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ABSTRACT

Context. Adaptive optics (AO) systems greatly increase the resolution of large telescopes, but produce complex point spread function
(PSF) shapes, varying in time and across the field of view. The PSF must be accurately known since it provides crucial information
about optical systems for design, characterization, diagnostics, and image post-processing.
Aims. We develop here a model of the AO long-exposure PSF, adapted to various seeing conditions and any AO system. This model
is made to match accurately both the core of the PSF and its turbulent halo.
Methods. The PSF model we develop is based on a parsimonious parameterization of the phase power spectral density, with only five
parameters to describe circularly symmetric PSFs and seven parameters for asymmetrical ones. Moreover, one of the parameters is
the Fried parameter r0 of the turbulence’s strength. This physical parameter is an asset in the PSF model since it can be correlated
with external measurements of the r0, such as phase slopes from the AO real time computer (RTC) or site seeing monitoring.
Results. We fit our model against end-to-end simulated PSFs using the OOMAO tool, and against on-sky PSFs from the
SPHERE/ZIMPOL imager and the MUSE integral field spectrometer working in AO narrow-field mode. Our model matches the
shape of the AO PSF both in the core and the halo, with a relative error smaller than 1% for simulated and experimental data. We also
show that we retrieve the r0 parameter with sub-centimeter precision on simulated data. For ZIMPOL data, we show a correlation
of 97% between our r0 estimation and the RTC estimation. Finally, MUSE allows us to test the spectral dependency of the fitted r0
parameter. It follows the theoretical λ6/5 evolution with a standard deviation of 0.3 cm. Evolution of other PSF parameters, such as
residual phase variance or aliasing, is also discussed.
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1. Introduction

Optical systems suffer from aberrations and diffraction effects
that limit their imaging performance. For ground-based obser-
vations, the point spread function (PSF) is dramatically altered
by the atmospheric turbulence that distorts the incoming wave-
front (Roddier 1981). The resolution under typical conditions
of a seeing-limited telescope does not exceed the diffraction
limit of an ∼12 cm aperture. Modern and future large telescopes
thus include adaptive optics (AO) systems (Roddier 1999) that
compensate for the atmospheric turbulence thanks to wavefront
sensors and deformable mirrors. The aberrated wavefront is
partially corrected and telescopes may operate near their diffrac-
tion limited regime. Nevertheless the AO correction is limited by
technical issues such as sensor noise, limited number of actua-
tors, or loop delay (Martin et al. 2017; Rigaut et al. 1998). This
results in a peculiar shape of the PSF made of a sharp peak due to
? Our Python codes are available on https://gitlab.lam.fr/
lam-grd-public

the partial AO correction, and a wide halo caused by the residual
turbulence above the AO cutoff frequency.

The PSF thus provides critical information about an opti-
cal system regarding its preliminary design, calibrations, test-
ings, or diagnostic (Ascenso et al. 2015; Ragland et al. 2018).
Image post-processing, such as deconvolution (Mugnier et al.
2004), also requires knowledge of the PSF. Deconvolution of
long-exposure images using parametric PSFs has already been
demonstrated in Drummond (1998) and Fétick et al. (2019). A
fine model of the PSF is necessary. The substantial advantage of
parametric PSFs is to compress all the important information of
the physical PSF into a small number of parameters. The numer-
ical values of these parameters might then be used for compar-
isons, correlations, or any statistical analysis. Moreover if the
PSF parameters are correlated to physical values (e.g. turbulence
strength, wind speed, AO residual phase variance), it is possible
to better constrain these parameters or better understand the AO
response to given observing conditions. We state that an efficient
AO PSF model should fulfil the following requirements:
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– Accuracy. The model must represent accurately the shape
of the AO-corrected PSF, especially the two areas corresponding
to its central peak and to its wide turbulent halo. The requested
accuracy depends on the application of the PSF (e.g. fitting,
deconvolution, turbulence monitoring).

– Versatility and robustness. The model must be used on dif-
ferent AO system, with different AO correction levels, for differ-
ent turbulent strengths.

– Simplicity. The model must have as few parameters as pos-
sible without damaging its versatility or accuracy.

– Physical parameters. Such parameters have a physical
meaning related to the observing conditions. These parameters
have physical units.

The literature already provides some models of AO-
corrected PSF (Drummond 1998; Zieleniewski & Thatte 2013)
often based on Gaussian, Lorentzian, and/or Moffat (1969) mod-
els. A trade-off is always drawn between a simple model with
few parameters but imprecise, or a more precise but also more
complex model. The difficulty often comes from the descrip-
tion of the turbulent halo with only a few parameters. More-
over, to the best of our knowledge, these PSF models rely only
on mathematical parameters without direct physical meaning or
units.

We propose a long-exposure PSF model for AO-corrected
telescopes that describes accurately the shape of the PSF; this
model is made of a small number of parameters with physi-
cal meaning whenever possible. Our method does not parame-
terize the PSF directly in the focal plane, but rather from the
phase power spectral density (PSD). Indeed Goodman (1968)
and Roddier (1981) have shown that the phase PSD contains all
the necessary information to describe the long-exposure atmo-
spheric PSF. Working in the PSD domain allows us to include
physical parameters. Then Fourier transforms give the result-
ing PSF in the focal plane. Our PSF model also includes pupil
diffraction effects or any of the system static aberrations, pro-
vided they have been previously characterized.

In Sect. 2 we first recall the expression of the Moffat function
and show its limits for AO PSF description. Then we develop our
PSF model, partially based on this Moffat function. Section 3
validates the model by fitting PSFs from numerical simulations
and from observations made on two Very Large Telescope (VLT)
instruments. Finally Sect. 4 concludes our work and discusses
direct and future applications for our PSF model.

2. Description of the PSF model

In the whole paper, we define (xR, yR) the reference coordinates
that are respectively the detector horizontal and vertical coor-
dinates. We also define (x, y) the proper PSF coordinates (e.g.
along the major and minor PSF elongation axis), rotated by an
angle θR with respect to the reference frame. The reference frame
to PSF frame transformation can be written as(
x
y

)
=

(
cos θR sin θR
− sin θR cos θR

) (
xR
yR

)
. (1)

For the sake of simplicity we will use mainly the rotated coordi-
nates, but it is important to keep in mind that θR is a crucial PSF
parameter. We also simplify the notations x = x(xR, yR, θR) and
y = y(xR, yR, θR).

In this section we first recall the usual Moffat PSF model,
since it encompasses and generalizes Lorentzian and Gaussian
models. We demonstrate the advantages of the Moffat model,
but also its limitations. This motivates our search for a bet-
ter PSF model. However, the mathematical expression of the

Moffat function will still be used inside our more complete PSF
model.

2.1. Review of the usual Moffat PSF model

The AO-corrected PSF exhibits a sharp corrected peak,
with wide wings extension. The Moffat (1969) model is
often used due to its good approximation of the AO PSF
sharp peak (Andersen et al. 2006; Müller Sánchez et al. 2006;
Davies & Kasper 2012; Orban de Xivry et al. 2015; Rusu et al.
2016). The Moffat function, of amplitude A, is written as

MA(x, y) =
A

(1 + x2/α2
x + y2/α2

y)β
, (2)

with αx, αy, and β strictly positive real numbers. Moreover the
condition β > 1 is imposed to ensure a finite integral of the func-
tion on the plane. This model encompasses the two-dimensional
Lorentzian function for β = 1 and the two-dimensional Gaussian
function for β → +∞. The variable β parameter thus makes
the Moffat function a generalization of Lorentzian and Gaus-
sian ones. Since the PSF has a unit energy, demonstration in
Appendix A shows that the Moffat multiplicative constant is

A =
β − 1
παxαy

, (3)

so the PSF, called h, is made of only four free parameters αx, αy,
β, and θR. The Moffat PSF model thus is re-written as

h(x, y) =
β − 1
παxαy

M1(x, y), (4)

where the notation M1 must be understood as the Moffat MA
with a multiplicative factor A = 1.

The full fitting method will be presented in Sect. 3, but we
show here a preliminary result using the Moffat function to moti-
vate our search for better functions. Indeed, as shown in Fig. 1,
the Moffat function accurately fits the central peak of an actual
PSF, but poorly describes the turbulent halo. Since this halo may
contain an important proportion of the PSF energy, depending on
the quality of the AO correction, it is necessary to model it accu-
rately. Adding a constant background to the model artificially
improves the fitting (lower residuals). However, this method is
not suitable since it poorly describes the halo and mistaking the
halo for a background will yield the non-physical result of a PSF
with an infinite integral on an unlimited field of view. The mod-
ulation transfer functions (MTF, bottom plot in Fig. 1), which is
the modulus of the PSF Fourier transform, also shows that the
Moffat does not match well the very low frequencies (halo) and
does not model the telescope cutoff frequency. Similarly, none
of the static aberrations of the telescope are taken into account.
A more physical PSF model than a Moffat is thus required.

2.2. Image formation theory

Our PSF model is based on equations of image formation from
the phase PSD to the focal plane. Indeed Roddier (1981) has
shown that the Fourier transform of the PSF, the optical transfer
function (OTF), can be written as the product of the telescope
aberrations OTF and the atmospheric turbulent OTF,

h̃(ρ/λ) = h̃T(ρ/λ) · h̃A(ρ/λ), (5)

where λ is the observation wavelength, h̃ the total OTF, h̃T the
telescope OTF, and h̃A the atmospheric OTF. This OTF split-
ting equation is valid under the hypothesis of a spatially station-
ary phase. This is the case for a purely turbulent phase, and a

A99, page 2 of 11



R. J. L. Fétick et al.: Physics based model of the AO-corrected PSF

Fig. 1. Fitting of a SPHERE/ZIMPOL PSF (blue) using a Moffat model
with background (green) and without background (dashed green).
Top: PSF, bottom: MTF. The inset plot is a zoom on the low spatial
frequencies.

good approximation for an AO-corrected phase (Conan 1994).
To establish this result, Roddier also used the fact that the phase
distribution follows a Gaussian process, as the sum of a large
number of independent turbulent layers. The telescope OTF is
simply given by the autocorrelation of the pupil transmission
function, whereas the atmospheric OTF is written as

h̃A(ρ/λ) = e−Bφ(0)eBφ(ρ), (6)

with Bφ the phase autocorrelation function defined as

Bφ(ρ) = 〈〈φ(r, t)φ(r + ρ, t)〉t〉r. (7)

The Wiener–Khintchine theorem states that the PSD is the
Fourier transform of the autocorrelation as

Wφ( f ) = F {Bφ(ρ)}, (8)

where Wφ denotes the phase PSD and F the Fourier operator;
f and ρ are the Fourier conjugated variables. If we call u the
angular variable conjugated to ρ/λ, the PSF is written as

h(u) = F −1
{
h̃T(ρ/λ) e−Bφ(0) eF

−1{Wφ( f )}
}
. (9)

We note that Bφ(0) is the residual phase variance and is equal to
the integral of Wφ on the whole frequency plane. This equation
shows that only knowledge of the pupil and the static aberra-
tions of the term h̃T, and the phase PSD Wφ are necessary for
the description of the long-exposure PSF. Diffraction effects –
such as finite aperture, central obstruction, and spiders – only
depend on the pupil geometry and are known. Static aberrations
are second-order effects that can be either neglected (as we show

in Sects. 3.3 and 3.4), or measured (N’Diaye et al. 2013) and
then included in the h̃T term for more accuracy. The term h̃T
being fully determined, now we only have to parameterize the
residual phase PSD to model the PSF.

2.3. Parameterization of the phase PSD

Actuators controlling the deformable mirror are separated by a
pitch that sets the maximal spatial frequency of the phase that
can be corrected by the AO system. This is called the AO spa-
tial cutoff frequency, defined by fAO ' Nact/2D, where Nact is
the linear number of actuators and D the pupil diameter. This
technical limitation induces the peculiar shape of the AO resid-
ual phase PSD (and in fine a peculiar shape of the PSF). The
residual phase PSD is thus separated into two distinct areas:

– AO-corrected frequencies f ≤ fAO,
– AO-uncorrected frequencies f > fAO.

The uncorrected area is not affected by the AO system, and the
phase PSD consequently follows the Kolmogorov law,

Wφ,Kolmo( f ) = 0.023r−5/3
0 f −11/3, for f > fAO, (10)

where r0 is the Fried parameter scaling the strength of the tur-
bulence. The halo is thus set by the knowledge of only this r0
parameter.

Regarding the AO-corrected area, it is difficult to parameter-
ize the phase residual PSD since it depends on the turbulence,
the magnitude of the object, the AO loop delay, and the wave-
front reconstruction algorithm. Our objective is not to build a
full reconstruction of the phase PSD, but to only get a model
that can match it. Racine et al. (1999) and Jolissaint & Veran
(2002) have shown that in extreme AO correction (small resid-
ual phase) the shape of the PSF is exactly the shape of the PSD.
For partial AO correction, the shapes of the PSF and PSD are not
exactly identical, but are still similar (Fétick et al. 2018). More-
over Rigaut et al. (1998) have shown that the AO residual PSD
is the sum of decreasing power laws of the spatial frequency. A
Moffat function used in the PSD domain would already describe
two regimes due to its shape, one regime for f ≤ α and one
regime for α < f < fAO. Adding a constant under the Moffat
allows us to describe a third regime near the AO cutoff frequency
at f . fAO that is roughly similar to the shape of the aliasing PSD
discussed by Rigaut et al. (1998). All the above pieces of infor-
mation suggest the possibility of using the Moffat function for a
parsimonious parameterization of the AO-corrected PSD, rather
than using it to directly parameterize the PSF in the focal plane.
The full PSD model is written as

Wφ( f ) =

 β − 1
παxαy

MA( fx, fy)

1 −
(
1 +

f 2
AO

αxαy

)1−β + C


f≤ fAO

+
[
Wφ,Kolmo( f )

]
f> fAO

,

(11)

where the Moffat normalization factor ensures a unit integral of
the Moffat on the area f ≤ fAO (see Appendix A). Constant C
is an AO-corrected phase PSD background. It is useful to model
the residual AO PSD near the AO cutoff, where the Moffat func-
tion is close to zero. Thus the AO residual phase variance on the
circular domain below the AO cutoff frequency is directly

σ2
AO = A + Cπ f 2

AO. (12)

Parameter A, added to the C background contribution, has the
physical meaning of being the residual variance. An example of
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Fig. 2. Three components of the PSD model: the Moffat (blue) and the
constant contribution (orange) below the AO cutoff frequency, and the
Kolmogorov spectrum (green) above the AO cutoff frequency. Discon-
tinuity has been exaggerated by reducing C to show this degree of free-
dom in our model. Plotting is in logarithmic–logarithmic scale.

our PSD model is given Fig. 2. We do not impose continuity at
the AO cutoff frequency, so the PSD might be locally discontin-
uous. Indeed the transition area f ' fAO between corrected and
uncorrected frequencies can lead to strong PSD gradients, which
are modelled by an eventual PSD discontinuity.

Our PSF model based on the PSD is made of the following
set of seven parameters: S = {αx, αy, β, θR,C, r0, A} in the asym-
metric case. This reduces to five parameters in the symmetric
case (setting αy = αx and θR = 0). Even though symmetric PSFs
are sufficient in the majority of cases, asymmetries make it pos-
sible to consider PSFs elongated due to strong wind effects or
anisoplanetism. Once the parameters S are set, the PSF is then
computed from the AO PSD and static aberrations using Eq. (9).

For the reader interested in deriving the Strehl ratio from our
model, we have to compute the integral of the Kolmogorov spec-
trum above the AO cutoff frequency,

σ2
halo = 0.023r−5/3

0 2π
∫ +∞

fAO

f −11/3 f d f

= 0.023
6π
5

(r0 · fAO)−5/3. (13)

The Strehl ratio consequently is written as

SR = exp
[
−(σ2

AO + σ2
halo)

]
= exp

[
−A −Cπ f 2

AO − 0.023
6π
5

(r0 · fAO)−5/3
]
. (14)

3. Validation

3.1. PSF fitting method

In this section we deal with images of PSFs (the data) that may
come from numerical simulations or observations of stars on
VLT instruments. The fitting method consists in finding the PSF
parameters so that the model PSF minimizes the square distance
to the data PSF:

L(S, γ, ζ, δx, δy) =
∑
i, j

wi, j

[
γ · hi, j(S, δx, δy) + ζ − di, j

]2
, (15)

where hi, j is the discretized model of PSF on the pixels (i, j),
S its set of parameters, and di, j is the data PSF. Since the PSF

model (given by Eqs. (9) and 11) has a unit flux, it is scaled by
γ to match the flux of the data PSF, and ζ accounts for a pos-
sible background. The shifts δx and δy centre the PSF with sub-
pixel precision on the data (by multiplication of the OTF with the
correct phasor). The weighting factor wi, j is the inverse of the
noise variance, which takes into account the photon noise and
the detector read-out noise. As noted by Mugnier et al. (2004),
for high fluxes (typically greater than ten photons per pixel), the
Poisson photon noise becomes nearly Gaussian and the weight-
ing factor is written as

wi, j =
1

max{di, j , 0} + σ2
RON

· (16)

In this case, our approach can be seen from a statistical point of
view as maximizing the likelihood of the data di, j corrupted by
photon and read-out noise. We thus minimize L, which is the
neg-logarithm of the likelihood for a Gaussian process.

Let us now note that the minimum of L has an analytic solu-
tion for γ and ζ (see Appendix B for a full demonstration).
We actually do not need to numerically minimize over these
two parameters, the least-square criterion only relies on the PSF
intrinsic parameters S and the position parameters (δx, δy) as

L ′(S, δx, δy) = L(S, γ̂, ζ̂, δx, δy), (17)

where γ̂ and ζ̂ are the analytic solutions for the flux and the back-
ground, respectively. At each iteration of the minimization pro-
cess, the minimizer evaluates our L′ criterion with a new set
of parameters (S, δx, δy). The current PSF estimate h(S, δx, δy)
is computed, then the analytic solutions γ̂ and ζ̂ are computed.
The quantity γ̂ · h(S, δx, δy) + ζ̂ is used to compute the residuals
with the data d. Residuals are then provided to the minimizer to
estimate a new set of parameters (S, δx, δy).

3.2. OOMAO end-to-end simulations

The Object-Oriented Matlab Adaptive Optics (OOMAO) tool-
box, presented by Conan & Correia (2014), provides end-to-end
simulations. For each time step, OOMAO generates a turbulent
wavefront with a Von-Kármán spectrum defined as

Wφ,VK( f ) = 0.023r−5/3
0

( 1
L0

)2

+ f 2

−11/6

, (18)

where we have chosen the outer scale L0 = 30 m. Since 1/L0 �

fAO, the Von-Kármán spectrum is consistent with our PSF
model using the Kolmogorov spectrum above the AO cutoff fre-
quency. OOMAO then propagates the wavefront through the
telescope, simulates the wavefront sensor measurement, per-
forms the wavefront reconstruction, and simulates the mirror
wavefront deformation. For each time step, we get a short
exposure PSF. Integration over time allows us to retrieve the
long-exposure PSF. It is important to notice that the method
to compute the PSF is then very different from our model,
which directly uses the residual phase PSD in Eq. (9). We used
OOMAO to generate a set of PSFs, corresponding to different
wavelengths from 0.5 um to 2.18 um, and seven different values
of r0 from 7.5 cm to 25.0 cm. All r0 are given at 500 nm. We
translate them from the observation wavelength to the reference
wavelength of 500 nm using the theoretical spectral dependency
r0,λ1/r0,λ2 = (λ1/λ2)6/5. For all the PSFs, the telescope parameters
are kept unchanged D = 8 m, Nact = 32, sampling at Shannon–
Nyquist for all wavelengths. The phase screen consists in one
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Table 1. OOMAO parameters summary for our PSF simulations.

Parameter Values Unit

Diameter D 8 m
Nact 32 –
Wavelength λ 2.18, 1.65, 1.22, 1.0

0.85, 0.8, 0.75 ,0.7
0.65, 0.6, 0.55, 0.5 um

Fried r0 7.5, 10.0, 12.5, 15.0
17.5, 20.0, 25.0 cm

Windspeed 10 m s−1

Outer scale L0 30 m
Exposure 0.1, 1, 10, 100 s

Table 2. Typical range of PSF parameters for OOMAO simulations and
SPHERE/ZIMPOL instrument, lower bounds and values used as initial
guess for the minimizer.

Param. Typical range Lower bound Guess Unit

r0 5−30 eps 18 cm
αx 10−2−10−1 eps 5 × 10−2 m−1

αy 10−2−10−1 eps 5 × 10−2 m−1

β 1.1−3 1 + eps 1.6 −

θ 0−π − 0 rad
C 10−3−10−2 0 10−2 rad2 m2

A 10−1−10 0 2 rad2

Notes. Typical ranges are indicative and may vary according to the
considered instrument. The value “eps” denotes the machine precision.
Parameters do not have any upper bound.

frozen flow (Taylor’s hypothesis) turbulent layer translating at
v = 10 m s−1. Using these parameters, we generated PSFs corre-
sponding to exposure times of 0.1, 1, 10, and 100 s. For 0.1 and
1 s, the random OOMAO phase screen did not converge towards
a stable state, leading to a strong bias in the r0 estimation. For a
10 s exposure PSF, the random fluctuations of the phase are cor-
rectly averaged. This is confirmed by the 100 s exposure PSF,
which gives the same r0 estimation as the 10 s case. Since a
100 s exposure is computationally demanding and does not sig-
nificantly improve the results, we performed all our tests on the
10 s exposure time (Table 1).

Each PSF is then fitted using the L′(S, δx, δy) criterion given
to an optimizer (e.g. Levenberg–Marquardt, trust region, or
Markov chain Monte Carlo). We used the Trust Region Reflec-
tive algorithm, called “trf”, from the Python/SciPy (Jones et al.
2001) library. This algorithm is gradient based, said to be robust,
and allows bounds on the parameters. The robustness of this
algorithm was verified for our applications of it to PSF fitting,
even though the convexity of the problem is not demonstrated.
So far, we have not encountered any local minimum and residu-
als are always small. For all PSFs, the same initial conditions are
provided to the fitting algorithm (see Table 2), in particular we
used the same value of r0 = 18 cm. Using the same initial param-
eters {S, δx, δy}init for all fits ensures that our model is suited for
minimization procedures and that convergence is ensured even
if starting far from the true values. Fitting results are presented
on Fig. 3. Our model fits well the OOMAO-generated PSF on
both the corrected and the uncorrected area, residuals being on
average one to two decades below the PSF. Let us define the rel-

Fig. 3. OOMAO PSF fitting with our model. Left: circular average
for PSFs (given in photons). The vertical grey line corresponds to
the AO cutoff radius. Right: corresponding circular average for OTFs
(normalized to unity at the null frequency). From top to bottom, three
wavelengths are scanned from 500 nm to 1220 nm. Colours correspond
to three values of the OOMAO required r0. Solid curves: OOMAO.
Dashed: fitting. Dotted: residuals. All PSFs, for all wavelengths, are
sampled at Shannon–Nyquist.

ative error between fitted PSF and data PSF as

εh =

√∑
i, j

[
γ · hi, j(S, δx, δy) + ζ − di, j

]2∑
i, j di, j

· (19)

This error is the L2 norm of the differences between fitting and
data, relative to the flux. Considering all the OOMAO fitting, we
find an average relative error εh = 6.4 × 10−3 with a standard
deviation of 2.2 × 10−3. For comparison, fitting with a Moffat
model gives an average relative error of εh = 3.4 × 10−2 with a
standard deviation of 1.6× 10−2. Using our model thus increases
the fitting accuracy by a factor of approximately 5 with respect
to the former Moffat model of Sect. 2.1. Regarding the OTFs,
the fit is also accurate on the whole frequency range, from low
frequencies (mainly the halo) to high frequencies (PSF peak and
telescope cutoff). Our model slightly over-estimates frequencies
just below the telescope cutoff frequency but this has never been
an issue in our applications, such as deconvolution, and is still
much better than the Moffat OTF (which has no telescope cutoff
frequency and give a poor estimation of the low frequencies).

Regarding the flux, we consider the relative error between
the flux γ̂ analytically estimated by our model fitting method,
and the OOMAO flux that is directly the sum of the data on all

A99, page 5 of 11

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935830&pdf_id=3


A&A 628, A99 (2019)

Fig. 4. Fried parameter r0 estimated by fitting versus the r0 used in
OOMAO to generate the PSF. All r0 are given at 500 nm. Here are
shown results on 84 different PSFs, corresponding to seven values of
r0 and 12 different wavelengths. The line is the linear fit between our r0
estimation and OOMAO r0. Crosses show residuals |r0,FIT−r0,OOMAO|. A
log–log scale is used to show on the same graph both data and residuals.

Fig. 5. Estimation of the σ2
AO from PSF fitting versus the wavelength

(dots). Colours correspond to the seven different values of OOMAO r0.
Curves of parametric equations σ2 = aλ−2 are fitted on the data.

the pixels:

εγ =
γ̂ −

∑
i, j di, j∑

i, j di, j
· (20)

On all our OOMAO simulations, we find an average relative
error of −1.96%, indicating a small underestimation of the flux
with our fitting method. The standard deviation of this relative
error is 1.11%, and the range of variation is [−3.43%, 2.77%].

3.2.1. Fried parameter r0 estimation

As shown in Fig. 4, our r0 estimation is consistent with the
OOMAO value of r0. We find the best linear fit to be

r0,FIT = 1.038 r0,OOMAO − 0.132, (21)

where values are given in centimetres. The Pearson

Fig. 6. Estimation of the PSF constant C versus the r0 given at the
observed wavelength (dots). A r−5/3

0 fitting equation (solid line) is
applied on the data. Residuals between each data point and the r−5/3

0
power law are also shown (crosses).

correlation coefficient is CPearson = Cov(r0,FIT, r0,OOMAO)/√
Var(r0,FIT) · Var(r0,OOMAO) = 0.99992. This result fully con-

firms our r0 estimation with respect to OOMAO simulations
with sub-centimetre precision.

3.2.2. AO residual variance σ2
AO estimation

Theoretically our model should also be able to retrieve the resid-
ual variance σ2

AO on the corrected area and follow a λ−2 power
law. Figure 5 shows the fitting estimation of this variance versus
the wavelength. This data is then fitted with curves of equation
aλ−2. Except the two outliers for minimal r0 = 7.5 cm at low
wavelength (λ ' 500 nm), the λ−2 power law is a good estima-
tion of the σ2

AO evolution. This result gives confidence in the
estimated parameter. Data from the real time computer (RTC)
could be used in the future to provide the σ2

AO parameter for PSF
estimation. The λ−2 spectral dependence is also an asset to shift
the PSF from one wavelength to another.

3.2.3. Constant C estimation

The C term in Eq. 11 accounts for multiple sources of residual
PSD, including wavefront aliasing and other AO residual errors.
Since this constant is dominated by the Moffat PSD in the core,
it becomes more important near the AO cutoff, where the alias-
ing dominates. Since the aliasing scales in r−5/3

0 (Rigaut et al.
1998), we look for similar r0 dependencies for the PSF constant
C. Figure 6 shows a clear decrease of C with r0. Fitting the esti-
mated C with a r−5/3

0 power law shows a good match, with small
residuals for nearly all r0 values. The power law is not exactly
−5/3 ' −1.67 but is closer to −1.46 for this OOMAO case. How-
ever, one can still think about normalizing the constant in Eq. 11
by

C = C′r−5/3
0 (22)

and perform fitting over C′ instead of C. This would reduce the
variation range of this parameter. Reducing bounds or standard
deviation of a parameter is an asset for constraining the model
and improving minimization processes.
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3.3. High performance imager ZIMPOL

The Spectro Polarimetric High-contrast Exoplanet REsearch
(SPHERE) instrument (Beuzit et al. 2008, 2019) of the VLT
includes the powerful SPHERE Adaptive optics for eXoplan-
ets Observation (SAXO) system described in Fusco et al. (2014)
and Sauvage et al. (2010). The AO real time computer is built
on the ESO system called SPARTA (Fedrigo et al. 2006), which
stands for Standard Platform for Adaptive optics Real Time
Applications. In particular, for each observation, SPARTA is able
to give an estimate of r0 from the mirror voltages and wavefront
sensor slopes.

The Zurich IMaging POLarimeter (ZIMPOL) instrument
(Schmid et al. 2018) is mounted at the focal plane of SPHERE.
ZIMPOL is also used as a very efficient imager at visible wave-
lengths. One of its applications in non-coronagraphic mode is the
observation of asteroids (Vernazza et al. 2018; Viikinkoski et al.
2018; Fétick et al. 2019) as part of an ESO Large Program (ID
199.C-0074, PI P. Vernazza). PSFs from stars were observed
with the ZIMPOL N_R filter (central wavelength 645.9 nm,
width 56.7 nm) during the Large Program. When PSFs are saved
together with the SPARTA telemetry, we are able to correlate r0
given by our fitting and r0 given by SPARTA. In our sample,
28 PSFs were saved along with the SPARTA telemetry. These
PSFs were obtained during different nights, on stars of different
magnitudes, with various seeing conditions. We fitted these 28
PSFs with our PSF model. Figure 7 shows three of the 28 fit-
tings, for the smallest r0 of the sample, the median r0, and the
largest r0, respectively. Our fitted PSFs match the shape of the
core and halo. The average of relative error defined in Eq. (19) is
εh = 2.5×10−3, with a standard deviation of 1.2×10−3. We only
consider diffraction due to the telescope 8 m aperture and its cen-
tral obstruction in the static OTF h̃T (see Eq. (9)). Consequently
non-circularly-symmetric effects, such as the spiders or static
aberrations visible on Fig. 7, are not modelled. Even if the spi-
ders could have been included in our model, we have deliberately
chosen to ignore them in the h̃T term since they are negligible
in comparison to the other dominant effects (AO residual core,
turbulent halo, 8 m aperture diffraction). When performing PSF
fitting, the contribution of these effects not taken into account in
h̃T might bias the atmospheric term h̃A during fitting procedure
and slightly offset the estimation of the S parameters. Moreover
these ZIMPOL images are field stabilized, meaning rotating
spiders, which are harder to model. Pupil stabilized images
would make the description of the spider diffraction effect
easier.

The top graph on Fig. 8 shows that the values estimated by
SPARTA (median = 22 cm) are greater than the values given by
fitting (median = 13 cm). The best linear fit between r0 estimated
by fitting and SPARTA is

r0,SPARTA = 3.41 r0,FIT − 16.82. (23)

The Pearson correlation coefficient between the two series
r0,FIT and r0,SPARTA is CPearson = Cov(r0,FIT, r0,SPARTA)/√

Var(r0,FIT) · Var(r0,SPARTA) = 0.97. From this data it appears
that the estimates of r0,FIT and r0,SPARTA are not identical, how-
ever they show a strong correlation. We further investigated
the difference between the SPARTA and the fitting estimates
thanks to the ESO atmospherical monitoring using the Multi-
Aperture Scintillation Sensor (MASS) combined with the Differ-
ential Image Motion Monitor (DIMM). Since the MASS/DIMM
instrument is located apart from the telescopes, it does not see
exactly the same turbulent volume as the telescopes and does not
suffer the same dome effect. There might be some uncertainties

Fig. 7. Three ZIMPOL PSFs (top), model fittings (middle), residuals
(bottom). Left: minimal r0 of the sample. Middle: median r0. Right:
maximal r0. The main differences are due to some static aberrations not
taken into account in our model (only the pupil and its central obstruc-
tion are taken into account). The hyperbolic arcsine of the intensity is
shown to enhance details. The same intensity scale is used per column
(data, model, residuals), but differs between columns.

between MASS/DIMM r0 estimations and telescope r0 estima-
tions (PSF fitting or RTC) due to the spatial evolution of the tur-
bulence. Nevertheless this instrument is a valuable indicator of
the Paranal atmospheric statistics. For each PSF observation we
retrieved the associated MASS/DIMM seeing estimation within
a delay of ±3 min (see Fig. 8, middle and bottom graphics).
The median seeing estimated by the MASS/DIMM is 0.69′′, to
be compared with a median seeing of 0.46′′ for SPARTA and
0.83′′ for PSF fitting. The over-estimation of the SPARTA r0
with respect to the MASS/DIMM r0 has been already discussed
by Milli et al. (2017). The exact origin of the difference between
these three estimations has not be found. Nevertheless we note
that estimations with SPARTA are based on RTC measurements
of the low spatial frequencies of the phase (sensitive to the Von-
Kármán outer scale L0), whereas our fitting method is based on
the PSF halo corresponding to the high spatial frequencies. Our
PSF fitting method might be sensitive to telescope internal wave-
front errors if they have not been previously calibrated and taken
into account in the PSF model.

Even if there is still an uncertainty on the true value of r0,
the strong correlation between SPARTA and fitting estimations is
sufficient for many applications. Indeed it is still possible to get
r0,SPARTA from telemetry, use Eq. (23) to translate it into r0,FIT,
and get an estimate of the PSF halo. This method constrains the
model for future PSF estimations without having access to the
actual image of the PSF.

3.4. MUSE integral field spectrograph

The Multi-Unit Spectroscopic Explorer MUSE (Bacon et al.
2006, 2010) is an integral field spectrograph (IFS) working
mainly in the visible, from ∼465 nm to ∼930 nm. MUSE is
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Fig. 8. Zenital r0 at 500 nm estimated on MUSE (filled circles, 40 data
points) and SPHERE/ZIMPOL (empty circles, 27 data points) using
three methods: PSF fitting, SPARTA, and MASS/DIMM. Top: r0,SPARTA
versus r0,FIT. A different linear tendency is found for MUSE (plain line)
and SPHERE/ZIMPOL (dashed line). Shaded areas show the standard
deviation between data points and the best linear fit. Middle: r0,SPARTA
and r0,FIT versus r0,MASS/DIMM. Two linear tendencies are identified for
SPARTA, and only one for PSF fitting. Bottom: histograms of seeing
estimated with the three methods on both instruments. Dashed vertical
lines show median values of 0.46′′ (SPARTA), 0.69′′ (MASS/DIMM),
and 0.83′′ (PSF fitting).

equipped with the Ground Atmospheric Layer Adaptive Optics
for Spectroscopic Imaging (GALACSI) adaptive optics system
(Ströbele et al. 2012) to improve its spatial resolution in two dif-
ferent modes, the so-called narrow-field mode (NFM) and wide-
field mode (WFM), to correct different sizes of field of view. The
AO facility uses four laser guide stars (LGS; Calia et al. 2014)

Fig. 9. MUSE PSFs (top), fittings (middle), and residuals (bottom) of the
same star at three different wavelengths over the 92 spectral bins actu-
ally fitted. The hyperbolic arcsine of the intensity is shown to enhance
details.

to perform a tomographic reconstruction of the turbulent phase.
A 589 nm dichroic is present in the optical path to avoid light
contamination from the sodium AO lasers, so no scientific infor-
mation is available around this wavelength. Let us also note that
MUSE is undersampled (sampling is 25 mas in NFM) on the
whole available spectrum. Our PSF model manages the under-
sampling issue by oversampling the PSD and the OTF to safely
perform numerical computations. The given PSF is then spatially
binned to retrieve the correct sampling. The shape of the PSF can
be retrieved, but this method has lower precision on the param-
eters’ estimation inherent to undersampled data. These differ-
ences between the MUSE instrument and SPHERE/ZIMPOL
allow us to test the versatility of our PSF model. Additionally
the spectral resolution is an asset to validate our model at differ-
ent wavelengths and to study the spectral evolution of our PSF
parameters.

During the May–June 2018 commissioning phase, MUSE
observed multiple targets in narrow-field mode. Among these
targets, we have access to 40 PSFs observed on different stars,
during different nights and at different seeing conditions. These
selected PSFs have been spectrally binned into 92 bins of 5 nm
each to increase the signal to noise ratio and reduce the num-
ber of fittings. Then fitting is performed independently, spec-
tral bin by spectral bin, without any spectral information on
the targets or the atmosphere. Figure 9 shows one MUSE dat-
acube PSF fitting at three different wavelengths. The evolution
of the AO correction radius is clearly visible in both the data
and the model. As for ZIMPOL, we did not take into account
static PSF (except the occulted pupil diffraction), which is the
main visible difference between data and model. Fainter stars
visible in the field did not affect the fitting and appear clearly
in the residuals. For the 40 datacubes PSF, the relative error is
εh = 3.3 × 10−3. This result is similar to the previous ones on
OOMAO and SPHERE/ZIMPOL. Secondary stars in the field
also count in the residual error computation.
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Fig. 10. Estimation of the r0 by fitting of the PSF MUSE at 92 different
wavelengths (blue dots), and comparison with a theoretical law in λ6/5

(orange line). The best match between data and theory is achieved for
r0 = 13.3 cm. The grey area corresponds to missing wavelengths due to
the sodium notch filter.

The evolution of r0 with the wavelength is shown on Fig. 10
for one datacube PSF. A least square fitting between our data
points and the theoretical λ6/5 evolution of the r0 gives a spectral
averaged estimation of r0 = 13.3 cm at 500 nm. Our fitted r0
matches well the theory, with a standard deviation of 0.3 cm.

So far each spectral bin is fitted independently, however the
spectral deterministic trend we recover is an asset for PSF deter-
mination. It makes possible the fitting of the whole datacube
with only one r0 parameter. The statistical contrast – ratio of the
number of measurements over the number of unknowns – would
be increased. It would improve fitting robustness, especially for
faint stars where the halo is strongly affected by noise.

The results of fitting on the 40 datacubes give statistical
information on the r0 estimation. As for the SPHERE/ZIMPOL
case, we have access to SPARTA and MASS/DIMM data to
correlate with our fitting estimations (see Fig. 8). The Pear-
son correlation coefficient between PSF fitting and SPARTA is
CPearson = 0.96, which is similar to the SPHERE/ZIMPOL case.
However, we get the linear relationship

r0,SPARTA = 1.96 r0,FIT − 5.31, (24)

which is different from the SPHERE/ZIMPOL (Eq. (23)). The
exact origin of this different trend is unknown, nevertheless let
us note that the actual implementation of the phase PSD esti-
mation is slightly different for the SPHERE and for the MUSE
instruments. For SPHERE the Von-Kármán outer scale L0 is set
to 25 m, whereas for MUSE the L0 is estimated jointly with r0.
This SPARTA double trend is corroborated by MASS/DIMM
information (Fig. 8, middle graph). On the other hand, r0 esti-
mation using our PSF model gives similar results on both
SPHERE/ZIMPOL and MUSE instruments. This confirms the
robustness of our PSF fitting method.

4. Conclusions

In this article we developed a parametric model of long-exposure
AO-corrected PSF. The particularity of this model is to param-
eterize the phase PSD using a Moffat core and a turbulent Kol-
mogorov halo. This model also incorporates prior knowledge of
the telescope, such as the optical cutoff frequency, the obstruc-
tion and spider shapes, and even the static aberrations if they are
calibrated, for example by phase diversity (Mugnier et al. 2008).

This model only requires five parameters for circularly symmet-
rical PSFs, and seven for asymmetrical ones. The sparsity of this
PSF model makes it suitable for numerical computation, such as
minimization algorithms or least-square fits. Tests on both sim-
ulated and real data validated the appropriateness of our model.

One substantial advantage of our model over focal plane
models is to use physical parameters such as the Fried parameter
r0 and the residual AO variance σ2

AO. Since these parameters
are physical, their values in our PSF model can be correlated
to external measurements. Tests on both OOMAO simulations
and on-sky data (from the SPHERE/ZIMPOL and MUSE instru-
ments) confirmed the physical meaning of the r0 parameter used
in our PSF. The ultimate goal would be to only use physical
parameters in the PSF description.

Our model has already shown usability for different seeings
and different instruments, with different AO-correction quality.
This shows the robustness and versatility of the model. We also
plan to use it to parameterize the PSF for the future instruments
on bigger telescopes such as the Extremely Large Telescope
(ELT).

Finally, the small number of parameters makes this model
suited for image post-processing techniques such as deconvolu-
tion of long-exposure images. Deconvolution using parametric
PSFs has already been demonstrated by Drummond (1998) and
Fétick et al. (2019). We plan to develop a myopic deconvolu-
tion algorithm estimating both the observed object and the PSF
parameters in a marginal approach similar to Blanco & Mugnier
(2011).
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Appendix A: Integral of a truncated Moffat

Fig. A.1. Visualization of an elongated Moffat (colour map), its ellipti-
cal level curves (white), and the ellipse E(Rx,Ry) inside which the inte-
gral is computed. Dashed circles of radius Rx and Ry help to visualize
the error done when computing the integral over the ellipse instead of a
circle. A very elongated Moffat is shown here (αx = 1.5αy).

A Moffat function as given in Eq. (2) shows elliptical con-
tours (see Fig. A.1). In this appendix we compute the integral
of the Moffat function inside one of these elliptical contours,
called E(Rx,Ry), of semi-major axis Rx and semi-minor axis
Ry = (αy/αx)Rx. The integral to calculate is

I(Rx,Ry) =

"
E(Rx,Ry)

MA(x, y)dxdy. (A.1)

Let us perform the change of variables

φ :
{
R∗+ × [−π, π[ −→ R × R\(0, 0)

(r, θ) −→ (αxr cos θ, αyr sin θ) . (A.2)

The determinant of the Jacobian is

det Jφ =

∣∣∣∣∣αx cos θ −rαx sin θ
αy sin θ rαy cos θ

∣∣∣∣∣ = αxαyr. (A.3)

The integral of the Moffat in the ellipse is rewritten as

I(Rx,Ry) =

∫ π

−π

∫ Rx/αx

0
| det Jφ| MA(φ(r, θ))drdθ

= 2πAαxαy

∫ Rx/αx

0
[1 + r2]−β

= A
παxαy

β − 1

{
1 −

[
1 + (Rx/αx)2

]1−β
}
, (A.4)

where we assumed β , 1.
In the nearly circular regime αx ' αy and Rx ' Ry so the

integral over the ellipse E(Rx,Ry) is nearly equal to the energy
in a disk of radius Rx. This assumption is made for our model
of PSD to compute the residual variance below the AO cutoff
frequency in Eq. (11).

Moreover it is possible to calculate the integral of the Moffat
function over the whole plane. The assumption β > 1 is manda-
tory to get a bounded integral (finite energy). Under this assump-
tion, letting Rx → +∞ and Ry → +∞, one finds

I(+∞,+∞) = A
παxαy

β − 1
· (A.5)

Consequently, in order to get a Moffat of unit integral over the
whole plane, one must choose the Moffat amplitude factor as

A =
β − 1
παxαy

· (A.6)

Appendix B: Analytic solution for the flux and
background

The minimum of L (given in Eq. (15)) has an analytic solution
for γ and ζ since nulling the partial derivative ofL towards these
parameters gives

∂L

∂γ
= 0⇐⇒

∑
i, j

wi, jhi, j

[
γ · hi, j + ζ − di, j

]
= 0

⇐⇒ γ
∑
i, j

wi, jh2
i, j + ζ

∑
i, j

wi, jhi, j =
∑
i, j

wi, jhi, jdi, j (B.1)

and

∂L

∂ζ
= 0⇐⇒

∑
i, j

wi, j

[
γ · hi, j + ζ − di, j

]
= 0 (B.2)

⇐⇒ γ
∑
i, j

wi, jhi, j + ζ
∑
i, j

wi, j =
∑
i, j

wi, jdi, j. (B.3)

These two equations are linear in γ and ζ. They can be written
within the matrix formalism

A ·

(
ζ
γ

)
=

∑
i, j

wi, jdi, j

(
1

hi, j

)
, (B.4)

whereA is the 2 × 2 matrix of the system defined as

A =
∑
i, j

wi, j

(
1 hi, j

hi, j h2
i, j

)
. (B.5)

In order to invertA, we need to make sure that det(A) , 0. The
determinant ofA is

det(A) =

∑
i, j

wi, j


∑

i, j

wi, jh2
i, j

 −
∑

i, j

wi, jhi, j


2

=

∑
i, j

√
wi, j

2


∑

i, j

(
√

wi, jhi, j)2

 −
∑

i, j

(
√

wi, j)(
√

wi, jhi, j)


2

.

(B.6)

We can now define the two vectors
√

W = {
√wi, j} and

√
WH = {

√wi, jhi, j}. Using these notations the determinant is
rewritten as

det(A) = ‖
√

W‖2‖
√

WH‖2 − |〈
√

W,
√

WH〉|2. (B.7)

We recognize the Cauchy-Schwarz inequality. It follows that
det(A) ≥ 0, with equality only if

√
W and

√
WH are colinear

vectors. The colinearity is written as
√

W//
√

WH ⇐⇒ ∃k ∈ R | ∀(i, j), k
√

wi, j =
√

wi, jhi, j

⇐⇒ ∃k ∈ R | ∀(i, j) where wi, j , 0, k = hi, j.
(B.8)

This states that the determinant of A is null only if the PSF
model h is constant on each point where wi, j , 0. Since our PSF
is not constant on the domain wi, j , 0, we ensure that det(A) , 0
and the analytic solution for γ and ζ is written as(
ζ
γ

)
= A−1

∑
i, j

wi, jdi, j

(
1

hi, j

)
. (B.9)
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