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Abstract

Wobble GU pairs (or GoU) occur frequently within double‐stranded RNA helices

interspersed within the standard G═C and A─U Watson‐Crick pairs. However, other

types of GoU pairs interacting on their Watson‐Crick edges have been observed. The

structural and functional roles of such alternative GoU pairs are surprisingly diverse

and reflect the various pairings G and U can form by exploiting all the subtleties of

their electronic configurations. Here, the structural characteristics of the GoU pairs

are updated following the recent crystallographic structures of functional ribosomal

complexes and the development in our understanding of ribosomal translation.
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1 | INTRODUCTION

GoU pairs have been previously analyzed and reviewed (see, for exam-

ple, Masquida and Westhof,1 Varani and McClain,2 and Ananth et al3).

GoU pairs, first suggested by Crick4 for decoding the third codon base

and then called “wobble,” are since regularly observed and predicted in

RNA secondary structures, and folding programs include measured

energy parameters5 for GoU pairs. The importance of their functional-

ity is emphasized by the high conservation of GoU pairs in critical posi-

tions in sequence alignments or in RNA structures or complexes. In self‐

splicing catalytic RNAs, GoU pairs are at the cleavage site, for example,

in group I introns.6 In RNA complexed with proteins, GoU pairs can be

determinant.2,7,8 GoU pairs are also key recognition elements for small

ligands (see, for example, Burgstaller et al9). GoU pairs are critical for

long‐range packing interactions between RNA helices in crystals10

and in the ribosome.11,12 An extensive analysis of GoU pairs in ribo-

somal structures is presented in Mokdad et al.12 This quick overview

gives a glimpse of the multiple structural roles played by GoU pairs in

RNA folding and recognition. Here, the focus is on the various arrange-

ments between G and U that are observed in GoU pairs.

- - - - - - - - - - - - - - - - - - - - - - - - - -
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2 | THE USUAL GOU PAIRS

In all the examples above, the GoU pairs are canonical with the

U protruding in the deep major groove of the RNA helix (Figure 1). This

minor movement is at the core of the structural and

functional properties of the GoU pairs. The following characteristics

follow:
• GoU pairs are easily accommodated within regular RNA helices,

with minimal distortions in the sugar‐phosphate backbone.

• A GoU pair is not isosteric to a UoG pair, unlike the standard G═C

and A─U pairs4,13 (Figure 1).

• The angle between the 5′GoU3′ and the following pair is

undertwisted, and that between the 5′UoG3′ and the following

pair is overtwisted1; the stacking of a 5′GoU3′ pair with the follow-

ing pair in the 3′ direction is therefore more pronounced than that

of a 5′UoG3′ pair.14

• For entering a helical stem, a 5′GoU3′ is thus more frequently

observed.3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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FIGURE 1 In the usual GoU wobble pair, the uracil base is displaced
in the deep major groove region of a RNA double helix. In the figure,
GoU and UoG pairs are compared. If one slides the C1′ atom of the G
in a GoU pair on the C1′ atom of the U of a UoG pair, there is a
displacement around 2 Å between the C1′ atoms of the paired base.
Unlike the complementary Watson‐Crick base pairs (A─U, G═C), the
GoU base pairs are not isosteric. Geometrically, isostericity between
base pairs means that the positions and distances between the C1′
carbon atoms are very similar72
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• The slippage of the U into the major groove leaves a cavity on the

minor groove side frequently occupied by a water molecule that

links the O2′(U), O2(U), and the N2(G) (Figure 2).15-17

• The displacement of that water molecule allows for a tighter pack-

ing with another base pair11 or to the insertion of a protein atom in

a protein complex.18

• The displacement of the U also creates a binding site frequently

occupied by a hydrated potassium ion with binding via hydration

water molecules to O4(U), O6(G), and N7(G) in the major groove

(Figure 2).19,20

With those usual GoU pairs, it is the departure from standard

Watson‐Crick pairs that is exploited for structural and functional pur-

poses. In the complexes formed, the geometry of GoU pairs does not

change conformation; at the very most, one or two water molecules

exchange against a ligand in the complex. During the evolutionary pro-

cesses, GoU pairs are therefore ideal transient pairs appearing

between Watson‐Crick pairs in aligned sequences.21 Thus, in

sequence alignments, conserved GoU pairs indicate a specific role
FIGURE 2 A wobble GoU pair (from PDB 4PCO73) with a water
molecule in the minor groove (green cross) and a hydrated ion (here
a cobalt hexamine) in the major groove. A water molecule linking a
phosphate oxygen, the N7(G), and an ammine group is also shown. All
distances are in angstrom and between the heavy atoms, except for
the two base‐base H bonds
either structural (stabilization) or functional as discussed above (see

also Ananth et al3 and Mokdad et al12).

In nonhelical regions (internal or hairpin loops), GoU base pairs

occur in unusual configurations called “bifurcated” where either of

the uracil O4 or O2 carbonyl groups points directly to both the N1

amino and N2 amino of the guanine, for example, in the sarcin mod-

ule,22 the UNCG tetraloop,23 or with a pseudouridine (Ψ) instead of

U in the T‐loop of tRNAs.24,25 The bifurcated GoU pairs (Figure 3)

have not been observed yet isolated within a double‐stranded regular

RNA helix in contrast to the usual GoU pairs and are found only

embedded within (or framed by) other non‐Watson‐Crick pairs26

forming conserved loop folds or RNA modules as in the bacterial loop

E of 5S rRNA.27 Bifurcated GoU pairs will not be discussed further in

this article.
3 | TWO ALTERNATIVE GOU PAIRS ARE
OBSERVED IN RIBOSOMAL TRANSLATION

In this section, two additional alternative conformations will be

described and highlighted. These alternative conformations are also

accommodated within RNA helices and up to now have not been

observed in other structural instances. They have been mostly

observed and discussed in bacterial ribosomal ternary complexes

formed between ribosome, mRNA, and tRNAs.

In the following two alternative conformations of GoU pairs, the

relative dispositions of the G and U change within the functional com-

plexes compared with the usual GoU pair. These changes are pro-

moted upon a variation (A) in the tautomeric state of either U or G

or (B) in the electronic structure of U that must be chemically modified

at position C5.

A. The tautomeric GoU pairs (Figure 4)

Tautomeric forms of nucleic acid bases have been discussed from

the early days of structural biology28,29 and were recently reviewed.30

In the past years, tautomeric GoU pairs have been implicated31,32 but
FIGURE 3 At the top, a usual GoU pair is represented and below a
bifurcated GoU pair in which the O4(U) points towards the N1(G)
and the N2(G) simultaneously. Such base pairs have not been found
isolated and embedded within a helix, but only together with other
non‐Watson‐Crick pairs. More on bifurcated base GoU pairs can be
found in Leontis et al26



FIGURE 5 At the top is shown the usual GoU pair with the
displacement of the U in the major groove, and below is shown the
novel GoU pair with the U displaced into the minor groove. In the
latter case, the electronic structure of the U could not be determined
by X‐ray crystallography, but the shape of the base pair was clearly
indicated by the electron density.35 In the drawing, we follow the
choice made by Sochacka et al58 where the negative charged is shown
delocalized. In the crystal structure,35 X = S and
R = methylaminomethyl

FIGURE 4 Two theoretical forms of tautomeric GoU pairs. At the
top, the G adopts the enol form (and not the usual keto form), at the
bottom, the U adopts the enol form (and the usual keto form).
Crystallography cannot distinguish between these two possibilities.
Physically, the two states are equivalent with the protons oscillating
between the O6 and O4 oxygen atoms and between the N1 and N3
nitrogen atoms. Such tautomeric GoU pairs are isosteric between
themselves like Watson‐Crick G═C pairs. Such tautomeric base pairs

are undistinguishable from G═C pairs through interactions in the
minor groove side.30 Such tautomeric Watson‐Crick–like pairs have
been observed by crystallography with natural bases33,36,38,39 or
modified Uridines52,53
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were later systematically analyzed in ternary complexes of ribosomes

with mRNA and tRNAs.33-39 Tautomeric GoU pairs have the same

shape as standard Watson‐Crick pairs, and further, they present in the

minor groove exactly the same atoms as G═C pairs (Figure 4). The

ribosomal decoding site has evolved for recognizing and measuring the

geometry ofWatson‐Crick pairs, and recognition ismediated via A‐minor

interactions of two invariant As binding into the minor groove side of the

first two base pairs of the triplet mini‐helix between mRNA and tRNA

anticodon.32,40 Because the ribosomal grip evolved to accommodate

and bind base pairs with Watson‐Crick geometries and shapes, one can

crystallize a rare event (roughly around 1 in 10 000) by presenting to

the ribosome during the crystallization process only a near‐cognate

tRNA.30,33 All combinations of tautomeric GoU pairs at the first and

second positions of the codon/anticodon triplets39 have now been crys-

tallized within bacterial ribosomes. The types and numbers of H bonds

formed between the ribosomal decoding site and GoU pairs at either

the first or second position are identical to those formed between ribo-

somes andWatson‐Crick G═C pairs.39 Interestingly, miscodings because

of the formation of GoU pairs between mRNA codons and near‐cognate

tRNAs are the most frequently observed.41-48 Tautomeric GoU pairs

have also been observed using NMR techniques and their lifetimes

measured in various structural environments.49-51

In all the preceding examples, the tautomeric GoU pairs were

observed at the first or second position of coding triplets, inducing

therefore a miscoding event.39 However, tautomeric base pairs have

also been observed with modified bases at the third wobble

position of codons: with a 5‐oxyacetic acid–modified U (cmo5U)

paired to a G52 and with 5‐methyl‐taurine–modified U also paired

to a G.53 In such instances, the modification of the U should

facilitate or promote the adoption of a tautomeric form of the U

through charge redistribution within the ring. Because of the asym-

metric ribosomal grip at the third base pair of the codon/anticodon

triplet, either Watson‐Crick pairs or a standard wobble GoU with
the G on the anticodon (G34) and the U on the codon (U(+3)) can

be accommodated. On the contrary, the reverse wobble U34oG(+3)

does not accommodate well within the ribosomal grip and conse-

quently does not translate well. However, a modified U (U*) by

allowing for a tautomeric shift leads to the formation of a Watson‐

Crick–like tautomeric U34*oG(+3) pair that does bind properly and

is well translated.13,30,54 In summary, tautomeric GoU pairs at the

first and second positions of the triple helix between codon and

anticodon lead to miscoding and translational error (on average of

the order of 1 in 10 000 in bacteria). However, at the third wobble

position, tautomeric U*34oG(+3) pairs fit best within the tight ribo-

somal environment of the decoding site.

B. The minor groove–shifted GoU pairs (Figure 5)

A novel type of GoU pair was recently36 uncovered in crystal

structure of a ternary complex between ribosome, mRNA, and a mod-

ified tRNALys. Again, that novel GoU pair occurred at the wobble posi-

tion and involved a modified U34 of the tRNA anticodon with a G at

the third position (G(+3)). The hypermodified U is a 5‐

methylaminomethyl‐2‐thiouridine (mnm5s2U). Surprisingly, the modi-

fied U is displaced towards the minor groove (instead of the major

groove as in standard wobble GoU) (see Figure 5). Importantly, this

displacement renders the U34*oG(+3) pair isosteric with the

G34oU(+3) pair, and consequently, the two types of base pairs occupy

the same space within the ribosomal decoding site. The nature and

possibility of the pairing between U34 and G(+3)‐ending codons has

been a matter of discussion.55,57 On the basis of theoretical calcula-

tions and chemical synthesis, this mode of base pairing with the mod-

ified U displaced in the minor groove was suggested.58 A similar model

for the U34*oG(+3) pair had put been forward by Takai and

Yokoyama.56 More recently, NMR experiments support an anionic

state of the modified 5‐oxyacetic acid‐uracil base.59 It was therefore
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suggested that, like mnm5s2U34, cmo5U34 forms a minor groove–

displaced UoG pair and not a Watson‐Crick–like tautomeric UoG

pair.52 Further studies are required to assess which modified U*34

adopts the minor groove–shifted UoG pair or whether depending on

the type of U modifications some of the pairs adopt instead a

Watson‐Crick–like tautomeric geometry. Structurally, either of these

two types of pairs is accommodated by the ribosomal grip and would

allow for proper translation.
4 | CONCLUSIONS

The adaptable, and almost chameleon‐like, behavior of GoU pairs is

remarkable. By exploiting tautomerism, they can mimic the geometric

and isosteric properties of standard complementary Watson‐Crick

pairs. Indeed, they can either adopt Watson‐Crick–like pairs that

appear like standard Watson‐Crick base pairs or form GoU pairs that

are isosteric between them (see Figure 6). In the latter case, the U

must be modified at the C5 position. This adaptable potential of

GoU pairs is critically necessary for smooth and efficient ribosomal

translation.48,60-62

The nature of the chemical modification on the U base is, how-

ever, very diverse in the various organisms of the phylogeny60,63

and reflects the historical contingencies of the evolutionary pro-

cesses. Each modification at C5 of U34 (eg, cmo, mnm, or methyl‐

taurine) requires the successive involvement of several modification

enzymes. The cellular activities of each of those enzymes during

the maturation of transfer RNAs influence the level of modification

of U34 in matured functional tRNAs. Such variations allow to regu-

late the efficiency of ribosomal translation of particular mRNAs

depending on the cellular conditions.64,65 The evolution of the

genetic code and efficient ribosomal translation is therefore inti-

mately integrated within the biochemical, metabolic, and cellular

evolution processes in extant organisms.

In this respect, it is worthwhile noting that pseudouridines (Ψ)

should resist tautomeric changes and solely exist in the diketo form.66

Thus, a GoΨ pair is expected to occur in a single conformation, the

standard wobble pair (the pair stabilizes tautomerism with altered

states of both G and U, see Figure 4). Consequently, Ψ at the third

position should stabilize a wobble pair (G34oΨ3), but Ψ34 could only
FIGURE 6 The three flavors of GoU pairs discussed: At the top, the
usual mode, the GoU wobble has the U displaced into the major
groove; below (thick dark lines), the anionic mode, the GoU pair has
the U (that must be modified) displaced into the minor groove, and at
the right, the tautomeric mode, the GoU pair is isosteric to a G═C pair
promote translation with A(+3) (sinceY34oG(+3) requires either a tau-

tomeric form or a change in the electronic configuration of the pyrim-

idine). This situation occurs in eukaryotes where a second tRNAIle

carrying Ψ34 decodes the (rare) AUA3 codon.61 Further, Ψ at the first

and second positions should prevent miscoding (because tautomeric

GoΨ are not expected to occur). In eukaryotes, tRNATyr is character-

ized by the presence of Ψ35.61

The adaptable potential of GoU pairs is particularly key for a sub-

set of codons. Indeed, for NNY codons, a G34 (modified or not) in

tRNAs can decode either C(+3) or U(+3), which is not the case for

NNR codons in two‐codon boxes (Arg (AGR), Gln, Glu, Leu (UUR),

Lys, Trp) that require a modified U34* to decode G(+3) without

impairing decoding of A(3). Evolution exploits variations in codon

usage and in tRNA species for diversifying the decoding

range.54,60,61,67,68 In order to escape from the dependence on modifi-

cation enzymes acting on U34, two pathways are possible: One can

either impose a strong selection against G‐ending codons or duplicate

the tRNAs so that the corresponding C34‐tRNA is present for

decoding G‐ending codons. The first solution is seen in fungal mito-

chondria69 and insect symbionts,70 and the second solution is possibly

present in a sea cucumber symbiont.71

Such general evolutionary mechanisms have been observed in

various organisms or organelles, but they could also take place

within cells of multicellular organisms. Therefore, depending on the

developmental stage or the cellular type, the G/C content of tran-

scribed mRNAs could be different and, thus, the codon usage, or

there could be variations in the extent of U34 modifications and

the presence of other tRNA species. These general conclusions are

based on the evolutionary grounded hypothesis that the key struc-

tural constraints acting at the decoding site in the ternary complexes

formed between ribosome, mRNA, and tRNAs are basically similar

throughout phylogeny.
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