the battery lifetime in hours, and amount of
recorded data in bytes and kilobytes per hour, are presented
in table IV. The seismic and composed applications have
similar power consumption. This is because both seismic and
whales applications use the same sensor and the sensor is
always switched on for the seismic application. For the whales
application alone, the sensor is regularly switched off, giving
more autonomy.

Differences of 10% are observed between estimations and
measurements of the battery lifetime. For recorded data, the
estimations fit well with measurements because probabilities
annotated in the applications are consistent with the reality.
The precision of these estimations are enough to detect if an
application will drain the battery rapidly (e.g., 3 years instead
of 5 years), or if the amount of transmitted data will exceed
the budget limits (e.g., 20 MB instead of 10 MB).

F. Produce efficient applications

In table V we show different results of scheduling analysis
for three applications.

(1) The excessive application can be viewed as a first attempt
of the seismic application. For this attempt, the discrimination
algorithm is put in the real-time sequence, and the input vari-
able is set to a size of 1 instead of 40 (i.e., data: x[1];).

TABLE V
SCHEDULING ANALYSIS RESULTS

1 . E x c e s s i v e a p p l i c a t i o n
P r o c e s s o r usage d u r i n g PARK:

E r r o r : 140 % > 100 %
d e t e c t = s e i s D i s c r i m i n a t i o n (x) : 140%

2 . S e i s m i c a p p l i c a t i o n
P r o c e s s o r usage d u r i n g PARK:

V a l i d : 0 ,4 % < 100 %

3 . Composed a p p l i c a t i o n
P r o c e s s o r usage d u r i n g DESCENT:

V a l i d : 0 ,03 % < 100 %

P r o c e s s o r usage d u r i n g PARK:
V a l i d : 0 ,43 % < 83 %
S e i s m i c c o n t i n u o u s l y : 0 ,4 %
Whales wi th p e r i o d 30 s : 0 ,03 %

P r o c e s s o r usage d u r i n g ASCENT:
V a l i d : 0 ,03 % < 100 %

The analysis displays an error to the developer telling him
that the processor usage is above the maximum allowable
and showing the responsible instruction. At this point some
guidelines are necessary to help the developer to edit the
application. There are only three possible choices, i) put
the algorithm in a processing sequence and use a detection
algorithm to trigger the processing sequence, ii) increase the
size of the input variable to give more time to the processing,
but it can also increase the processing time, iii) chose another
algorithm in the library.

(2) The second analysis result is for the seismic application
of our example. The developer has followed the first and
second guidelines, such that the processor usage is reduced
to almost zero.

(3) The third result is for the composed application. One
can notice that the maximum processor usage is 83% which
corresponds to the Liu and Layland utilization bound for
2 tasks.

In addition to guarantee that applications will work correctly
on the instrument, the analysis results allow a developer to try
different configurations. For example, she can try to record the
raw acoustic signals containing the presence of whales and
see the impact on battery lifetime and satellite transmission
costs. Thus, the analysis results help the developers to produce
efficient and reliable applications (C2).

V. LIMITATIONS AND PERSPECTIVES

The MeLa language has a limited expressiveness. For ex-
ample, the politics of acquisition managed by the coordinator
are limited to few concepts (i.e., periodic or continuous), a
developer could want to use other kinds of sensors or to
choose the sampling frequency of a hydrophone. However,
the approach is flexible enough to add new features to the
language.

The ability for applications to adapt to the environment
and to have complex interactions with the float is currently

missing. For example, when a whale is detected, the monitor-
ing period, the sensor sampling frequency or the algorithm
parameters could be changed. Additionally, an application
could ask the float to go to a specific depth or block any
depth regulation during a certain amount of time. Several
approaches exist to handle the adaptation of applications
running concurrently on a same device with possible conflicts
between them [15] but they must be adapted to our problem.

Additional analysis capabilities could be added with new
models of analysis. For example, analysis of volatile mem-
ory usage could be added. Moreover, more precise analysis
methods could improve accuracy of estimations. However, the
main limit for accuracy lies in the definition of probabilities of
execution by the developers. These probabilities are important
to estimate the quantities of recorded data or the battery
lifetime, but the developer may enter wrong information to
the model, so that estimations will also be wrong. Simulation,
based on experimental data recovered from experiments, could
give accurate estimation; moreover, simulation could be used
for functional validation of applications. Probabilities could
also be measured on the instrument, after deployment, and
then be used to correct the model.

The MeLa language is specific for programming the instru-
ment, but is not conceived to create new algorithms. Thus,
capabilities to design algorithms for the float could be added
to MeLa. The algorithms could be organized in different
categories with specific constraints, for example detection
algorithms should behave as an impulse function to trigger
the execution of processing sequences. Moreover, capabilities
to develop Deep Learning algorithms could be added. They
are well suited for classification problems, but deploying them
on a constrained device is challenging [16].

Finally, the MeLa language could be extended to other
domains of applications by adding features to handle actuators
or displaying devices that have specific constraints. This would
allow the development of a wide range of applications in the
embedded software domain while keeping the efficiency and
reliability demonstrated this article.

VI. STATE OF THE ART

We compare our work with approaches related to the
development of embedded software.

Programming languages like Scilab-Xcos4 and Matlab-
Simulink5 are widely used in different domains and focus on
development of algorithms and modeling of physical systems.
Code for embedded systems can be generated from these algo-
rithms but they do not incorporate models used in embedded
systems such as tasks, thus they cannot be used to develop
entire applications.

Low-level programming languages such as C or Ada, and
real-time operating systems [17], allow to develop applications
that use the platform efficiently [18], but they need a specific
expertise to be used. Our contribution generates such a code

4https://www.scilab.org/
5https://www.mathworks.com/

to be implemented on the platform. Analysis of applications
developed with these languages rely on tools that generate
models from the code. The models can be annotated with
tailored measurements [19], [20], or relies on generic models
of processors [21]. The tools need a specific expertise to be
used [22], our approach separates developers concerns from
analysis, allowing them to focus on their applications.

Some operating systems for embedded systems consider
resource consumption at runtime [23], [24]. They target energy
harvesting systems (e.g., systems with solar panels). These
systems have energy budget that changes over time (e.g., there
is less energy during cloudy days). To handle this, the quality
of algorithms is degraded depending on the available energy
of the system at execution time. The floats do not have such
constraints since they do not incorporate energy harvesting
systems. Moreover, in these approaches the developer does
not have an estimation of resource consumption during the
development of applications.

Modeling languages like UML-MARTE [25] or AADL [26]
are conceived for modeling different kinds of embedded
systems, software and hardware included. They offer generic
concepts for these domains. They are often used for the design
of systems from high-level specifications that are refined
several times until the implementation. Modeling languages
offer high level abstractions that are too generic for our
developer. Moreover, analysis tools on which they rely, like
UPPAAL [27] or TimeSquare [28], require a specific expertise
to be used.

DSL like CPAL [29] and MAUVE [30] are dedicated
to programming cyber-physical systems and robots with a
component-based approach. In these languages developers
define components with desired inputs and outputs and a state
machines to describe their internal behavior. Our acquisition
modes can be viewed as components tailored for acquisition of
data from sensors, thus, we offer a more specific abstraction
to developers. For these languages it is up to the developer
to measure the execution times of components and to put
this information in the developed application. In our approach
this information is hidden to developers in a platform model
allowing them to focus on their applications. Moreover these
approaches do not consider energy consumption or recording
of data, which are critical for our instrument.

VII. CONCLUSIONS

In this paper, we have proposed a Model Driven Engineering
approach to allow oceanographers from different specialities
to develop applications for an autonomous float. We have
presented a Domain Specific Language to allow them to
develop their own applications without the help of experts
in embedded systems. Estimation of battery lifetime, costs
of satellite transmission and verification of execution time
constraints helps the developers to write reliable and efficient
applications. The application models can be composed such
that several applications developed independently can be in-
stalled on the same instrument. We have validated the approach
with technical metrics and an experiment on a test bench.

In the long term, we envision a float that can be repro-
grammed at distance. This, associated with the MeLa language
would allow to use the float as a real experimental platform
where developers could try several applications. But, this
requires adapted over-the-air programming methods that save
the use of the satellite communication, which is challenging
because of the very high latency of this kind of network (about
one second).

REFERENCES

[1] W. J. Gould, “From swallow floats to argothe development of neutrally
buoyant floats,” Deep Sea Research Part II: Topical Studies in Oceanog-
raphy, vol. 52, no. 3, pp. 529 – 543, 2005, direct observations of oceanic
flow: A tribute to Walter Zenk.

[2] D. Roemmich, G. Johnson, S. Riser, R. Davis, J. Gilson, W. Brech-
ner Owens, S. Garzoli, C. Schmid, and M. Ignaszewski, “The argo pro-
gram observing the global ocean with profiling floats,” Oceanography,
vol. 22, 06 2009.

[3] M. F. Baumgartner, K. M. Stafford, and G. Latha, Near Real-Time
Underwater Passive Acoustic Monitoring of Natural and Anthropogenic
Sounds. Cham: Springer International Publishing, 2018, pp. 203–226.

[4] H. Matsumoto, C. R. Jones, H. Klinck, D. K. Mellinger, R. P. Dziak,
and C. Meinig, “Tracking beaked whales with a passive acoustic profiler
float.” The Journal of the Acoustical Society of America, vol. 133 2, pp.
731–40, 2013.

[5] B. B. Ma and J. Nystuen, “Passive acoustic detection and measurement
of rainfall at sea,” Journal of Atmospheric and Oceanic Technology - J
ATMOS OCEAN TECHNOL, vol. 22, pp. 1225–1248, 08 2005.

[6] A. Sukhovich, S. Bonnieux, Y. Hello, J. O. Irisson, F. J. Simons, and
G. Nolet, “Seismic monitoring in the oceans by autonomous floats,” in
Nature communications, 2015.

[7] G. Nolet, Y. Hello, S. van der Lee, S. Bonnieux, M. J. C. Ruiz, N. A.
Pazmino, A. Deschamps, M. M. Regnier, Y. Font, Y. J. Chen, and F. J.
Simons, “Imaging the galápagos mantle plume with an unconventional
application of floating seismometers,” in Scientific Reports, 2019.

[8] H. Gomaa, Real-Time Software Design for Embedded Systems. Cam-
bridge University Press, 2016.

[9] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. C. Cheng,
P. Collet, B. Combemale, R. B. France, R. Heldal, J. H. Hill, J. Kienzle,
M. Schöttle, F. Steimann, D. R. Stikkolorum, and J. Whittle, “The rele-
vance of model-driven engineering thirty years from now,” in MoDELS,
2014.

[10] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, pp. 25–31, 2006.

[11] S. Kent, “Model driven engineering,” in Proceedings of the Third
International Conference on Integrated Formal Methods, ser. IFM ’02.
London, UK, UK: Springer-Verlag, 2002, pp. 286–298.

[12] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley
Professional, 2010.

[13] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, pp. 46–61,
1973.

[14] T. J. Parr and R. W. Quong, “Antlr: A predicated- ll(k) parser generator,”
Softw., Pract. Exper., vol. 25, pp. 789–810, 1995.

[15] K. Kakousis, N. Paspallis, and G. A. Papadopoulos, “A survey of
software adaptation in mobile and ubiquitous computing,” Enterprise
Information Systems, vol. 4, no. 4, pp. 355–389, 2010.

[16] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi,
and F. Kawsar, “Squeezing deep learning into mobile and embedded
devices,” IEEE Pervasive Computing, vol. 16, no. 3, pp. 82–88, 2017.

[17] P. Gaur and M. P. Tahiliani, “Operating systems for iot devices: A critical
survey,” 2015 IEEE Region 10 Symposium, pp. 33–36, 2015.

[18] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, and
J. Saraiva, “Energy efficiency across programming languages: how do
energy, time, and memory relate?” in SLE, 2017.

[19] P. Iyenghar and E. Pulvermüller, “A model-driven workflow for energy-
aware scheduling analysis of iot-enabled use cases,” IEEE Internet of
Things Journal, vol. 5, pp. 4914–4925, 2018.

[20] T. B. la Fosse, J.-M. Mottu, M. Tisi, J. Rocheteau, and G. Sunyé,
“Characterizing a source code model with energy measurements,” in
MeGSuS@ESEM, 2018.

[21] C. Ferdinand and R. Heckmann, “ait: Worst-case execution time pre-
diction by static program analysis,” in Building the Information Society,
R. Jacquart, Ed. Boston, MA: Springer US, 2004, pp. 377–383.

[22] C. M. Woodside, G. Franks, and D. C. Petriu, “The future of software
performance engineering,” Future of Software Engineering (FOSE ’07),
pp. 171–187, 2007.

[23] K. Lorincz, B.-r. Chen, J. Waterman, G. Werner-Allen, and M. Welsh,
“Resource aware programming in the pixie os,” in Proceedings of the
6th ACM Conference on Embedded Network Sensor Systems, ser. SenSys
’08. New York, NY, USA: ACM, 2008, pp. 211–224.

[24] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and
E. D. Berger, “Eon: A language and runtime system for perpetual sys-
tems,” in Proceedings of the 5th International Conference on Embedded
Networked Sensor Systems, ser. SenSys ’07. New York, NY, USA:
ACM, 2007, pp. 161–174.

[25] O. M. Group, “Uml profile for marte: Modeling and analysis
of real-time embedded systems,” 2011. [Online]. Available:
https://www.omg.org/spec/MARTE/

[26] P. Feiler, D. Gluch, and J. Hudak, “The architecture analysis & design
language (aadl): An introduction,” p. 145, 02 2006.

[27] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Inter-
national Journal on Software Tools for Technology Transfer, vol. 1, pp.
134–152, 1997.

[28] J. DeAntoni and F. Mallet, “Timesquare: treat your models with logical
time,” in TOOLS, 2012.

[29] N. Navet and L. Fejoz, “Cpal: high-level abstractions for safe embedded
systems,” in DSM@SPLASH, 2016.

[30] N. Gobillot, C. Lesire, and D. Doose, “A design and analysis method-
ology for component-based real-time architectures of autonomous sys-
tems,” Journal of Intelligent and Robotic Systems, pp. 1–16, 2018.

