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Abstract

Growing multicellular spheroids recapitulate many features of expanding microtumours, and

therefore they are an attractive system for biomechanical studies. Here, we report an origi-

nal approach to measure and characterize the forces exerted by proliferating multicellular

spheroids. As force sensors, we used high aspect ratio PDMS pillars arranged as a ring that

supports a growing breast tumour cell spheroid. After optical imaging and determination of

the force application zones, we combined 3D reconstruction of the shape of each deformed

PDMS pillar with the finite element method to extract the forces responsible for the experi-

mental observation. We found that the force exerted by growing spheroids ranges between

100nN and 300nN. Moreover, the exerted force was dependent on the pillar stiffness and

increased over time with spheroid growth.

Introduction

Sensing compression and tension forces (i.e., mechanosensing) is an important component

of cell physiology. Changes in mechanical homeostasis within tissues are often observed dur-

ing tumour growth. Solid tumour growth is associated with stiffening of the tumour tissue

due to cell proliferation and modification of the extracellular matrix components. Such tissue

stiffening involves the generation of mechanical forces that accumulate within the growing

tumour and that, in turn, are applied on and deform the surrounding tissue [1, 2]. Besides

genetic alterations and biochemical signals, these mechanical forces also contribute to

tumour progression and resistance to treatment. Several reports show that changes in

mechanical properties can modulate tumour cell behaviour by influencing their prolifera-

tion, migration and invasion properties [3–9]. Moreover, Jain and collaborators demon-

strated that these mechanical forces also induce vessel compression and increase the

interstitial fluid pressure, ultimately affecting drug delivery [10]. Despite their crucial role,

only few experimental methods are available to measure the forces generated by growing

solid tumours or by multicellular tumour spheroids, an in vitro model that recapitulates the
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3D tumour organization in vitro [3, 10, 11]. Moreover, it is still not clear how the forces gen-

erated by growing solid tumours vary depending on the microenvironment stiffness and

over time.

Inspired by the strategy of arrays of discrete microfabricated pillars (posts) of silicone elas-

tomer to measure forces exerted by single cells [12, 13], we previously developed a technologi-

cal process for fabricating high aspect ratio polydimethylsiloxane (PDMS) micropillars

(300μm in height) with different diameters adapted to the characterization of the mechanical

interactions between a growing multicellular tumour spheroid and its environment. The

microdevices are made of 300 μm high cylindrical PDMS micropillars, arranged in a circular

manner around the spheroid [14]. Using time-lapse video-microscopy, we demonstrated that

pillar displacement induced by growing spheroids depends on pillar stiffness. This suggests

that during spheroid growth, cells collectively generate forces that could be measured using

these pillars as force sensors. This paper is devoted to the implementation of this technique

and describes in details how the force modulus can be extracted from 3D pillar displacement

measurements. It also investigates the force temporal changes during spheroid growth as a

function of the micropillar stiffness.

Traction force determination in single-cell experiments with microfabricated pillars relies

on measuring the pillar top displacement [12, 13]. However, multicellular spheroid growth

induces large pillar deformations, and measuring the force based only on pillar top deflection

would not be accurate. In some studies, pillar deflection was evaluated by volumetric imaging

[15, 16]. Lemon and collaborators demonstrated, by using a finite element model (FEM) analy-

sis of pillar deflection, that top displacement does not allow precise force measurements for

deflections larger than 4 μm. By imaging the entire pillar (from top to base), they showed that

considering the whole pillar deflection pattern provides a more accurate analysis of single-cell

traction forces than just the comparison of the top position before and after deflection[16].

With the aim of measuring the forces generated by multicellular tumour spheroids relative to

the microenvironment stiffness and during spheroid growth, we developed a methodology to

estimate forces through the volumetric analysis of the growing spheroid-induced 3D deflection

of high aspect ratio micropillars with different spring constants. This methodology is based on

3D imaging and reconstruction of the micropillars and then on comparison of the experimen-

tal results with the data derived from a FEM analysis of 3D pillar deflection. We show that

spheroid cells collectively apply higher forces on pillars of increasing stiffness and that these

forces increase progressively with spheroid growth.

Materials and methods

Fabrication of the PDMS microdevices

The master mold was fabricated using UV photolithography on thick SU-8 3050 photoresist

(MicroChem Inc.) of 300 μm, spin coated on a 4-inch silicon wafer. The photoresist was

exposed to UV light via the mask that contains circular designs of the pillar shape. The unex-

posed parts of this negative photoresist were dissolved in the development solution PGMEA,

which creates cylindrical holes that serve as a master mold for the PDMS replica. After devel-

opment and hard bake, the SU-8 mold was treated anti-adhesively with octadecyltrichlorosi-

lane (OTS) in liquid phase to prevent PDMS adhesion to the mold. The PDMS pre-polymer

was mixed with the polymerization agent Sylgard 184 (10:1 ratio), poured on the SU-8 mold

and cured at 80˚C for 5 hours. The PDMS replica could then be easily cut and gently

unmoulded. Microdevices fabrication was described in detail in our previous publication

[14].
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Measurement of Young’s modulus of PDMS material

Measurement of the Young’s modulus relied on the compressive force technique, using the

ElectroForce 3100 Bose instrument and the WinTest software. The measurement was done on

dimensionally calibrated PDMS macroscopic posts (height = 10 mm, and diameter = 9 mm)

made in the same polymerization conditions as the micropillars. The instrument has a maxi-

mum force capacity of ±22 N. The post was compressed by 10% of its height at a compression

speed of 1mm/sec. This technique gives the compression force and the dimensional changes of

the PDMS post, allowing the Young’s modulus measurement. In this compression experiment,

the linear elasticity theory gives a straightforward relation between the applied force and the

deformation, supporting the hypothesis of uniaxial stress:

F
S
¼ E�

DL
H

where F is the compression force, ΔL is the compressed deformation, S is the post section (= P

r2), r is the post radius, and H is the post height.

From the compression data, the slope can be calculated as F
ΔL, and the post height and diam-

eter can be measured by optical microscopy. The results obtained on our samples gave a value

of E = 2.6 ± 0.2 MPa.

Spheroid models

MCF7 mammary cancer cells (ATCC) were cultured in RPMI 1640 medium (Invitrogen,

France) supplemented with 1μM insulin (Sigma), 10% foetal calf serum (FCS) (Invitrogen,

France), and 1% penicillin/streptomycin in a humidified atmosphere of 5% CO2 at 37 ˚C.

Spheroids were prepared in Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12

(DMEM F-12) (Invitrogen, France), supplemented with 5% FCS, 1% penicillin/streptomycin,

10−8 M 17β-oestradiol (Sigma), 1 μM insulin, 20 ng/ml epidermal growth factor (Invitrogen)

and B-27 Supplement (1X, (Invitrogen) in a humidified atmosphere of 5% CO2 at 37 ˚C. A

concentration of around 1000 cells in 100μl was loaded in each well of poly-HEMA coated

96-well plates. Plates were centrifuged at 600 g for 6min, and then incubated in a humidified

atmosphere of 5% CO2 at 37 ˚C. After 3 days, spheroids of about 300μm in diameter were

recovered from each well and transferred one by one to a PDMS microdevice by direct micro-

pipetting or using microtweezer.

Pillar fluorescent staining and confocal imaging

Unmolded PDMS chips were stained with 25 μg/ml 1,10-dioctadecyl-3,3,30,30-tetramethylindo-

carbocyanine perchlorate (DiI), a fluorescent lipophilic tracer, in phosphate buffer solution

(PBS). The PDMS microdevices were covered with the staining solution at room temperature

for 20min, and then washed three times for 5min to remove excess staining. Then, culture

medium was added and spheroids were deposited in the centre of the microdevices.

Confocal acquisitions were done using Zeiss LSM 510 NLO laser-scanning microscope, fit-

ted with a water immersion 20X objective.

3D reconstruction algorithm

The algorithm works by sequentially segmenting each pillar, slice by slice. The general outline

is as follows:

• Segmentation of the pillars bases in 2D using the first slice of the 3D stack image.
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• From the second to the last slice: the information from the previous slice is used to define a

search region and to segment the current slice.

• Smoothing the pillar skeletons to reduce segmentation defects.

The algorithm outputs are the pillar centre and radius of each slice as well as a confidence

index given by the energy [17]. A detailed description of the algorithm is given in the Support-

ing information.

COMSOL simulation

The commercial finite element software COMSOL 4.3 was used for the 3D simulation of

micropillar mechanical deformation. This software solves equations of linear elasticity. A

PDMS pillar was modelled as a 3D elastic cylinder with a Young’s modulus E = 2.6 MPa, a

Poisson’s ratio of 0.499, and a density ρ of 927 Kg/m3. The pillar height was always 300μm and

the diameter changed according to the diameter of pillars of the experimental data (28 and

36 μm). The modelled pillar was discretized into tetrahedral mesh elements with a predefined

element size: Fine (minimum and maximum element size: 3 and 24 μm, maximum element

growth rate: 1.45, resolution of curvature: 0.5, and resolution of narrow regions: 0.6). The

applied boundary force was horizontal, unidirectional and distributed uniformly on the upper

175μm of the micropillar, as determined experimentally.

Three parameters were computed to identify the simulated curve that best fitted the experi-

mental curve for each 3D reconstructed pillar: the sum of squares of residuals SSres, the coeffi-

cient of determination R2, and the largest shift M. The following equations were used:

for one pillar, let di and vi indicate the detected and simulated displacement at slice i 2 {1,

. . ., nz}, respectively,

SSres ¼
Xnz

i ¼ 1

ðdi � viÞ
2

R2 ¼ 1 �
SSres
SStot

with SStot ¼
Xnz

i ¼ 1

ðdi �
�dÞ2 and �d ¼

1

nz

Xnz

i ¼ 1

di

M ¼ max
i2f1;...;nzg

jdi � vij

Results

Principle of the measurement of the forces induced by growing spheroids

We previously developed biocompatible ring-shaped microdevices composed of arrays of high

aspect-ratio flexible PDMS pillars that can be used as force microsensors to investigate the

mechanical forces of multicellular tumour spheroids[14]. The principle of the mechanical

model used to measure the forces exerted by a growing spheroid is schematically illustrated in

Fig 1. By considering the pillars as force sensors, we could determine the force on the basis of

their radial displacement. Therefore, each pillar was characterized by its geometrical and mate-

rial parameters: diameter (d), height (h) and spring constant (K). We then used these parame-

ters and the deflection amplitude to model the pillar displacement, and to calculate the forces

(F) responsible for such deflection. This model allowed linking the pillar displacement to the

collective forces induced by spheroid growth. To evaluate the force exerted by a 3D cohesive

cell population, we used spheroids made of MCF-7 mammary tumour cells because they
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maintain a coherent 3D organization and grow homogeneously inside the microdevice,

thereby inducing a nearly radial displacement of all the microdevice pillars (Fig 2 and S1

Movie).

Volumetric imaging and 3D reconstruction of the deformed microdevices

Measuring the forces generated by growing spheroids requires first to experimentally deter-

mine the pillar deflection by volumetric analysis. To this aim, we acquired 4μm step-size z-

stacks of growing spheroids within the microdevices by 3D imaging using confocal micros-

copy (Fig 2A). To visualize the entire pillar length, we stained them with the fluorescent lipo-

philic tracer DiI (Fig 2A and 2B). The images were acquired using a straight confocal

microscope; the bottom of the pillars is 300μm away from the top, and slightly more from the

objective, thus making the image intensity variable along the z axis. The apparent size differ-

ence between the top and the bottom of the pillars is a consequence of image degradation due

to several optical defects, such as scattering and z-anisotropy. To determine the pillar deflec-

tion from the confocal images and to measure the 3D deformations, we developed a specific

pillar reconstruction routine in MATLAB. This segmentation tool takes into account technical

issues, such as optical degradation or altered pillar shape on images, and produces the skeleton

of each pillar as well as its radius at different heights (Fig 2D). We could apply this segmenta-

tion technique also for complex pillar deformations caused by spheroids that did not induce a

radial pillar displacement because their cells aggregated around some of the pillars (see the

example of GM637-derived spheroids in Fig C in S1 File). The algorithm is described in detail

in Supporting Information. From the 3D analysis, we calculated the deflection curves for each

pillar based on the x,y coordinates of the pillar centre along the 300 μm of its length (Fig 2D

and 2E). This analysis confirmed that MCF-7 cell spheroids induce a radial displacement of

the pillars (Fig 2C).

Measurement of the forces exerted by growing spheroids

Then, we modelled the force/deflection relationship using FEM analysis (COMSOL). We con-

sidered each PDMS pillar as a cylinder, and used scanning electron microscopy and confocal

microscopy to precisely measure the pillar geometrical dimensions. Microfabrication tech-

niques allow controlling the pillar diameter, thus making possible to tune their spring constant

Fig 1. High aspect ratio microdevices for the measurements of forces exerted by growing spheroids. (A) Plane view of the circular arrangement of the PDMS

pillars surrounding a spheroid. (B) Lateral view of the pillar displacement induced by a growing spheroid. (C) Forces (F) generated by the growing spheroid on the

surrounding environment induce an outward displacement of the pillars. Pillars are defined by their diameter (d), height (h), and spring constant (K).

https://doi.org/10.1371/journal.pone.0217227.g001
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(stiffness). For this study, we cultured spheroids in microdevices made of pillars of a constant

height (300 μm), but with two different diameters (28 and 36 μm). We measured the PDMS

Young’s modulus using the mechanical compression technique (E = 2.6 MPa). Then, we intro-

duced these data in the model and used it for the mechanical simulation of deflection. To

define where to load the force on the cylinder, we experimentally determined the contact zone

between spheroid and pillars by measuring the height of the imprints left by the pillars on each

MCF-7 spheroid after removal from the microdevice (after 4 days of culture) (Fig 3). We

found that the contact zone corresponded to the upper 175 μm of the pillars (Fig 4A and 4B).

The applied boundary force was considered horizontal and unidirectional because the growing

spheroid within the microdevice is only confined on the sides by the pillars, whereas it is free

on the top and the growth occurs quite homogeneously in all directions (as shown in S1

Movie). Using spheroids made with the mammary cancer cell line MCF-7, the observed pillar

displacement was always outwards, therefore the force was simplified to horizontal according

to the observation slice by slice of the pillar deformation that is fully compatible through simu-

lations with an applied force normal to the pillar axis. Moreover, the applied boundary force

Fig 2. 3D reconstruction of pillar deformations. (A) 3D confocal image showing a microdevice stained with Dil (red; fluorescent lipophilic tracer) surrounding

an MCF-7 (mammary cancer cell line)-derived spheroid stained with the fluorescent dye CMFDA-SE (green). (B) 3D visualization of the z-stack images (step

size = 4μm) of the microdevice where pillar deflection induced by the spheroid growth (unlabelled spheroid) is clearly visible. (C) Superimposition of the first

(base) and last (top) images of the z-stack showing the pillar radial displacement; green, bottom, and red, top of each micropillar. (D) 3D reconstruction of the

detected centres of all pillars in each image of the z-stack (75 images). (E) Deformation curves of five pillars showing the deflection magnitude along the pillar

length (300 μm).

https://doi.org/10.1371/journal.pone.0217227.g002
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was supposed to be uniformly distributed because this force is considered to mainly originate

from the spheroid uniform growth, as the possible local mechanical efforts of individual cells

(which can change from cell to cell) across the contact area could not be sensed.

Therefore, we uniformly applied a horizontal force load distributed over a rectangular area

on the upper 175 μm of each 300 μm pillar (Fig 4B), and assigned a Dirichlet boundary condi-

tion to the bottom part of the pillar, meaning that the pillars are fixed on the support.

Fig 3. Determination of the spheroid-microdevice contact zone. (A) A 3D confocal image of a stained living spheroid in the microdevice showing the imaging

limitations to access the whole spheroid. (B) Bright field microscopy image taken directly after the spheroid removal from the device showing the pillar imprints

(arrowheads) on the spheroid. (C) Bright field image of the spheroid showing the round bottom and top and the very straight borders that define the contact zone,

which was found to be 175±17 μm long. (D) Sketch of the spheroid in the microdevice showing the contact zone at day 4.

https://doi.org/10.1371/journal.pone.0217227.g003

Measure and characterization of the forces exerted by growing multicellular spheroids using microdevice arrays

PLOS ONE | https://doi.org/10.1371/journal.pone.0217227 May 23, 2019 7 / 13

https://doi.org/10.1371/journal.pone.0217227.g003
https://doi.org/10.1371/journal.pone.0217227


Fig 4. Determination of the forces exerted by growing spheroids based on pillar deflection using the finite-element method analysis. (A) Fine

tetrahedral meshing of the whole micropillar. (B) 3D model of the cylindrical micropillar with the introduced geometrical and material parameters.

The uniform unidirectional boundary of the force (F) load on the upper 175 μm of the pillar length is highlighted in blue. (C) Pillar deflection: the

highest deformation is at the pillar top (colour code unit: μm). (D) Von Mises stress for the deformed pillar showing the highest stress at the fixed

bottom (colour code unit: N/m2). (E) Abacus of pillar deflection curves according to the range of applied forces (blue). The deformation curve

obtained using the experimental data for one pillar is shown in red. (F) Comparison of the experimental (red) and best-fitted simulated curve (blue)
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Force loading induced pillar deflection that could be extracted, and also Von Mises stress

(Fig 4C and 4D). Moreover, we used a parametric sweep technique with applied forces ranging

from 0 to 1000 nanoNewtons (nN) and a step of 10nN, and extracted the resulting range of

simulated deflection curves (blue curves in Fig 4E and 4F).

Finally, to determine the forces generated by growing MCF-7 spheroids and responsible for

pillar deflection, we compared the whole range of simulated deflection curves with the experi-

mental deflection profile of each pillar in the microdevice, determined with the 3D reconstruc-

tion algorithm (red curve in Fig 4E and 4F). A MATLAB program allowed combining the

results from the COMSOL simulations and the 3D reconstruction algorithm. We used spline

interpolation for the COMSOL data to obtain the same discretization.

We computed three parameters (the sum of squares of residuals SSres, the coefficient of

determination R2, and the largest shift M) to identify the simulated curve that best fitted the

experimental curve for each 3D reconstructed pillar, using the equations described in the

Methods section.

These parameters all provided similar results concerning the applied force responsible for

the observed deformations (Fig 4F, only R2 is displayed as the most commonly used parame-

ter). We then applied this method to quantify the force exerted on each pillar (either 28 or

36 μm in diameter) at day 4 after the beginning of the experiment. The measured forces ranged

from 100 to 500 nN (Fig 4G) due to variations between pillars within one microdevice and

between spheroids.

Force increases with increasing pillar stiffness

To investigate whether pillar stiffness affected the forces generated by growing spheroids, we

used microdevices made of pillars with a spring constant K = 8 nN/μm (pillars

diameter = 28 μm) and K = 23 nN/μm (pillars diameter = 36 μm). In both microdevice types,

spheroids growth was uniform and the surrounding pillars did not affect the 3D organization

of the aggregates, according to our observations. Pillar deflection was smaller in microdevices

made of stiffer pillars compared with softer pillars; however, the measured deflections for pil-

lars with a high spring constant corresponded to higher applied forces. Indeed, the mean val-

ues of the measured forces using microdevices of K = 8 nN/μm and K = 23 nN/μm were

F = 230±101 nN and F = 295±137 nN, respectively. These results show that spheroids exert

higher forces when in contact with stiffer micropillars.

Force changes over time

To better characterize the forces exhibited by growing spheroids, we investigated force changes

over time. To that end, we monitored pillar deformation in a large number of microdevices

during spheroid growth for four days. By comparing, as before, the experimental data obtained

by volume imaging and 3D reconstruction with the simulation results, we could follow the

changes in the forces generated by growing spheroids over time. For spheroids growing in the

microdevices with soft pillars (K = 8 nN/μm), the mean values of the exerted forces progres-

sively and significantly increased every day, from day 1 (121 nN) to day 4 (230 nN) (Fig 5A).

Conversely, for spheroids growing in devices with stiffer pillars (K = 23 nN/μm), the force

increase (Fig 5B) was less important. Specifically, the mean value of the measured forces was

258 nN at day 1, which was higher than in devices with softer pillars; however, the exerted

for one pillar indicates that the best match corresponds to an applied force of 230nN. The vertical green dashed lines indicate the horizontal force

load domain. (G) Distribution of the forces exerted on the pillars by spheroids at day 4 after insertion in the microdevice (n = 342 micropillars from

21 microdevices with pillar diameter = 28 μm, and n = 172 micropillars from 12 microdevices with pillar diameter = 36 μm).

https://doi.org/10.1371/journal.pone.0217227.g004
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forces increased only of about 30 nN in four days. This corresponded to a rate of 0.42±0.01

nN/hr, which was more than three times lower than the rate observed in microdevices with

softer pillars (1.40±0.16 nN/hr).

Discussion and conclusion

We report here the investigation and characterization of the mechanical forces produced by

growing multicellular tumour cell spheroids using microdevices made of high aspect ratio

PDMS pillars that act as force sensors. Our approach is based on the experimental measure-

ment of pillar deflection, assessed using 3D microscopy and reconstruction of the shape of the

deformed device, as well as on FEM modelling to determine the forces responsible for the

observed deformation.

The spheroid mechanical properties have also been investigated using atomic force micros-

copy measurements [18]. This technology is sensitive to the local mechanical surface proper-

ties of the cells at the spheroid periphery, and cannot be directly compared to the present work

that was designed to characterize the mechanical pressure exerted by a growing micro-

tumour.

Using pillars with a low spring constant (8 nN/μm), we found that forces exerted by a grow-

ing spheroid increased at a rate of around 33 nN/day, reaching a maximum of about 300 nN at

day 4. These force values are higher than previously reported results on the forces exerted by

single cells. For instance, force measurements in normal mammary epithelial MCF10A cells

revealed a measured total force of 150 nN, which represents approximately 20 nN forces

Fig 5. Monitoring of the detected forces induced by spheroid growth during four days. Forces detected using (A) microdevices with a pillar diameter = 28 μm and

K = 8 nN/μm (n = 12, 16, 21, and 20 microdevices from day 1 to day 4), and (B) microdevices with pillar diameter = 36μm and K = 23 nN/μm (n = 8, 13, 10, and 12

microdevices from day 1 to day 4). Comparisons between days were performed using the two-tailed Student’s t test, 95% interval confidence: � = P<0.05, ��� = P

<0.001, ���� = P<0.0001. Values are the mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0217227.g005
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exerted on a single pillar with a 3.6 aspect ratio and a spring constant of 33 nN/μm [16]. The

traction forces of an epithelial cell monolayer ranged between 5 and 20 nN (pillar spring con-

stant of 21 nN/μm) and were concentrated on the edges, while single epithelial cells exerted

forces between 2 and 3 nN [12]. Similarly, forces at single focal adhesions were in the order of

10 nN using fibroblasts [19]. The forces measured using spheroids are not traction forces, but

mainly the result of cell proliferation and are roughly 10 times higher than traction forces mea-

sured for single cells and monolayers. When using microdevices with more rigid pillars (spring

constant of 23 nN/μm versus 8 nN/μm), forces were higher from day 1, with a maximum force

of about 400 nN. The pillar stiffness influence on force generation has been previously investi-

gated in single cells with similar results. For instance, traction forces induced by fibroblasts

were 16 nN and 41 nN when using micropillars with a spring constant of 12 nN/μm and 56

nN/μm, respectively, suggesting rigidity sensing [20]. Our observation strongly suggests that

multicellular spheroids also sense and respond to mechanical stimuli (mechanosensing), the

exact origin of which remains to be elucidated.

Other approaches have been developed to investigate the forces generated by spheroids

based on traction force microscopy applied on spheroids embedded in a hydrogel or on spher-

oid encapsulation inside alginate capsules. Traction force microscopy in 3D revealed that

unlike individual cells that exert traction forces, expanding spheroids exercise predominantly

outward-directed tractions that are distributed over the surface of the multicellular structure

[21]. These results are in line with the pillar radial outward displacement induced by the

growth of MCF-7-derived spheroids within the microdevices described in our study. Com-

pared with our results, the behaviour of spheroids in alginate capsules is quite different, proba-

bly because such spheroids reach confluence inside the capsule [3]. In this confined situation,

the pressure exerted by spheroids drops and reaches a steady state, and cells at the spheroid

periphery acquire a migrating phenotype. This situation is different from the growth of spher-

oids surrounded by pillars that do not lead to their confinement. Therefore, although pillars

and alginate capsules are both mechanical sensors, it is difficult to compare pressure changes

and rigidity sensing in these two experimental conditions.

The analysis of these results led us to propose a simple phenomenological analytical model

for temporal changes of the force exerted by a growing spheroid (described in detail in Supple-

mentary Information). This model is based on the hypothesis that force is the result of cell pro-

liferation inside the spheroid, and assumes that the lateral confinement exerted by the

surrounding pillars limits the spheroid volume increase. Such a simple model, developed with

reasonable parameters, can be used to fit the experimental temporal changes in the spheroid

growing forces and the dependence on the pillar stiffness (Supplementary Information).

In summary, we describe a methodology to evaluate the forces generated by growing spher-

oids based on the comparison of 3D imaging and reconstruction of the pillar deflection

induced by spheroid growth with the simulation of pillar deflection. Using this method, we

show that spheroids formed from a mammary cancer cell line (MCF7) generate higher forces

against pillars of higher stiffness, suggesting that multicellular structures sense and respond to

the properties of their mechanical environment. Moreover, by measuring the temporal

changes of the force exerted by growing spheroids and by describing these modifications with

a simple model, we deduce that the applied pressure reduces the cell division rate.

Supporting information

S1 Movie. Live imaging of a growing spheroid within a microdevice. Transmitted-light

images from a time-lapse experiment (10X objective, 1 frame per 10 minutes) showing the
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growth of a MCF-7 spheroid within the microdevice.

(M4V)

S1 File. Supporting information. This file includes detailed information on the 3D recon-

struction algorithm and the presentation of a phenomenological model describing the tempo-

ral changes of the force exerted by a growing spheroid.

(PDF)
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