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Abstract

Climate change will have several consequences for agro-systems, one of which will concern

changes to the development of pathogens.  Because of the losses it  causes,  particularly in
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organic farming, Monilinia laxa is an important pathogen affecting apricot crops. This study

focuses on the consequences of climate change regarding blossom and twig blight (Monilinia

laxa) of apricot. To achieve this, a Climatic Index of cumulated Blight risk (CIB) was built, to

obtain the weighted sum of blossom blight incidence throughout the blooming period. An

epidemiological model to calculate the incidence of blossom blight during every potentially

infectious  episode  and  based  on  biological  parameters,  was  calibrated  using  a  trap  pot

experiment  where  trees  were  placed  in  orchards  and  subject  to  various  meteorological

conditions. The CIB derived from this model was evaluated on field data, and was shown to

be a robust and useful tool to predict the effects of climate change on the development of

apricot blight. Then, using the CIB with a phenological model to predict blooming periods in

the  future,  we estimated  the  risks  of  apricot  blight  until  2100 on four  contrasted  apricot

cultivars and in three geographical zones under climate change scenarios RCP 4.5 and 8.5.

This study revealed different effects of climate change depending on the cultivar and altitude.

Apricot trees would bloom earlier (up to a difference of 50 days between 1950 and 2100)

under climate change. Under the combined effects of these shifts  of blooming period and

changing climatic conditions, late cultivars such as Bergarouge might see a reduction in the

risk of blossom blight (down to 31%) because of warmer but dryer blooming periods. Other

varieties (e.g.: Bergeron) could experience an increase in this risk by up to 27% with a shift of

the blooming period towards rainier conditions at the highest altitudes. The results of this

study could be used to anticipate future changes as well as be used at present as a decision-

support tool for farmers.

Key words

Blossom  blight,  Monilinia  laxa,  apricot  orchards,  Prunus  armeniaca L.,  climate  change,

modelling, phenology 
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1. Introduction

Climatic  changes  such as  increase  of  air  temperature  and rainfall  variability  can  directly

and/or indirectly affect pathogens and the plant diseases they are causing, which has been

recently  reviewed  (Trebicki  and Finlay,  2019).  All  important  life  cycle  stages  of  fungal

pathogens are more or less directly influenced by the prevailing environmental conditions.

The  infection  process  is  particularly  dependent  on  the  species  specific  temperature  and

humidity requirements of the pathogens.  According to the review article by Juroszek and

Tiedemann (2015) infection risk is the most frequently investigated plant disease parameter in

disease  risk  simulation  studies,  where  crop  disease  models  have  been  linked  to  climate

scenarios including, for example, downy mildew infection risk of grapevine (Vitis vinifera L.)

published by Launay et al. (2014). As well as direct effects on pathogens, climate change will

also  affect  plant  phenology  (Körner  and  Basler,  2010)  and  thus  modify  host-pathogen

synchronism  (Caubel  et  al.,  2017).  This  indirect  effect  of  climate  change  on  disease

development will be all the more crucial regarding pathogens that infect plants during a short

and sensitive phenological stage, such as infectious diseases which attack during blooming

periods.

Apricot (Prunus armeniaca L.) is an important crop in the Mediterranean region (14,000 ha

planted and 180,000 T of fruit produced in 2014) and particularly in southern France (third

most important fruit crop) (Lichou and Jay, 2012), but like other such crops, apricot requires

repeated fungicide treatments to secure production. In 2012, an average apricot orchard in

France received 11.8 treatments, including 8.1 against fungi (AGRESTE, 2014). Among the

different fungi that affect apricot, Monilinia spp. causes the most losses (Hrustić et al., 2012;
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Oliveira Lino et al., 2016). Three species of  Monilinia have a significant economic impact:

Monilinia laxa,  Monilinia fructicola and Monilinia fructigena (Hrustić et al., 2012; Oliveira

Lino et al., 2016). The latter has been the subject of the most study because of the damages it

also causes to apple and pear crops. However, infections affecting stone fruits are mainly due

to  Monilinia laxa and  Monilinia fructicola (Oliveira Lino et al., 2016).  Monilinia laxa can

infect apricot blossom, twigs and fruit. Blossom and twig blight are the principal concerns,

particularly  for  organic  farmers,  and  can  cause  losses  of  up  to  90% in  Southern  France

(Parveau et al., 2016).

Apricot blossom is sensitive to blight (whether this is caused by M. laxa or M. fructicola) at

flowering. The flowers have been shown to be the most susceptible when they are wide open

(BBCH Stage 65; Hack et al., 1992) (Luo et al., 2001). In some cases, infected blossoms can

then convey infection to the twigs, generating a necrosis of internal tissues. Moreover, twig

blight can only be caused when transmitted via infected blossom (Agrios, 2005). During the

present  study,  we  focused  on  twig  and  blossom blight,  as  there  is  a  causal  relationship

between the two, and did not address the problem of fruit rot.

The  development  of  Monilinia fungal  infection  on  stone  fruit  blossom  is  linked  to

meteorological conditions in  several ways,  as has been demonstrated by previous studies.

Experimenting in a growth chamber, Tamm et al. (1995) revealed the effects of the duration of

petal wetness and temperature on the development of blossom blight caused by M. laxa on

cherry (Prunus avium L.). Luo et al., (2001) produced similar results in 2001 in their study on

plums (Prunus domestica L.) infected by M. fructicola. Relative humidity and water activity

have also been shown to affect the development of  M. fructicola on cherry blossom petals

(Koball et al., 1997). Casals et al., (2010) highlighted the importance of the same weather

factors to the germination of  M. fructicola on Petri dishes (Casals et al., 2010). However,

although the effects of climate on the development of Monilinia have been studied before, to
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our knowledge this has only been done under controlled conditions. It may be difficult to

ensure reliable recordings of the variables used to describe incidence, mycelial development

or conidia germination in the field. For example, leaf wetness duration is widely used in crop-

disease epidemiological models but remains difficult to measure accurately (Gleason et al.,

2008). 

In the context of climate change, the increasing threat of apricot blight makes it necessary to

develop tools that will enable us to define/imagine crop systems adapted to future conditions.

There is therefore a need for bioclimatic modelling to anticipate the changes to come and

adapt our agro-systems (Jeschke and Strayer, 2008). Current epidemiological models that are

used as Decision Support Systems (DSS) are often of a purely statistical nature. They are

calibrated on current data for use at present but may lack robustness regarding any changes to

conditions which fall  outside their domain of validity. On the other hand, bioclimatic and

physiological  models  are  calibrated  under  controlled  conditions  (Petri  dishes,  growth

chambers,  greenhouses)  that  may  not  reflect  the  reality  in  the  field,  so  are  once  again

deficient. Faced with the future uncertainties inherent in climate change, our models need to

be adaptable and valid under different conditions (Maier et al., 2016). 

The study we present here only concerned M. laxa, as several identification tests performed

during the experiments based on the Lane identification key (Lane, 2002) had reported a great

majority of M. laxa cases (93.7%), rather than M. fructicola (6.3%) and M. fructigena (none).

The aims  of  this  study were to  (1)  produce  a  climatic  index of  blight  risk thanks  to  an

epidemiological model simulating the incidence of blossom and twig blight caused by  M.

laxa on apricot.  This model,  including biological parameters, was calibrated on field data

from a  trap  pot  experiment  and  then  evaluated  on  independent  data  from a  network  of

orchards;
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(2) determine the effects of climate change on apricot blossom blight. To do so, we first of all

applied  a  phenological  process-based  model  to  simulate  flowering  changes,  and  then

implemented our epidemiological model to calculate the incidence of blossom blight on four

contrasted  apricot  cultivars  in  three  geographical  ranges  and  under  two  climate  change

scenarios.

2. Materials and methods

2.1. Building a climatic index of cumulated blight risk

The Climatic Index of cumulated Blight risk (CIB) that we propose is built in several sections.

A blossom incidence  I is calculated using a modified version of the epidemiological model

proposed  by Tamm et  al.  in  1995.  This  factor  reflects  primary  blossom infection  due  to

inoculum dispersal  and infection  as  a  function  of  rainfall  and temperature.  This  blossom

infection can then be transmitted to twigs.  This transmission is  not equal at  all  stages of

blossom development  so  incidence  I is  weighted  according  to  the  proportion  of  disease-

sensitive stages at the time of infection, to form a Weighted Incidence  WI. The twig blight

observed at  the end of  blooming is  thus  the result  of several  infectious  episodes and the

different  WI experienced  by  an  orchard  are  then  summed  to  obtain  a  Climatic  Index  of

cumulated Blight risk (CIB) that reflects twig infection.

   

2.1.1. Incidence of blossom blight

The epidemiological model we used for this study was a modified version of that proposed by

Tamm  et  al.,  (1995)  to  describe  the  incidence  of  M.  laxa blossom  blight  (number  of

symptomatic blossoms/total number of blossoms) on sour cherry trees (Tamm et al., 1995).

This model describes a continuous response surface for any given temperature and wetness
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duration, making it usable under different conditions and appropriate for the study of climate

change. We nevertheless made several modifications to this model.

First, Tamm’s model takes wetness duration and temperature as input variables to generate

incidence data. During our study, we preferred to use rainfall rather than wetness duration to

explain blight incidence (see Supplementary Materials 1 for a comparison between wetness

duration and rainfall). One of the advantages of this approach is that rainfall data are easier to

measure accurately in the field.

Second,  in  order  to  prevent  the  model  from  generating  positive  incidence  values  in  the

absence of rainfall (as the trees displayed no symptoms under dry conditions), we added a

corrective term taking a zero-value for null rainfall and a one-value otherwise. In this context,

a supplementary factor built on precipitation (p) and a constant  ε,  p/(p + ε) with  ε ≠ 0, was

added to force the model to return no incidence if the rainfall is null. 

The equation of our modified version of the Tamm model is therefore as follows (eq.1):

I ( p , T )=
p

p+ε
∗imax  ∗{1−(1−i0 (T )

( 1−m ) )∗e−r (T )∗p
}

1
1−m(1)

with,

i0 (T )=γ1∗ϕγ 2∗(1−ϕ )  (2)

r (T )=ρ1∗ϕρ2∗(1−ϕ )   (3)

where,

ϕ=
( T−Tmin )

(T max−T min)
              (4)

The model returns the incidence I for a given rainfall p and temperature T. The model takes as

known parameters imax (the maximum observed incidence), and Tmin and Tmax the minimal and

maximal cardinal temperatures for M. laxa development. The fit parameters ρ1, ρ2, γ1, γ2 and ε
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were estimated during model fitting. The shape parameter  m was set at 0.9 as advised by

Tamm (Tamm et al., 1995). The ϕ factor describes a “bell curve” response to temperature. The

i0(T) factor was originally designed to return an incidence in the absence of wetness duration.

We  retained  it  despite  the  supplementary  factor  that  we  added  because  we  saw  a  rapid

increase in the incidence observed on trees under low rainfall levels. This factor therefore

describes incidence at low rainfall values. The r(T) factor is a rate parameter describing the

response to rainfall.

In addition to this model, we also tested two others (see Supplementary Materials 2.): (i) a

simple  generic  infection  model  based  on  epidemiological  knowledge  and  proposed  by

Magarey and colleagues (Magarey et al., 2005, referred to below as “Magarey”), and (ii) a

purely statistical model (linear regression, referred to as “LM”) established from our trap pot

experiment dataset. We chose the modified Tamm model we because of its greater robustness

and suitability for climate change studies (for details see Supplementary Materials 2.).

2.1.2. Transmission to twigs

As the  proportion  of  disease-sensitive  blossoms is  evolving  with  phenology,  I has  to  be

weighted for rainy events that occur at different times during blooming.  

Different blooming stages are susceptible in different ways to blossom blight (Luo et  al.,

2001).  We observed  that  58  to  65  BBCH stages  (flower  opening)  displayed  comparable

sensitivity and the 57 stage (sepals opening) had less sensitivity; 57 stage infections were only

possible in the context of a highly infectious event and were observed at lower proportions

(data not shown). The Weighted Incidence WI was thus defined as:

WI=
I × (0,25 S57+S5865)

S57+S5865

ifI ≥0,5    (5)
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WI=
I × S5865

S57+S5865

ifI <0,5              (6)

With S57 being the number of flowers at BBCH stage 57 and S5865 being the number of flowers

at BBCH stages 58 to 65. 

Because twig infection is caused by infected blossoms, use of these weightings was necessary

to correctly describe transmission of the infection to twigs.

2.1.3. Climatic index of cumulated blight risk

The twig infection observed was the result of several blossom infections, each being caused

by a  rainy  event  during  blooming.  We chose  to  identify  a  single  rainy  event  during  the

blooming period as a record of rainfall separated from another rainfall episode by at least 4

hours without rain or leaf wetness. We estimated that 4 hours was sufficiently long for the

wetness caused by the rain to dry,  so that the next event  could be considered separately.

Finally, by summing the  WI associated with different rainy events, we were able to build a

Climatic Index of cumulated Blight risk (CIB) reflecting the history of infectious events

(eq. 7).

CIB=∑
i=1

n

WI i    (7)   n being the number of recorded rainy events

2.2. Data

2.2.1. Trap pot experiment for model calibration

CIB parameters  corresponding  to  those  enabling  calculation  of  the  blossom infection  (I)

component were optimised with data from a trap pot experiment. This trap pot experiment

was performed under semi-controlled conditions: we chose the weather events to which the

pots  would  be  exposed  by  taking  them  out  into  the  orchard  or  returning  them  to  the
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greenhouse.  In  the  orchard,  they  continued to  be exposed to  field inoculums and current

weather conditions. The fact that we could choose the events to which the trees were exposed

enabled us to cover a broad range of weather conditions for model calibration, and at the same

time this contributed robustness to our model as the calibration was performed using field

data. 

The trap pot experiment for model calibration was carried out at the INRA Gotheron Research

Station (Southern France, 44° 58’ 37’’ N, 4° 55’ 48’’ E) over a two-year period, i.e. 2017 and

2018.

Trap apricot trees in pots were set out in the orchard for a defined period of time (around 24

hours), during which they were exposed to recorded meteorological conditions (see 3.1.2) and

outdoor  Monilinia inoculum.  The  pots  were  then  moved  to  a  greenhouse  in  which  the

conditions were controlled and favourable to the expression of blossom blight. 

Apricot trees of the Bergarouge cultivar (Bergarouge® (A2914) Avirine (cov)) were used as

the trap pot trees. This cultivar is known to be very sensitive to blossom blight (Parveau et al.,

2016).  The expression  of  symptoms in  the  event  of  exposure  to  M. laxa and  favourable

climatic conditions for infection was therefore ensured. The orchard comprised three lines of

25 trees along a south-north axis.

We used seven groups of six Bergarouge trees in pots during 2017 and nine groups of five

trees in 2018. Before exposure, the trees were maintained in a cold room (4°C) to keep their

phenology under control. Each tree within a group was exposed for the same period in the

orchard between the BBCH 57 and BBCH 65 stages (disease-sensitive stages) and during the

blooming period of the Bergeval orchard. The first group of trees was exposed on  27 February

and the last on 10 March in 2017, while in 2018 the trees were exposed for periods between 7

and 28 March. After exposure, pots were placed in a greenhouse under controlled conditions

(relative humidity >40%, ambient temperature between 5°C and 25°C). 
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With  each  group,  a  control  tree  was  left  in  the  greenhouse  to  prove  the  absence  of  any

inoculum inside the greenhouse. 

2.2.2. Orchard network for model evaluation

The  model  was  tested  on  independent  data  by  studying  an  orchard  network  in  Southern

France.  The CIB was calculated  for  the orchards  and compared versus  a  measured Twig

Blight Incidence (TBI).

The network comprised 15 orchards located in the Drôme and Ardèche regions (Rhône Valley,

France, ranging between 4°48’29’’E - 4°58’54’’E and between 45°14’52’’N - 44°41’51’’N).

Thirteen orchards were studied in both 2017 and 2018 and two were studied in 2018, thus

providing  a  total  of  28  siteXyear  measurements  of  Twig  Blight  Incidence.  None  of  the

orchards was treated against fungal diseases.

These  15  orchards  were  planted  with  two  moderately  sensitive  cultivars:  ten  with  the

Bergeron cultivar (Bergeron (660)) and five with the Bergeval cultivar (Parveau et al., 2016).

These cultivars are less sensitive to blossom blight than the Bergarouge trees used for the

blossom blight model. However, this was not expected to alter the performance of the model

(see Discussion).

Blighted twigs were counted on five random main branches per orchard to obtain one TBI

notation per orchard:

TBI=
numberofbl i g h tedtwigs

totalnumberoftwigs
    (8)

The evolution of blossom phenological stages was recorded regularly (three times a week) on

ten trees in each orchard. On several occasions, the proportion of blossom at each stage was
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estimated.  The  proportion  of  blossom  at  any  time  during  the  different  stages  was  then

extrapolated linearly between two estimation dates.

2.2.3. Recorded meteorological data

A weather station (IMT 200 Pessl Instruments, Weiz, Austria) was placed in the middle of

each orchard (trap pot experiment and each orchard in the orchard network) at a height of 1.80

m. Rainfall (mm), temperature (°C) and leaf wetness (min) were recorded at an hourly time

step using a rain gauge, temperature sensor and filter paper leaf sensor, respectively. Leaf

wetness was also measured with an electric resistance sensor to assess the reliability of the

measurements (this variable is used in Supplementary Materials 1).

2.2.4. Future climate data

We performed the study using the predicted rainfall and temperature data of 46 DRIAS grids

(French climate change modelling project,  http://www.drias-climat.fr),  which are 8 x 8 km

wide. They were selected in the Rhône Valley at locations were apricot is currently being

cultivated.

For more clarity we decided to group the DRIAS grids thus employed in several clusters. A

Hierarchical Ascending Classification was performed (mean temperature and mean rainfall as

entry variables) and reflected groups as a function of altitude (see Supplementary Materials

3). The following clusters were thus used (see Fig. 1):

Cluster 1: altitude <100m

Cluster 2: 100m ≤ altitude ≤ 400m

Cluster 3: altitude > 400m
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Present  and  future  climatic  conditions  (between  1950  and  2100)  were  applied  using  the

ALADIN-Climate regional climate model nested within the global ARPEGE model (Deque,

2010). Three periods were simulated: the ‘recent past’ (RP, 1970–1999), ‘near future’ (NF,

2020–2049) and ‘far future’ (FF, 2070–2099) according to two ‘representative concentration

pathway’ emission scenarios,  RCP4.5 (median) and RCP8.5 (pessimistic)  (Pachauri  et  al.,

2014). 

2.3. Application to climate change

2.3.1. Phenological model

In order to apply our model to the context of climate change, it was necessary to forecast

apricot blooming periods in the future. We therefore implemented a two-step phenological

model on future climatic data.

2.3.1.1. Estimation of the mid-blooming date

To simulate the blooming period for apricot we used the sequential phenological process-

based model proposed by Andreini et al. (2014). The date of budbreak is simulated using the

Smoothed Utah function (Bonhomme et al., 2010, advised by Andreini et al. 2014) and the

time between budbreak and mid-blooming (F50) is simulated with a sigmoid model (Chuine

et al., 2016). We estimated the mid-blooming dates for four cultivars chosen to have different

precocities  in  terms  of  dormancy  release  and  blooming:   cv.  Beliana  (Beliana®  Sayeb)

(median  to  early blooming period),  cv.  Bergarouge (used  during the  trap pot  experiment,

median  blooming period),  cv.  Bergeron (late  blooming period,  widely  used in  the  Rhône

Valley) and cv. Rouge du Roussillon (Rouge du Roussillon (A157)) (early blooming period).
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The models we used to estimate the F50 date had already been calibrated for the different

cultivars (Andreini et al., 2014, Chuine et al., 2016), (Garcia de Cortazar-Atauri et al., 2013).

2.3.1.2. Estimation of the blooming period

The expand of the blooming period was estimated by studying the phenological data recorded

by the orchard network. No significant differences were found between the expands of the

blooming periods of Bergeron and Bergeval (T-test, p-value = 0.2196). Recordings on the two

cultivars were then grouped. We found that the proportion of disease sensitive stages during

blooming  (degree-days)  could  be  approximated  using  a  Gaussian  curve  centred  on  the

maximum proportion of opened flowers (around 100% of opened flowers) and of a 28 degree-

day standard deviation. It was then possible to estimate the expand of the blooming period at

around F50, starting 122 degree-days before F50 and ending 133 degree-days after F50.

2.4. Data analysis 

Statistical  analysis  and  computations  were  performed  using  R  3.4.3.  Computations  for

phenological  modelling  were  performed  using  Phenology-Modeling-Platform  5.5

(http://www.cefe.cnrs.fr/fr/recherche/ef/forecast/phenology-modelling-platform)  (Chuine  et

al., 2013).

2.4.1. Model calibration

Goodness-of-fit was assessed using the Root Mean Square Error (RMSE, eq.9) and Relative

Root Mean Square Error (RRMSE, eq.10).

RMSE=√ ∑ ( Si−Oi ) ²

n
  (9) and     RRMSE=

RMSE
Ō

  (10)
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Where n is the number of observations, Si the simulated value and Ō the average of observed

values Oi. RMSE can be broken down into two components representing systematic (bias or

RMSEs) and unsystematic (dispersion or RMSEu) error (Willmott, 1981).

RMSEs=√ ∑ ( Ŝi−Oi ) ²

n
  (11)

RMSEu=√ ∑ (Ŝ i−Si ) ²

n
  (12)

With  Ŝibeing  derived  from  the  linear  regression  of  observed  versus  simulated  values:

Ŝi=a+b∗Oiwith a and b being the parameters of the regression.

2.4.2. Model evaluation

The performance of our model was then assessed from the correlation between the observed

Twig Blight Incidence of orchards in the network and their respective calculated CIB.

2.4.3. Algorithm for climate change study

The method used for computation is described in Figure 2.

3. Results

3.1. Model fitting and evaluation

Our model revealed a RMSE of 6.12% incidence when comparing the simulated incidence on

flowers with those observed in the calibration dataset. Given that the average incidence was

27.34%,  the  RRMSE  of  our  model  was  22.43%,  which  could  be  considered  to  be  a
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satisfactory  performance.  A  comparison  between  simulated  and  observed  incidences  is

illustrated in Figure 3. 

Furthermore, the RMSEs was 1.86% whereas the RMSEu was 5.84%, meaning that the error

was mostly due to dispersal of the points (i.e. biological variability) and not to bias in the

chosen formalism. This can also be seen in Figure 4 which represents the residuals associated

with each point.

The parameter values we obtained after optimisation are shown in Table 1.

The CIB calculated using our model was correlated with Twig Blight Infection at R² = 0.46

(Fig.5). Given the numerous parameters varying between the orchards (see Discussion), we

considered this performance to be satisfactory.  

3.2. Evolution of blooming dates

The predictions of the phenological model indicated a shift of all mid-blooming dates to an

earlier day in the year (DOY) for all cultivar and clusters. Under climate change scenario

RCP4.5, the median blooming date was 20 days earlier, from 89.9 DOY (i.e. 31 March in

1950) to 72.2 DOY (March 12 in 2100). This shift was more marked under scenario RCP8.5,

where the F50 date moved to 61.5 DOY (1st March) in 2100 (Fig. 6). Rouge du Roussillon and

Beliana displayed similar but moderated shifts toward earlier blooming dates (of around 20

days), but the Bergeron cultivar notably experienced a shift of almost 50 days in its mid-

blooming date in all clusters under the RCP8.5 scenario. Therefore, by 2100, the differences

in blooming periods between Bergeron and other cultivars would no longer be significant. On
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the  contrary,  Bergarouge  experienced less  variation  in  its  blooming  date  and  would  thus

become the latest blooming cultivar by 2100 in both cluster 1 and cluster 2. We concluded

that under the RCP4.5 and RCP8.5 scenarios, but particularly with the latter, a shift towards

earlier  blooming  periods  and  a  convergence  between  the  blooming  periods  of  different

cultivars  would  be  observed,  with  consequences  regarding the  climatic  conditions  during

blooming and thus the risk of blossom blight.

3.3. Evolution of climatic conditions during the blooming period

This future convergence of blooming periods caused a convergence of the climatic conditions

prevailing during the blooming of different cultivars. In particular, Bergeron and Bergarouge

experienced  opposite  and  strong  shifts.  The  blooming  conditions  for  Bergarouge  shifted

towards warmer but dryer conditions, and would be 2°C warmer in the far future than in the

past in all clusters and under both scenarios, the trees receiving 10 to 20 mm less rainfall

during blooming (Fig. 7). On the other hand, Bergeron saw a marked shift of its blooming

period towards earlier dates, so that this cultivar would experience cultivar conditions that

would be colder (2.8°C lower in cluster 3 and RCP8.5) and rainier (especially in cluster 1).

Rouge du Roussillon and Beliana saw more moderate shifts; those in cluster 3 shifted towards

dryer conditions while cluster 1 saw a temperature-related shift towards warmer conditions.

From an  epidemiological  standpoint,  the  impacts  of  these  changes  to  climatic  conditions

during blooming could indeed be assessed by the CIB computation.

3.4. Future risk of apricot blight

Significant  differences  in  future  CIB  were  only  found  in  the  eventuality  of  the  RCP8.5

scenario, so this is the only one described in greater detail below.
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The CIB calculated by the model  revealed different  consequences  of climate change that

varied according to the clusters and cultivars studied (Fig.8). Variations in the CIB between

past and far future ranged from +27% (Bergeron cluster 1) to -31% (Bergarouge, cluster 1).

However, cluster 1 (lowest altitudes) displayed greater inter-annual variations, although these

differences were not always significant.

We noted a significant in the risk to which Bergarouge is exposed, in all clusters. This could

be linked to the shift of its blooming period to warmer but dryer conditions, the expected

positive  effect  from rising  temperatures  being  counter-balanced by the  negative  effect  of

lower rainfall (Fig. 7). On the other hand, an increase in risk may be possible in the near

future (nf) for Bergeron in cluster 3 (altitudes higher than 400 m) because of colder but rainier

blooming conditions.  Beliana and Rouge du Roussillon experienced more diverse conditions

depending  on  the  cluster,  with  a  general  trend  regarding  disease  risk  that  stagnated  or

diminished in the far future.

4. Discussion

This study generated a climatic index of cumulated blight risk based on an epidemiological

model, describing the blossom and twig blight caused by M. laxa on apricot. The model we

used  was  built  using  biological  parameters  driving  development  of  the  fungus  (optimal

growth temperatures,  response  to  rain).  This  gave  the  model  robustness,  enabling  its  use

within the  framework of  a  changing climate.  Furthermore,  by comparison to  the  original

Tamm model, this model was calibrated and evaluated on easily measurable variables and in

the field, so that it is more applicable and closer to observed incidence. To our knowledge,

this approach – integrating the incidence of both blossom and twig blight in the same CIB
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index, based on biological parameters and easily accessible weather inputs (daily temperature

and rainfall), and valuable under field conditions – is entirely new. 

To estimate  the  effects  of  climate  change  on  blight  risks,  we  first  of  all  determined  the

sensitivity periods of several cultivars. By estimating the present and future CIB at different

altitudes (and even latitudes to a lesser extent), we were able to reveal different changes as a

function of the precocities of the trees and their altitudes. The late blooming cultivar Bergeron

might bloom earlier and face rainier conditions, leading to an increase in the incidence of twig

blight; on the other hand, the median cultivar Bergarouge might shift towards later blooming

and dryer conditions, accompanied by a lower blight incidence at all altitudes. 

4.1. Variabilities affecting evaluation

The results of evaluating this model using data from the orchard network could be considered

as  satisfactory  (R²  = 0.44).  Indeed,  numerous  parameters  varied  between orchards  in  the

network.  For example,  the amount  of  Monilinia inoculum could vary at  the landscape or

regional  levels.  Furthermore,  the  fitting  performances  of  the  epidemiological  model

(RRMSE = 0.22) were equal to or better than the fitting performances regarded as satisfactory

by recent comparable studies (e.g.: Gouache et al., 2015; Morales et al., 2018). 

We  set  blossom-twig  transmission  according  to  our  empirical  observations.  However,

variations in  twig infection via  blossom could impact  the performance of the model.  For

instance, blossom-twig transmission could also depend on climatic conditions. A large part of

the  correlation  between  the  calculated  CIB and  observed  TBI  was  due  to  the  choice  of

weightings.  More observations might  help to  improve our  understanding of blossom-twig

transmission. For example, orchards that experienced rain at the end of the blooming period

displayed  greater  sensitivity  to  twig  blight  infection.  This  factor  could  be  determined  by

means of other trap pot experiments or the analysis of a larger orchard network experiencing a
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variety  of  conditions,  with  a  broader  range  of  latitudes;  for  example,  combining

Mediterranean and more continental climatic conditions. 

The biological  construction of our  epidemiological  model  means that  it  could be used to

address  future conditions  at  a  single  location (in  the  present  case,  the Rhône Valley)  but

should also make the model usable at various geographical locations. For example, testing our

model in other apricot growing regions such as Spain or Turkey would further assess the

robustness of the model we propose here.

It should be noted that the model used to calculate blossom blight infection was calibrated on

Bergarouge trees, which are more sensitive to blossom blight than Bergeval and Bergeron

(Parveau  et  al.,  2016).  However,  because  Bergeron  and  Bergeval  display  comparable

sensitivity (and thus comparable differences in sensitivity versus Bergarouge), the correlation

between CIB and TBI should not be affected mathematically by a difference in sensitivity

between Bergarouge and Bergeron or Bergeval.  

4.2. Working hypotheses

We only studied climate-related factors during this study, in order to assess changes to the

infection risk in line with climate change. Nevertheless, factors of a genetic (e.g. resistance),

physiological (e.g. water stress) or epidemiological (e.g. inoculum repartition) nature should

also be taken into account.

Here, the apricot cultivars were only compared through the lens of precocities, but a factor

reflecting varietal  sensitivity  could be added. Such study would enable assessment of the

respective roles of phenology and genetics: is it better for a tree to avoid blight or resist it? 

As for physiological factors, two types of interactions have been documented to date: "cross-

protection" for plants whose resistance to biotic stresses is increased by the onset of abiotic

stress, and "cross-vulnerability" for plants whose susceptibility to biotic stress is increased
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under abiotic stress (Fones and Gurr, 2017). These processes might modify the host response

to  increased  biotic  and  abiotic  stresses  under  climate  change,  and  should  therefore  be

considered under a more integrative modelling approach.

Further, inoculum levels may vary at a landscape or regional level. For example, they may be

affected by the provenance of air  masses, as has already been shown for  Botrytis cinerea

(Leyronas and Nicot,  2013).  Moreover,  amounts of primary inoculum may also vary as a

function of previous disease levels or orchard management practices (Lichou and Jay, 2012).

The Monilinia inoculum may differ in terms of both quantity and quality involving a change

to the  predominant  Monilinia species.  For  instance,  because  it  is  better  suited to  warmer

temperatures (Casals et al., 2010) and displays pesticide resistance (Lichou and Jay, 2012),

Monilinia  fructicola may  become  more  important  than  Monilinia  laxa in  the  European

inoculum landscape as climate change progresses.  In  addition,  the sexual  reproduction of

Monilinia laxa has not yet been observed under natural conditions in Europe (Hrustić et al.,

2012) but warmer temperatures could trigger this development cycle (Agrios, 2005). Such a

change would  render  obsolete  the  model  we present  here,  as  this  aspect  of  development

remains a limiting factor. These features could also affect epidemiological concerns over the

coming decades. Epidemiological studies on  M. fructicola under semi-controlled conditions

would then be of value in the context of future research.

4.3. Uncertainty of climatic variables

Variations affecting the risk predicted by the model were mainly due to rainfall. However, this

variable is  hard to predict  in  climate change scenarios,  and climatic models can generate

markedly different predictions (Jouzel et al., 2014). For instance, the DRIAS data we used are

based on the ALADIN model  proposed by the French National Weather Research Centre

(Centre National de Recherches Météorologiques) and used to forecast weather in the context
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of climate change; it predicts an overall reduction  of rainfall in France between [1976-2005]

and [2071-2100] under the RCP8.5 scenario in summer (-0.38 mm.day-1). On the other hand,

the WRF (Weather Research and Forecasting) model proposed by the US National Center for

Atmospheric  Research  predicts  an  overall  increase  of  rainfall  of  the  same  scope  (+0.32

mm.day-1)  (Jouzel  et  al.,  2014),  hence  the  uncertainty  attached  to  ongoing  modelling

approaches used to study future impacts of climate change.

5. Conclusion

The Climatic Index of cumulated Blight risk we propose here offers an efficient reflection of

twig blight infection calculated from the weighted sum of blossom blight infection episodes

(R² = 0.44 with independent evaluation). Blossom blight infections were estimated with a

good fit to an epidemiological model (RRMSE = 0.22, largely due to unsystematic error).

This model, calibrated and evaluated on field data (using easily measurable variables such as

rainfall) and based on biological parameters, was shown to be a robust and useful tool to

predict  the  consequences  of  climate  change  regarding  the  development  of  apricot  blight.

Because of a shift of the blooming period, the Bergarouge apricot cultivar could experience a

long term reduction in the climatic risk to which it is exposed (in the far future). By contrast,

cultivars such as Beliana or Bergeron could see a medium-term (near future) increase of this

risk of blossom blight  at  altitudes above 100 m. The various conditions under  which our

model can be employed means that it could be applied to conditions other than those in the

Rhône Valley, and possibly worldwide.
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Fig.1: Localisation of the grids studied and their associated clusters (Best viewed 
in colour).



Fig. 2: Method used to calculate climate change for a given year n and cultivar. (1) Computations for 

year n start on the 15th of October of year n-1. For the dormancy model, it is assumed that the cold 

needs of apricot have not started to be fulfilled prior to this date. (2) Phenological models compute 

the F50 date given the daily average temperature. (3)  The expand of the blooming period around F50

is estimated given the distribution of disease-sensitive stages. (4) Daily rainfall and temperature 

during the blooming period are extracted and (5) CIB is calculated for year n 



Fig 3: Simulated vs. Observed values for blossom blight incidence (I, dimensionless). R² = 0.941, 

Intercept = 0.009;  slope = 0.935.



Fig 4: 3D representation of our model as a surface response of blossom blight incidence to rainfall 

(mm) and temperature (°C) (left) and residuals associated with each point of the dataset as a function 

of rainfall and temperature (right). The size of each point represents the value of the residual and the 

colour the sign of the residual. Lines correspond to different predicted levels of incidence.



Fig 5: Predicted Climatic Index of cumulated Blight risk (CIB, cumulated %) versus observed Twig 
Blight Incidence (TBI, dimensionless).



Fig 6: Evolution of the mid-blooming date (DOY) for the different cultivars and clusters under 

scenario RCP8.5. Linear regression lines are shown for clarity.



Fig 7: Mean temperature (°C) and mean cumulated rainfall (mm) experienced during blooming for 

the different cultivars and clusters. The start of the line represents the situation during the [1970-

1999] period and the head of the arrow the situation forecasted for the [2070-2099] period.



Fig 8: Mean simulated CIB (±one standard deviation) by period (p: past, nf: near future, pf: far 

future) for each cluster and cultivar under RCP 8.5. The colours are red for a significant increase in 

the risk and green for a significant reduction in the risk. Letters are the result of the Kruskall-Wallis 

comparison between periods within one Cultivar-Cluster panel (best viewed in colour).



Table.1: Parameter values of the fitted model. Bolt parameters were chosen priori to 
optimisation according to the method described by Tamm et al. 1995

Parameter Value

Tmin 0

Tmax 31

Ε 0.029

imax 0.79

m 0.9

ρ1 1.575

ρ2 1.965

γ1 1.709

γ2 1.472


