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Well-posedness result for a system of ran-
dom heat equation coupled with a multiplica-
tive stochastic Barenblatt equation

Caroline Bauzet, Frédéric Lebon, Asghar Ali
Maitlo and Aleksandra Zimmermann

Abstract. In this paper, a stochastic nonlinear evolution system under
Neumann boundary conditions is investigated. Precisely, we are inter-
ested in finding an existence and uniqueness result for a system of ran-
dom heat equation coupled with a Barenblatt’s type equation with a
multiplicative stochastic force in the sense of Itô. To do so, we investi-
gate in a first step the case of an additive noise through a semi-implicit
in time discretization of the system. This allows us to show the well-
posedness of the system in the additive case. In a second step, the deriva-
tion of continuous dependence estimates of the solution with respect to
the data allows us to show the desired existence and uniqueness result
for the multiplicative case.

Keywords. Stochastic system, random heat equation, Barenblatt equa-
tion, additive noise, multiplicative noise, Itô integral, Neumann condi-
tion, time discretization, fixed point, maximal monotone operators.

1. Introduction

We consider the following system, coupling a heat equation with Barenblatt’s
one, perturbed firstly by an additive noise:

∂tϑ+ ∂t

(
χ−

∫ .

0

hdw
)
−∆ϑ = 0 in (0, T )×D × Ω,

α̃

(
∂t(χ−

∫ .

0

hdw)

)
−∆χ = ϑ in (0, T )×D × Ω,

∇χ.n = ∇ϑ.n = 0 on (0, T )× ∂D × Ω,
χ(0, .) = χ0 and ϑ(0, .) = ϑ0,

(1.1)

and secondly by a multiplicative one:
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∂tϑ+ ∂t

(
χ−

∫ .

0

H (χ)dw
)
−∆ϑ = 0 in (0, T )×D × Ω,

α̃

(
∂t(χ−

∫ .

0

H (χ)dw)

)
−∆χ = ϑ in (0, T )×D × Ω,

∇χ.n = ∇ϑ.n = 0 on (0, T )× ∂D × Ω,
χ(0, .) = χ0 and ϑ(0, .) = ϑ0,

(1.2)

where T > 0, D denotes a smooth and bounded domain of Rd with d > 1, n
is the outward normal vector to the boundary ∂D, χ0 and ϑ0 are given ini-
tial conditions. We consider a standard adapted one-dimensional continuous
Brownian motion

w = {wt,Ft, 0 ≤ t ≤ T}
defined on a complete probability space (Ω,F , P ) with a countably generated
σ-field denoted F and a filtration (Ft)t>0 satisfying usual conditions (see [14],
[20] for further informations on stochastic calculus). Let us precise that the
additive and multiplicative stochastic integrals

∫ .
0
hdw and

∫ .
0
H (χ)dw are

considered in the sense of Itô.

We assume the following assumptions:

H1: h ∈ N 2
w(0, T,H1(D))†.

H2: α̃ = Id + α where Id : R→ R is the identity function and α : R→ R is
a Lipschitz-continuous, coercive and non-decreasing function such that
α(0) = 0.

H3: χ0, ϑ0 ∈ H1(D).
H4: H : H1(D)→ H1(D) is a Lipschitz-continuous mapping with Lipschitz

constant CH > 0.

1.1. State of the art

In the deterministic case (i.e. when h = H = 0), one application of such
nonlinear evolution system is the description of phase transition phenomena,
including irreversible phase changes (for instance, solidification of glue, cook-
ing an egg...) see [12] for further details.
Let us mention that Barenblatt’s type equations, (namely f(∂tχ) −∆χ = 0
with f a non-decreasing function), were initially studied by G.I. Baren-
blatt for the theory of fluids in elasto-plastic porous medium [6], under
the assumption that the porous medium is irreversibly deformable. After
that, number of researches was carried out around such equations for detail
one is refereed to [15, 16, 17]. Moreover these type of equations has been
studied in various areas : for irreversible phase change modeling [21], for
reaction-diffusion with absorption problems in Biochemistry [21], for irre-
versible damage and fracture evolution analysis [10, 11, 19] and recently for
constrained stratigraphic problems in Geology [1, 2, 3, 4, 24].

†For a given separable Hilbert space X, we denote by N 2
w(0, T,X) the space of predictable

X-valued processes endowed with the norm ||φ||2N2
w(0,T,X)

= E
[∫ T

0 ||φ||2Xdt
]

(see Da

Prato-Zabczyk [14] p.94).
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Concerning the study of Barenblatt equations with a stochastic force term, a
few papers has been written. Up to our knowledge, none of them proposes the
study of the coupling with a random heat equation. Let us mention the study
[5], where the authors were concerned by Barenblatt equation with stochastic
coefficients. In [7], the authors proposed an existence and uniqueness result
for a stochastic Barenblatt equation (in the sense of Itô as in the present pa-
per) under Dirichlet boundary conditions in the additive and multiplicative
case. After that, well-posedness theory for stochastic abstract problems of
Barenblatt’s type has been investigated in [9]. More recently, an extension of
[7] has been proposed in [8], by considering Neumann boundary conditions
and additionally the presence of a nonlinear source term.

1.2. Goal of the study

In the study of composite or bonded structures, temperature effects in the
evolution of damage at the interface can not be ignored, it is even a fun-
damental coupling [11, 25]. Additionally, the introduction of stochastic and
random effects is also important from a modeling point of view in order to
take into account several phenomena such as microscopic fluctuations, ran-
dom forcing, effects of interscale interactions... In this direction, the aim of
the present work is to study the coupling between a stochastic Barenblatt
equation and a random heat one under Neumann boundary conditions. The
idea is to extend the work done in [8] on a stochastic Barenblatt equation by
proposing an existence and uniqueness result for such a coupling system.

1.3. General notations

For the sake of clarity, let us make precise some useful notations :

. Q = (0, T )×D.

. x.y the usual scalar product of x and y in Rd.

. D(D) = C∞c (D) and D ′(D) the space of distributions on D.

. ||.|| and (., .) respectively the usual norm and the scalar product in L2(D).

. E[.] the expectation, i.e. the integral over Ω with respect to the proba-
bility measure P .

. Cα > 0 the Lipschitz constant of α.

. C̄α > 0 the coerciveness constant of α which satisfies for any x, y in R,(
α(x)− α(y)

)
(x− y) > C̄α(x− y)2.

. C̄α̃ > 0 the coerciveness constant of α̃ which satisfies for any x, y in R,(
α̃(x)− α̃(y)

)
(x− y) > C̄α̃(x− y)2.

1.4. Concept of solution and main results of the paper

Let us introduce the concept of solutions we are interested in for System (1.1)
and System (1.2).
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Definition 1.1. Any pair of predictable processes (ϑ, χ) ∈
(
N 2
w(0, T,H1(D))

)2
such that ϑ ∈ L2

(
Ω, H1(Q)

)
and ∂t(χ −

∫ .
0
hdw) ∈ L2(Ω × Q), is a solution

of System (1.1) if t-almost everywhere in (0, T ), P -almost surely in Ω, the
following variational formulations hold: for any v ∈ H1(D),∫

D

∂tϑvdx+

∫
D

∂t(χ−
∫ .

0

hdw)vdx+

∫
D

∇ϑ.∇vdx = 0 (1.3)∫
D

α̃
(
∂t(χ−

∫ .

0

hdw)
)
vdx+

∫
D

∇χ.∇vdx =

∫
D

ϑvdx, (1.4)

with χ(0, .) = χ0 ∈ H1(D) and ϑ(0, .) = ϑ0 ∈ H1(D).

Definition 1.2. Any pair of predictable processes (ϑ, χ) ∈
(
N 2
w(0, T,H1(D))

)2
such that ϑ ∈ L2

(
Ω, H1(Q)

)
and ∂t(χ −

∫ .
0
H (χ)dw) ∈ L2(Ω × Q), is a

solution of System (1.2) if t-almost everywhere in (0, T ), P -almost surely in
Ω, the following variational formulations hold: for any v ∈ H1(D),∫

D

∂tϑvdx+

∫
D

∂t(χ−
∫ .

0

H (χ)dw)vdx+

∫
D

∇ϑ.∇vdx = 0∫
D

α̃
(
∂t(χ−

∫ .

0

H (χ)dw)
)
vdx+

∫
D

∇χ.∇vdx =

∫
D

ϑvdx,

with χ(0, .) = χ0 ∈ H1(D) and ϑ(0, .) = ϑ0 ∈ H1(D).

Remark 1.3. We will see later on that the respective solutions of (1.1) and
(1.2) belong to the space L2

(
Ω,C ([0, T ], L2(D))

)
. Thus, they satisfy the ini-

tial condition in the following sense:

P-a.s, in Ω χ(t = 0, .) = lim
t→0

χ(t, .) in L2(D)

and P-a.s, in Ω ϑ(t = 0, .) = lim
t→0

ϑ(t, .) in L2(D).

The results we want to prove in the sequel are the following :

Theorem 1.4. Under assumptions H1 to H3, there exists a unique pair (ϑ, χ)
solution of System (1.1) in the sense of Definition 1.1.

Moreover, the unique solution of (1.1) satisfies the following stability
result which asserts the continuous dependence of the solution with respect
to the integrand h in the stochastic noise :

Proposition 1.5. Consider h, ĥ in N 2
w(0, T,H1(D)) and denote by (ϑ, χ) and

(ϑ̂, χ̂) the associated solutions to the System (1.1) in the sense of Definition

1.1 with the respective set of data (ϑ0, χ0, h) and (ϑ0, χ0, ĥ). Then, there exists
a constant CTα > 0 which only depends on T , Cα and C̄α such that for any t
in [0, T ]

E
[
||(ϑ− ϑ̂)(t)||2

]
+ E

[
||∇(ϑ− ϑ̂)(t)||2

]
+

1

4
E
[
||(χ− χ̂)(t)||2

]
+

1

4
E
[
‖∇(χ− χ̂)(t)‖2

]
≤ CTα

(
||h− ĥ||2L2(Ω×Qt) + ||∇(h− ĥ)||2L2(Ω×Qt)

)
,

where Qt = (0, t)×D.
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Theorem 1.6. Under Assumptions H2 to H4, there exists a unique pair (ϑ, χ)
solution of Problem (1.2) in the sense of Definition 1.2.

1.5. Outline of the paper

The paper is organized as follows. Firstly, we are interested in showing the
existence of a couple (ϑ, χ) solution of System (1.1). To do so, the approach is
the following one: we approximate our “additive” stochastic system by using
an implicit time discretization scheme with a parameter ∆t > 0.
After deriving stability estimates satisfied by the time-approximations of the
couple (ϑ, χ), our aim is to pass to the limit on the obtained discrete sys-
tem with respect to the time-step ∆t. Note that due to the random variable,
classical results of compactness do not hold, and the main difficulty is in the
identification of the nonlinear term’s limit associated with the discretization
of α

(
∂t(χ−

∫ .
0
hdw)

)
. Using arguments on maximal monotone operator, one

is able to handle this difficulty.
Secondly, the uniqueness result for (1.1) is proven by using classical energy
estimates well known for the heat equation and adapted to the random and
stochastic case. This allows us to show additionally at the limit on the dis-
cretization parameter ∆t that the couple (ϑ, χ) depends continuously on the
data. Finally, exploiting this stability result of the solution with respect to the
data, we are able to extend (thanks to a fixed point argument) our result of
existence and uniqueness to the multiplicative case, that is the well-posedness
of Problem (1.2).

2. Time approximation of the additive case

The result of existence of a solution for Problem (1.1) is based on an implicit
time discretization scheme for the deterministic part and an explicit one for
the Itô part. To do so, let us introduce notations used for the discretization
procedure.

2.1. Notations and preliminary results

We consider X a separable Banach space, N ∈ N∗, set ∆t = T
N and tn = n∆t

with n ∈ {0, ..., N}. For any sequence (xn)0≤n≤N ⊂ X, let us denote by

x∆t =

N−1∑
k=0

xk+11[tk,tk+1),

x∆t =

N−1∑
k=0

xk1[tk,tk+1) = x∆t(.−∆t),

x̃∆t =

N−1∑
k=0

[
xk+1 − xk

∆t
(.− tk) + xk

]
1[tk,tk+1),

∂x̃∆t

∂t
=

N−1∑
k=0

xk+1 − xk
∆t

1[tk,tk+1),
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with the convention that t−1 = −∆t, for t < 0, x̃∆t(t0) = x0 and x∆t(tN ) =
x̃∆t(tN ) = xN . Elementary calculations yield for an arbitrary constant C > 0
independent of ∆t

‖x∆t‖2L2(0,T ;X) = ∆t

N∑
k=1

‖xk‖2X ; ‖x̃∆t‖2L2(0,T ;X) ≤ C∆t

N∑
k=0

‖xk‖2X ;

‖x∆t − x̃∆t‖2L2(0,T ;X) = ∆t

N−1∑
k=0

‖xk+1 − xk‖2X ;

‖x∆t(.−∆t)− x∆t‖2L2(0,T ;X) = ∆t

N−1∑
k=0

‖xk+1 − xk‖2X ;

∥∥∥∂x̃∆t

∂t

∥∥∥2

L2(0,T ;X)
=

1

∆t

N−1∑
k=0

‖xk+1 − xk‖2X ;

‖x∆t‖L∞(0,T ;X) = max
k=1,..,N

‖xk‖X and ‖x̃∆t‖L∞(0,T ;X) = max
k=0,..,N

‖xk‖X .

We will use the following notations for the discretization of the data for any
n in {0, ..., N} :

wn = w(tn), hn =
1

∆t

∫ tn

tn−1

h(s, .)ds, Bn =

n−1∑
k=0

(wk+1 − wk)hk,

with the convention that t−1 = −∆t and h(s, .) = 0 if s < 0.

Remark 2.1. As h is predictable with values in H1(D) then hn belongs to
L2
(
(Ω,Ftn);H1(D)

)
for any n in {0, ..., N}.

Remark 2.2. For any n in {0, ..., N}, Bn =

∫ tn

0

h∆t(s)dw(s).

Indeed, as hk is Ftk -measurable, one has

Bn =

n−1∑
k=0

∫ tk+1

tk

hkdw(s) =

∫ tn

0

n−1∑
k=0

hk1[tk,tk+1[(s)dw(s) =

∫ tn

0

h∆t(s)dw(s).

Lemma 2.3. There exists a constant C > 0 independent of ∆t such that for
any n in {0, ..., N}

E

[
n∑
k=0

‖hk‖2H1(D)

]
≤ C

∆t
.

Proof. The proof of this result can be found in [8] (Lemma 2.3). �

Lemma 2.4. The sequence (h∆t) converges to h in N 2
w(0, T,H1(D)) as the

time discretization parameter ∆t tends to 0.

Proof. See Simon [22], Lemma 12 p.52. �
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Proposition 2.5. The sequences (B∆t) and (B̃∆t) converge to

∫ .

0

hdw in

L2(0, T ;L2(Ω, H1(D))) as the time discretization parameter ∆t tends to 0.

Proof. The proof of this result can be found in [8] (Proposition 2.5). �

Remark 2.6. If one assumes that h belongs to N 2
w(0, T,H2(D)), one shows

in the same manner that B∆t converges strongly to
∫ .

0
hdw in L2((0, T ) ×

Ω, H2(D)) as ∆t tends to 0.

2.2. Discretization schemes

Let N be a positive integer and n ∈ {0, ..., N}. Using the notations of the
previous section, the discretization scheme for (1.3) is the following one: for
a given small positive parameter ∆t, for ϑn, χn in L2

(
(Ω,Ftn);L2(D)

)
and

χn+1 ∈ L2
(
(Ω,Ftn+1

);L2(D)
)
, our aim is to find ϑn+1 in L2

(
(Ω,Ftn+1

);H1(D)
)
,

such that P -a.s in Ω and for any v in H1(D)∫
D

(ϑn+1 − ϑn
∆t

)
vdx+

∫
D

(χn+1 − χn
∆t

− hn
wn+1 − wn

∆t

)
vdx

+

∫
D

∇ϑn+1.∇vdx = 0. (2.1)

Similarly the discretization scheme for (1.4) is the following one: for a given
small positive parameter ∆t, for χn ∈ L2

(
(Ω,Ftn);L2(D)

)
and ϑn+1 ∈

L2
(
(Ω,Ftn+1);L2(D)

)
, our aim is to find χn+1 ∈ L2

(
(Ω,Ftn+1);H1(D)

)
,

such that P -a.s in Ω and for any v in H1(D)∫
D

α̃
(χn+1 − χn

∆t
− hn

wn+1 − wn
∆t

)
vdx+

∫
D

∇χn+1.∇vdx

=

∫
D

ϑn+1vdx. (2.2)

With the notations introduced in the previous section, we propose the fol-
lowing discretization of the variational problems (1.3) and (1.4) : t-almost
everywhere in (0, T ), P -almost surely in Ω and for any v in H1(D)∫

D

∂t(ϑ̃
∆t)vdx+

∫
D

∂t
(
χ̃∆t − B̃∆t

)
vdx+

∫
D

∇ϑ∆t.∇vdx = 0 (2.3)∫
D

α̃
(
∂t
(
χ̃∆t − B̃∆t

))
vdx+

∫
D

∇χ∆t.∇vdx =

∫
D

ϑ∆tvdx. (2.4)

Firstly, we show that the discrete system composed by the approximation
schemes (2.1) and (2.2) is well-defined. Secondly, our aim is to derive bound-

edness results for the approximate sequences ϑ∆t, ϑ̃∆t, χ∆t and χ̃∆t − B̃∆t.

Proposition 2.7. Set N ∈ N∗, n ∈ {0, ..., N} and ϑn, χn ∈ L2
(
(Ω,Ftn);L2(D)

)
,

χn+1 ∈ L2
(
(Ω,Ftn+1

);L2(D)
)
. If we assume that ∆t ≤ 1, then there exists

a unique ϑn+1 ∈ L2
(
(Ω,Ftn+1);H1(D)

)
satisfying (2.1), P -a.s in Ω and for

any v in H1(D).

Proof. A direct application of Lax-Milgram Theorem gives us the result. �
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Proposition 2.8. Set N ∈ N∗, n ∈ {0, ..., N} and χn ∈ L2
(
(Ω,Ftn);L2(D)

)
,

ϑn+1 ∈ L2
(
(Ω,Ftn+1

);L2(D)
)
. If we assume that ∆t < 1, then there exists

a unique χn+1 ∈ L2
(
(Ω,Ftn+1);H1(D)

)
satisfying (2.2), P -a.s in Ω and for

any v in H1(D).

Proof. The proof is mostly the same as in [8], Proposition 2.7, so we refer
the reader to this paper. �

Proposition 2.9. Set N ∈ N∗, n ∈ {0, ..., N} and ϑn, χn ∈ L2
(
(Ω,Ftn);L2(D)

)
.

Assume that ∆t < C̄α̃, then there exists a unique pair (ϑn+1, χn+1) belonging
to L2

(
(Ω,Ftn+1

);H1(D)
)
×L2

(
(Ω,Ftn+1

);H1(D)
)

and satisfying P -a.s in Ω

and for any v in H1(D), (2.1-2.2).

Proof. Set N ∈ N∗, n ∈ {0, ..., N} and ϑn, χn ∈ L2
(
(Ω,Ftn);L2(D)

)
. We

introduce the following functionals

f : L2
(
(Ω,Ftn+1

);L2(D)
)
→ L2

(
(Ω,Ftn+1

);H1(D)
)

χ̃ 7→ ϑf ,

where ϑf satisfies, P -a.s in Ω and for any v in H1(D)∫
D

(ϑf − ϑn
∆t

)
vdx+

∫
D

( χ̃− χn
∆t

− hn
wn+1 − wn

∆t

)
vdx

+

∫
D

∇ϑf .∇vdx = 0. (2.5)

Thanks to Proposition 2.7, f is well defined. Similarly, we introduce

g : L2
(
(Ω,Ftn+1

);L2(D)
)
→ L2

(
(Ω,Ftn+1

);H1(D)
)

ϑ̃ 7→ χg,

where χg satisfies, P -a.s in Ω and for any v in H1(D)∫
D

α̃
(χg − χn

∆t
− hn

wn+1 − wn
∆t

)
vdx+

∫
D

∇χg.∇vdx =

∫
D

ϑ̃vdx. (2.6)

Thanks to Proposition 2.8, g is well defined. Let us prove that the composition
g ◦ f is a strict contraction in L2

(
(Ω,Ftn+1);L2(D)

)
. On the one hand, note

that (2.5) can be written P -a.s in Ω and for any v in H1(D) as∫
D

ϑfvdx+ ∆t

∫
D

∇ϑf .∇vdx

=

∫
D

(ϑn − χ̃+ χn + hn(wn+1 − wn))vdx. (2.7)

Set χ̃1, χ̃2 in L2
(
(Ω,Ftn);L2(D)

)
and define ϑf1 = f(χ̃1), ϑf2 = f(χ̃2). Then

using (2.7), one gets P -a.s in Ω and for any v in H1(D)∫
D

(ϑf1 − ϑ
f
2 )vdx+ ∆t

∫
D

∇(ϑf1 − ϑ
f
2 ).∇vdx =

∫
D

(χ̃2 − χ̃1)vdx. (2.8)
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By choosing v = (ϑf1 − ϑ
f
2 ) in (2.8) we obtain∫

D

∣∣ϑf1 − ϑf2 ∣∣2dx+ ∆t

∫
D

|∇(ϑf1 − ϑ
f
2 )|2dx =

∫
D

(χ̃2 − χ̃1)(ϑf1 − ϑ
f
2 )dx.

Then ∫
D

|ϑf1 − ϑ
f
2 |2dx+ 2∆t

∫
D

|∇(ϑf1 − ϑ
f
2 )|2dx ≤

∫
D

|χ̃1 − χ̃2|2dx.

By taking the expectation, one gets

E

[∫
D

|ϑf1 − ϑ
f
2 |2dx

]
+ 2∆tE

[∫
D

|∇(ϑf1 − ϑ
f
2 )|2dx

]
≤ E

[∫
D

|χ̃1 − χ̃2|2dx
]
,

which implies that

E
[
||ϑf1 − ϑ

f
2 ||2
]
≤ E

[
||χ̃1 − χ̃2||2

]
. (2.9)

On the other hand, by defining χ̃g1 = g(ϑf1 ) and χ̃g2 = g(ϑf2 ), (2.6) gives P -a.s
in Ω and for any v in H1(D)∫

D

[
α̃
( χ̃g1 − χn

∆t
− hn

wn+1 − wn
∆t

)
− α̃

( χ̃g2 − χn
∆t

− hn
wn+1 − wn

∆t

)]
vdx

+

∫
D

∇(χ̃g1 − χ̃
g
2).∇vdx =

∫
D

(ϑf1 − ϑ
f
2 )vdx. (2.10)

By choosing v = χ̃g1 − χ̃
g
2 in (2.10) and using the coercivity of α̃, we obtain

by taking the expectation( C̄α̃
∆t
− 1

2

)
E

[∫
D

|χ̃g1 − χ̃
g
2|2dx

]
+E

[∫
D

|∇(χ̃g1 − χ̃
g
2)|2dx

]
≤ 1

2
E

[∫
D

|ϑf1 − ϑ
f
2 |2dx

]
,

and so

2
( C̄α̃

∆t
− 1

2

)
E
[
||χ̃g1 − χ̃

g
2||2
]
≤ E

[
||ϑf1 − ϑ

f
2 ||2
]
. (2.11)

By comparing (2.9) and (2.11), we get

E
[
||χ̃g1 − χ̃

g
2||2
]
≤ 1

2( C̄α̃∆t −
1
2 )
E
[
||χ̃1 − χ̃2||2

]
. (2.12)

Under the assumption ∆t < C̄α̃, the function g◦f which maps L2
(
(Ω,Ftn+1

);

L2(D)
)

in itself is a strict contraction and admits a unique fixed point in

L2
(
(Ω,Ftn+1

);L2(D)
)
. Using this, there exists a unique pair (ϑn+1, χn+1) in

L2
(
(Ω,Ftn+1);H1(D)

)
×L2

(
(Ω,Ftn+1);H1(D)

)
satisfying P -a.s in Ω and for

any v in H1(D), (2.1) and (2.2). �
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2.3. First estimates on the approximate sequences

Our aim is to find boundedness results for the sequences ϑ̃∆t,ϑ∆t,χ̃∆t, χ∆t

and χ̃∆t − B̃∆t.

Proposition 2.10. There exists a constant C > 0 independent of ∆t such that

||ϑ̃∆t||L∞(0,T,L2(Ω×D)), ||ϑ∆t||L∞(0,T ;L2(Ω×D)) ≤ C, (2.13)

||ϑ̃∆t − ϑ∆t||L2(Ω×Q) ≤ C
√

∆t, (2.14)

||∇ϑ̃∆t||L2(Ω×Q), ||∇ϑ∆t||L2(Ω×Q) ≤ C, (2.15)

||∇χ̃∆t||L∞(0,T,L2(Ω×D)), ||∇χ∆t||L∞(0,T ;L2(Ω×D)) ≤ C, (2.16)

||∂t(χ̃∆t − B̃∆t)||L2(Ω×Q) ≤ C. (2.17)

Proof. Set N ∈ N∗, n ∈ {0, .., N − 1} and k ∈ {0, ..., n}. Consider the varia-

tional formulations (2.1) and (2.2) with the couple of indexes (k + 1, k). By
adding (2.1) with the test function v = ϑk+1 and (2.2) with the test function

v =
χk+1 − χk

∆t
− hk

wk+1 − wk
∆t

, one gets

∫
D

(
ϑk+1 − ϑk

∆t
)ϑk+1dx+ ‖∇ϑk+1‖2 +

∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∥∥∥∥2

+

∫
D

α

(
χk+1 − χk

∆t
− hk

wk+1 − wk
∆t

)
×
(
χk+1 − χk

∆t
− hk

wk+1 − wk
∆t

)
dx

+

∫
D

∇χk+1.∇
(
χk+1 − χk

∆t
− hk

wk+1 − wk
∆t

)
dx = 0.

Using the coerciveness property of α, one gets∫
D

ϑk+1(
ϑk+1 − ϑk

∆t
)dx+ ‖∇ϑk+1‖2 + (C̄α + 1)

∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∥∥∥∥2

+

∫
D

∇χk+1.∇
(
χk+1 − χk

∆t
− hk

wk+1 − wk
∆t

)
dx ≤ 0.

Then∫
D

ϑk+1(
ϑk+1 − ϑk

∆t
)dx+ ‖∇ϑk+1‖2 + (C̄α + 1)

∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∥∥∥∥2

+

∫
D

∇χk+1.∇
χk+1 − χk

∆t
dx

≤
∫
D

∇(χk+1 − χk).∇hk
wk+1 − wk

∆t
dx+

∫
D

∇χk.∇hk
wk+1 − wk

∆t
dx.

Using the formula

a(a− b) =
1

2
{a2 − b2 + (a− b)2}
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with a = ϑk+1 (respectively a = ∇χk+1) and b = ϑk (respectively b = ∇χk),
one gets for any ε > 0

1

2∆t

[
||ϑk+1||2 − ||ϑk||2 + ||ϑk+1 − ϑk||2

]
+ ||∇ϑk+1||2

+ (C̄α + 1)

∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∥∥∥∥2

+
1

2∆t

[
||∇χk+1||2 − ||∇χk||2 + ||∇(χk+1 − χk)||2

]
≤ ε

2∆t
||∇(χk+1 − χk)||2 +

|wk+1 − wk|2

2ε∆t
||∇hk||2

−
∫
D

∇χk.∇hk
wk+1 − wk

∆t
dx.

Then, since ∇χk and ∇hk are Ftk -measurable, by taking the expectation one
gets

1

2∆t
E
[
‖ϑk+1‖2 − ‖ϑk‖2 + ‖ϑk+1 − ϑk‖2

]
+ E

[
‖∇ϑk+1‖2

]
+ (C̄α + 1)E

[∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

2∆t

∥∥∥∥2
]

+
1

2∆t
E
[
‖∇χk+1‖2 − ‖∇χk‖2 + ‖∇(χk+1 − χk)‖2

]
≤ ε

2∆t
E
[
||∇(χk+1 − χk)||2

]
+

1

2ε
E
[
||∇hk||2

]
.

In this way

E
[
‖ϑk+1‖2

]
− E

[
‖ϑk‖2

]
+ E

[
‖ϑk+1 − ϑk‖2

]
+ 2∆tE

[
‖∇ϑk+1‖2

]
+ 2(C̄α + 1)∆tE

[∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∥∥∥∥2
]

+ E
[
‖∇χk+1‖2

]
− E

[
‖∇χk‖2

]
+ (1− ε)E

[
‖∇(χk+1 − χk)‖2

]
≤ ∆t

ε
E
[
‖∇hk‖2

]
.
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By summing from k = 0 to n, one gets

n∑
k=0

E
[
‖ϑk+1‖2

]
−

n∑
k=0

E
[
‖ϑk‖2

]
+

n∑
k=0

E
[
‖ϑk+1 − ϑk‖2

]
+ 2

n∑
k=0

∆tE
[
‖∇ϑk+1‖2

]
+ 2(C̄α + 1)

n∑
k=0

∆tE

[∥∥∥∥χk+1 − χk
∆t

− wk+1 − wk
∆t

hk

∥∥∥∥2
]

+

n∑
k=0

E
[
‖∇χk+1‖2

]
−

n∑
k=0

E
[
‖∇χk‖2

]
+ (1− ε)

n∑
k=0

E
[
‖∇(χk+1 − χk)‖2

]
≤ 1

ε

n∑
k=0

∆tE
[
‖∇hk‖2

]
.

By taking ε =
1

2
and using Lemma 2.3, there exists a constant C > 0 inde-

pendent of ∆t such that

E
[
‖ϑn+1‖2

]
+

n∑
k=0

E
[
‖ϑk+1 − ϑk‖2

]
+

n∑
k=0

∆tE
[
‖∇ϑk+1‖2

]
+

n∑
k=0

∆tE

[∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∥∥∥∥2
]

+ E
[
‖∇χn+1‖2

]
+

1

2

n∑
k=0

E
[
‖∇(χk+1 − χk)‖2

]
≤ C, (2.18)

and we get directly the announced estimates:

||ϑ̃∆t||L∞(0,T,L2(Ω×D)), ||ϑ∆t||L∞(0,T,L2(Ω×D)) ≤ C,

||ϑ̃∆t − ϑ∆t||L2(Ω×Q) ≤ C
√

∆t,

||∇ϑ̃∆t||L2(Ω×Q), ||∇ϑ∆t||L2(Ω×Q) ≤ C.

||∂t(χ̃∆t − B̃∆t)||L2(Ω×Q) ≤ C,

||∇χ̃∆t||L∞(0,T,L2(Ω×D)), ||∇χ∆t||L∞(0,T,L2(Ω×D)) ≤ C.

Additionally, let us note that one can also deduce from (2.18) the following
bound:

||∇(χ̃∆t − χ∆t)||L2(Ω×Q) ≤ C
√

∆t. (2.19)

�

From these first estimates, one can deduce directly the following ones.
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Proposition 2.11. There exists a constant C > 0 independent of ∆t such that

||χ̃∆t − χ∆t||L2((0,T )×Ω,H1(D)) ≤ C
√

∆t, (2.20)

||ϑ̃∆t − ϑ̃∆t(.−∆t)||L2(Ω×Q) ≤ C
√

∆t, (2.21)

||χ̃∆t − χ̃∆t(.−∆t)||L2((0,T )×Ω,H1(D)) ≤ C
√

∆t, (2.22)

||χ̃∆t − B̃∆t||L∞(0,T ;L2(Ω×D)) ≤ C, (2.23)

||∇(χ̃∆t − B̃∆t)||L2(Ω×Q) ≤ C, (2.24)

||χ̃∆t||L2((0,T )×Ω,H1(D)), ||χ∆t||L2((0,T )×Ω,H1(D)) ≤ C, (2.25)

||χ̃∆t(.−∆t)||N 2
w(0,T,H1(D)), ||ϑ̃∆t(.−∆t)||N 2

w(0,T,H1(D)) ≤ C. (2.26)

Proof. Using (2.18), we have∥∥χ̃∆t − χ∆t
∥∥2

L2(Ω×Q)
= ∆t

N−1∑
k=0

E
[
‖χk+1 − χk‖2

]
≤ ∆t

N−1∑
k=0

E

[
2∆t2

∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∥∥∥∥2

+2 ‖hk(wk+1 − wk)‖2
]

= 2∆t2
N−1∑
k=0

∆tE

[∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∥∥∥∥2
]

+2

N−1∑
k=0

∆t2E
[
‖hk‖2

]
≤ C∆t,

combining it with the previous estimate (2.19), one deduces that (2.20) holds.
Note that

ϑ̃∆t−ϑ̃∆t(.−∆t) =
(
ϑ̃∆t−ϑ∆t

)
+
(
ϑ∆t−ϑ∆t(.−∆t)

)
+
(
ϑ∆t(.−∆t)−ϑ̃∆t(.−∆t)

)
and that there exists a constant C > 0 independent of ∆t such that

||ϑ̃∆t−ϑ∆t||2L2(Ω×Q), ||ϑ
∆t−ϑ∆t(.−∆t)||2L2(Ω×Q) and ||ϑ∆t(.−∆t)−ϑ̃∆t(.−∆t)||2L2(Ω×Q)

are controlled by

C∆t

N−1∑
k=0

E
[
||ϑk+1 − ϑk||2

]
.

Then, owing to (2.18), one gets directly (2.21). Now, using the same kind of
decomposition for χ̃∆t−χ̃∆t(.−∆t), one shows that (2.22) holds. Additionally
for any n in {0, ..., N − 1} since B0 = 0 one has

E
[
‖χk+1 −Bn+1‖2

]
≤ 2||χ0||2 + 2T

n∑
k=0

∆tE

[∣∣∣∣∣∣∣∣χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∣∣∣∣∣∣∣∣2
]

combining this with (2.18), we show that ||χ̃∆t − B̃∆t||L∞(0,T ;L2(Ω×D)) ≤ C.

Let us now prove that ||∇(χ̃∆t− B̃∆t)||L2(Ω×Q) is bounded independently of

∆t. Using (2.16), it remains to show that ∇B̃∆t is bounded in L2(Ω × Q).
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Due to Lemma 2.3 and the fact that E
[
(wj+1 − wj)2

]
= ∆t for any j ∈

{0, ..., N − 1}, one has

||∇B̃∆t||2L2(Ω×Q) ≤ ∆t

N∑
k=0

E

∫
D

 k∑
j=0

(wj+1 − wj)∇hj

2

dx


= ∆t

N∑
k=0

k∑
j=0

∫
D

E
[
(wj+1 − wj)2

]
E
[
(∇hj)2

]
dx

= ∆t

N∑
k=0

∆tE

k∑
j=0

‖hj‖2H1(D)

≤ C,

and the result holds. Using the fact that χ̃∆t− B̃∆t and B̃∆t are bounded in
L2(Ω×Q), one gets that χ̃∆t is also bounded in L2(Ω×Q). Finally, combining
this with (2.16), one obtains the boundedness of χ̃∆t in L2((0, T )×Ω, H1(D)).
Thanks to (2.20)-(2.22), one gets the same result for χ̃∆t(. − ∆t) and χ∆t

which gives (2.25).

Note that χ̃∆t(.−∆t) and ϑ̃∆t(.−∆t) are bounded in L2((0, T )×Ω, H1(D))
respectively due to (2.22)-(2.25) and (2.13)-(2.15)-(2.21). Thus, they be-
long to N 2

w(0, T,H1(D)) as continuous and adapted processes. Finally, (2.26)
holds. �

2.4. Second estimates on the approximate sequences

Proposition 2.12. There exists a constant C > 0 independent of ∆t such that∥∥∥∇ϑ̃∆t
∥∥∥
L∞(0,T,L2(Ω×D))

,
∥∥∇ϑ∆t

∥∥
L∞(0,T ;L2(Ω×D))

≤ C, (2.27)∥∥∥∇(ϑ̃∆t − ϑ∆t)
∥∥∥
L2(Ω×Q)

≤ C
√

∆t, (2.28)

||∇
(
ϑ̃∆t − ϑ̃∆t(.−∆t)

)
||L2(Ω×Q) ≤ C

√
∆t, (2.29)∥∥∥∂tϑ̃∆t

∥∥∥
L2(Ω×Q)

≤ C. (2.30)

Proof. Set N ∈ N∗, n ∈ {0, .., N − 1} and k ∈ {0, ..., n}. We consider the

variational formulation (2.1) with the couple of indexes (k+ 1, k) and choose

the particular test function v =
ϑk+1 − ϑk

∆t
to get P -almost surely in Ω

∥∥∥∥ϑk+1 − ϑk
∆t

∥∥∥∥2

+

∫
D

(χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

)
×
(ϑk+1 − ϑk

∆t

)
dx

+

∫
D

∇ϑk+1.∇
(ϑk+1 − ϑk

∆t

)
dx = 0.
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Then, for any δ > 0, we have∥∥∥∥ϑk+1 − ϑk
∆t

∥∥∥∥2

+
1

2∆t

[
‖∇ϑk+1‖2 − ‖∇ϑk‖2 + ‖∇(ϑk+1 − ϑk)‖2

]
≤ 1

2δ

∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∥∥∥∥2

+
δ

2

∥∥∥∥ϑk+1 − ϑk
∆t

∥∥∥∥2

.

By choosing δ = 1, taking the expectation and summing from k = 0 to n,
one gets

n∑
k=0

∆tE

[∥∥∥∥ϑk+1 − ϑk
∆t

∥∥∥∥2
]

+

n∑
k=0

E
[
‖∇ϑk+1‖2

]
−

n∑
k=0

E
[
‖∇ϑk‖2

]
+

n∑
k=0

E
[
‖∇(ϑk+1 − ϑk)‖2

]
≤

n∑
k=0

∆tE

[∥∥∥∥χk+1 − χk
∆t

− hk
wk+1 − wk

∆t

∥∥∥∥2
]
.

Thanks to (2.18), one concludes that

n∑
k=0

∆tE

[∥∥∥∥ϑk+1 − ϑk
∆t

∥∥∥∥2
]

+ E
[
‖∇ϑn+1‖2

]
+

n∑
k=0

E
[
‖∇(ϑk+1 − ϑk)‖2

]
≤ C.

Finally, we have directly the announced estimates

||∇ϑ̃∆t||L∞(0,T,L2(Ω×D)), ||∇ϑ∆t||L∞(0,T ;L2(Ω×D)) ≤ C,

||∇(ϑ̃∆t − ϑ∆t)||L2(Ω×Q) ≤ C
√

∆t,∥∥∥∂tϑ̃∆t
∥∥∥
L2(Ω×Q)

≤ C.

Arguing as for the obtention of (2.21), one shows finally that

||∇
(
ϑ̃∆t − ϑ̃∆t(.−∆t)

)
||L2(Ω×Q) ≤ C

√
∆t.

�

2.5. Weak convergence results on the approximate sequences

Due to Propositions 2.10, 2.11 and 2.12, we obtain the following convergence
results.

Proposition 2.13. Up to subsequences denoted in the same way, there exists
ϑ belonging to N 2

w(0, T,H1(D)) ∩ L2
(
Ω, H1(Q)

)
such that

(i) ˜ϑ∆t, ϑ∆t ⇀ ϑ in L2((0, T )× Ω, H1(D)),

(ii) ∇ϑ̃∆t,∇ϑ∆t ∗⇀ ∇ϑ in L∞(0, T ;L2(Ω×D)),

(iii) ∂tϑ̃
∆t ⇀ ∂tϑ in L2(Ω×Q),

(iv) ϑ̃∆t(0) ⇀ ϑ(0) in L2(Ω×D).

Proof.
(i) Thanks to (2.13), (2.14), (2.15), (2.21), (2.26), (2.28) and (2.29), there



16 C. Bauzet, F. Lebon, A.A Maitlo and A. Zimmermann

exists ϑ in L2((0, T ) × Ω, H1(D)) such that, up to subsequences denoted in
the same way, we have

ϑ̃∆t, ϑ∆t, ϑ∆t(.−∆t) ⇀ ϑ in L2((0, T )× Ω, H1(D)).

Since ϑ̃∆t(.−∆t) belongs to the Hilbert space N 2
w(0, T,H1(D)) endowed with

the norm of L2((0, T )×Ω, H1(D)), one gets that ϑ is also in N 2
w(0, T,H1(D)).

(ii) Using (2.27)-(2.28), one gets directly that up to subsequences denoted in
the same way,

∇ϑ̃∆t,∇ϑ∆t ∗⇀ ∇ϑ in L∞(0, T ;L2(Ω×D)).

(iii) (2.30) gives us directly the announced result.
(iv) Since L2

(
Ω, H1(Q)

)
is continuously embedded in L2

(
Ω,C ([0, T ], L2(D))

)
,

one gets that ϑ belongs to L2
(
Ω,C ([0, T ], L2(D))

)
. Thus, ϑ is an element of

C ([0, T ], L2(Ω×D)) and we have and that

ϑ̃∆t(0) ⇀ ϑ(0) in L2(Ω×D).

�

Proposition 2.14. Up to subsequences denoted in the same way, there exist χ
belonging to N 2

w(0, T,H1(D)) ∩ L2
(
Ω,C ([0, T ], L2(D))

)
and χ̄ in L2(Ω×Q)

such that

(i) χ̃∆t, χ∆t ⇀ χ in L2((0, T )× Ω, H1(D)),

(ii) ∇χ̃∆t,∇χ∆t ∗⇀ ∇χ in L∞(0, T ;L2(Ω×D)),

(iii) χ̃∆t − B̃∆t ⇀ χ−
∫ .

0

hdw in L2(Ω, H1(Q)),

(iv) α
(
∂t(χ̃

∆t − B̃∆t)
)
⇀ χ̄ in L2(Ω×Q),

(v)
(
χ̃∆t − B̃∆t

)
(0) ⇀ χ(0) in L2(Ω×D).

Proof. (i) Thanks to (2.20)-(2.22)-(2.25) and (2.26), there exists χ in L2((0, T )×
Ω, H1(D)) such that, up to subsequences denoted in the same way, we have

χ̃∆t, χ∆t, χ̃∆t(.−∆t) ⇀ χ in L2((0, T )× Ω, H1(D)).

Since χ̃∆t(.−∆t) belongs to the Hilbert space N 2
w(0, T,H1(D)) endowed with

the norm of L2((0, T )×Ω, H1(D)), one gets that χ is also inN 2
w(0, T,H1(D)).

(ii) Using (2.16)-(2.20), one gets directly that up to subsequences denoted in
the same way,

∇χ̃∆t,∇χ∆t ∗⇀ ∇χ in L∞(0, T ;L2(Ω×D)).

(iii) Thanks to (2.17)-(2.23)-(2.24), there exists ζ in L∞(0, T ;L2(Ω × D))
and L2

(
Ω, H1(Q)

)
such that, up to a subsequence,

χ̃∆t−B̃∆t ⇀ ζ in L2
(
Ω, H1(Q)

)
and χ̃∆t−B̃∆t ∗⇀ ζ in L∞(0, T ;L2(Ω×D)).

Using Proposition 2.5, one gets by uniqueness of the limit that

ζ = χ−
∫ .

0

hdw.
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(iv) Due to the Lipschitz property of α and (2.17), α
(
∂t(χ̃

∆t − B̃∆t)
)

is

bounded in L2(Ω×Q) and there exists χ̄ in the same space such that, up to
a subsequence

α
(
∂t(χ̃

∆t − B̃∆t)
)
⇀ χ̄ in L2(Ω×Q).

(v) Since L2
(
Ω, H1(Q)

)
is continuously embedded in L2

(
Ω,C ([0, T ], L2(D))

)
,

one gets that χ−
∫ .

0

hdw belongs to L2
(
Ω,C ([0, T ], L2(D))

)
. Moreover, as the

Itô integral of an N 2
w(0, T, L2(D)) process is a continuous square integrable

L2(D)-valued martingale (see [14]),

∫ .

0

hdw is in L2
(
Ω,C ([0, T ], L2(D))

)
.

Thus χ belongs to L2
(
Ω,C ([0, T ], L2(D))

)
and finally χ is an element of

C ([0, T ], L2(Ω×D)). Particularly, we have

χ̃∆t(0)− B̃∆t(0) ⇀
(
χ−

∫ .

0

hdw
)
(0) = χ(0) in L2(Ω×D).

�

Using these convergence results, let us derive some properties satisfied
by the weak limits ϑ and χ.

2.6. Properties of the weak limits ϑ and χ

Proposition 2.15. ϑ(0) = ϑ0 and χ(0) = χ0 in L2(D).

Proof. Thanks to Proposition 2.13 and Proposition 2.14, we have

ϑ̃∆t(0) ⇀ ϑ(0) and
(
χ̃∆t − B̃∆t

)
(0) ⇀ χ(0) in L2(Ω×D).

Note that ϑ̃∆t(0) = ϑ0 and
(
χ̃∆t − B̃∆t

)
(0) = χ0. Using the fact that χ0

and ϑ0 are deterministic, one concludes that the announced result holds in
L2(D). �

Proposition 2.16. The following results hold

(i) The application t ∈ [0, T ] 7→ E
[
‖∇ϑ(t)‖2

]
∈ R is continuous.

(ii) ϑ belongs to the space C
(
[0, T ], L2(Ω, H1(D))

)
.

Proof. (i) Note that P -almost surely in Ω, ϑ satisfies the heat equation{
∂tϑ−∆ϑ = −∂tU,

ϑ(0, .) = ϑ0,

where U = χ −
∫ .

0

hdw. Since ϑ0 ∈ H1(D), the study of the heat equation

gives us the following energy equality (see [13] Theorem X.11 p.220), for any
t ∈ [0, T ] by denoting Qt = (0, t)×D :∫

Qt

|∂tϑ|2dsdx+

∫
Qt

∂tU∂tϑdsdx+
1

2
||∇ϑ(t)||2 =

1

2
||∇ϑ0||2.
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Then by taking the expectation :

E

[∫
Qt

|∂tϑ|2dsdx
]

+ E

[∫
Qt

∂tU∂tϑdsdx

]
+

1

2
E
[
||∇ϑ(t)||2

]
=

1

2
E
[
||∇ϑ0||2

]
. (2.31)

Using (2.31) and the properties of the Lebesgue integral, one gets the conti-
nuity of

t ∈ [0, T ] 7→ E
[
‖∇ϑ(t)‖2

]
∈ R.

(ii) Firstly, since ϑ belongs to L2(Ω, H1(Q)), it is also an element of
C
(
[0, T ], L2(Ω, L2(D))

)
. Combining this with the continuity result proved in

(i), one gets that the application

t ∈ [0, T ] 7→ E
[
‖ϑ(t)‖2H1(D)

]
∈ R

is also continuous. Secondly, that thanks to the following embedding (see [18]
Lemme 8.1 p.297) :

L∞(0, T ;L2(Ω, H1(D))∩C
(
[0, T ], L2(Ω, L2(D))

)
⊂Cw

(
[0, T ], L2(Ω, H1(D))

) †
one shows that ϑ also belongs to C

(
[0, T ], L2(Ω, H1(D))

)
. Thus, combining

this with the above continuity result, one concludes that ϑ is an element of
C
(
[0, T ], L2(Ω, H1(D))

)
. �

3. Proof of Theorem 1.4

Thanks to the weak convergence results stated in the previous section, passing
to the limit in (2.3)-(2.4) with respect to ∆t is now possible and gives, using
the separability of H1(D), t-almost everywhere in (0, T ), P -almost surely in
Ω and for any v in H1(D)∫

D

∂tϑvdx+

∫
D

∂t
(
χ−

∫ .

0

hdw
)
vdx+

∫
D

∇ϑ.∇vdx = 0∫
D

∂t
(
χ−

∫ .

0

hdw
)
vdx+

∫
D

χ̄vdx+

∫
D

∇χ.∇vdx =

∫
D

ϑvdx.

Then it remains to identify the nonlinear weak limit χ̄ in L2(Ω × Q) of

α(∂t(χ̃
∆t − B̃∆t)). To do so, we suppose in a first step (only for technical

reasons) that h belongs to N 2
w(0, T,H2(D)) by following the idea of [8]. In a

second step (Subsection 3.2), we will see how to get back the well posedness
result when h is in N 2

w(0, T,H1(D)).

†Cw
(
[0, T ], L2(Ω, H1(D))

)
denotes the set of functions defined on [0, T ] with values in

L2(Ω, H1(D)) which are weakly continuous.
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3.1. Existence result for (1.1) when h ∈ N 2
w(0, T,H2(D))

Proposition 3.1. Assume that h belongs to N 2
w(0, T,H2(D)). Then, up to a

subsequence

α
(
∂t(χ̃

∆t − B̃∆t)
)
⇀ α

(
∂t(χ−

∫ .

0

hdw)
)

in L2(Ω×Q).

Proof. Set n in {0, ..., N − 1}. We introduce for the sequel the notations

U = χ−
∫ .

0

hdw and Un+1 = χn+1 −
n∑
k=0

(wk+1 − wk)hk.

Firstly, we consider (2.2) with the test function

v =
Un+1 − Un

∆t
=
χn+1 − χn

∆t
− hn

wn+1 − wn
∆t

.

Thus, one gets P -a.s in Ω:∫
D

(
Un+1 − Un

∆t

)2

dx+

∫
D

α

(
Un+1 − Un

∆t

)(
Un+1 − Un

∆t

)
dx

+

∫
D

∇Un+1.∇
(
Un+1 − Un

∆t

)
dx (3.1)

=

n∑
k=0

(wk+1 − wk)

∫
D

∆hk

(
Un+1 − Un

∆t

)
dx+

∫
D

(
Un+1 − Un

∆t

)
ϑn+1dx.

Secondly, (2.1) with the test function v = ϑn+1 gives P -a.s in Ω:∫
D

(ϑn+1 − ϑn
∆t

)
ϑn+1dx+

∫
D

(
Un+1 − Un

∆t

)
ϑn+1dx+

∫
D

|∇ϑn+1|2dx = 0

and then ∫
D

(
Un+1 − Un

∆t

)
ϑn+1dx

=− 1

2∆t

[
||ϑn+1||2 − ||ϑn||2 + ||ϑn+1 − ϑn||2

]
− ||∇ϑn+1||2.

Injecting this in (3.1), we obtain

∆t

∫
D

(
Un+1 − Un

∆t

)2

dx+ ∆t

∫
D

α

(
Un+1 − Un

∆t

)(
Un+1 − Un

∆t

)
dx

+
1

2

(
||∇Un+1||2 − ||∇Un||2

)
+

1

2

(
||ϑn+1||2 − ||ϑn||2

)
+

1

2
||ϑn+1 − ϑn||2 + ∆t||∇ϑn+1||2

≤ ∆t

∫
D

∆Bn+1
Un+1 − Un

∆t
dx.
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By adding from n = 0 to N − 1, we get

∆t

N−1∑
n=0

∫
D

(
Un+1 − Un

∆t

)2

dx+ ∆t

N−1∑
n=0

∫
D

α

(
Un+1 − Un

∆t

)(
Un+1 − Un

∆t

)
dx

+
1

2

N−1∑
n=0

(
||∇Un+1||2 − ||∇Un||2

)
+

1

2

N−1∑
n=0

(
||ϑn+1||2 − ||ϑn||2

)
+ ∆t

N−1∑
n=0

||∇ϑn+1||2

≤ ∆t

N−1∑
n=0

∫
D

∆Bn+1
Un+1 − Un

∆t
dx,

and then∫
Q

∣∣∂t(χ̃∆t − B̃∆t)
∣∣2dtdx+

∫
Q

α
(
∂t(χ̃

∆t − B̃∆t)
)
∂t(χ̃

∆t − B̃∆t)dtdx

+
1

2

(
‖∇UN‖2 − ‖∇U0‖2

)
+

1

2

(
‖ϑN‖2 − ‖ϑ0‖2

)
+

∫
Q

|∇ϑ∆t|2dtdx

≤
∫
Q

∆B∆t∂t(χ̃
∆t − B̃∆t)dtdx.

Noticing that ∇Ũ∆t(T ) = ∇UN and that ϑ̃∆t(T ) = ϑN , we finally get after
taking the expectation

E

[∫
Q

∣∣∂t(χ̃∆t − B̃∆t)
∣∣2dtdx]+

1

2
E
[
||∇Ũ∆t(T )||2

]
+

1

2
E
[
||ϑ̃∆t(T )||2

]
+ E

[∫
Q

|∇ϑ∆t|2dtdx
]

+ E

[∫
Q

α
(
∂t(χ̃

∆t − B̃∆t)
)
∂t(χ̃

∆t − B̃∆t)dtdx

]
≤ E

[∫
Q

∆B∆t∂t(χ̃
∆t − B̃∆t)dtdx

]
+

1

2
E
[
||∇U0||2

]
+

1

2
E
[
||ϑ0||2

]
. (3.2)

Now, passing to the superior limit in (3.2), we have using Proposition 2.13
and Proposition 2.14

lim inf
∆t→0

‖∂t(χ̃∆t − B̃∆t)‖2L2(Ω×Q) +
1

2
lim inf

∆t→0
E
[
‖∇Ũ∆t(T )‖2

]
+

1

2
lim inf

∆t→0
E
[
‖ϑ̃∆t(T )‖2

]
+ lim inf

∆t→0
‖∇ϑ∆t‖2L2(Ω×Q)

+ lim sup
∆t→0

E

[∫
Q

α(∂t(χ̃
∆t − B̃∆t))∂t(χ̃

∆t − B̃∆t)dtdx

]
≤ E

[∫
Q

∫ t

0

∆hdw∂tUdtdx

]
+

1

2
E
[
||∇χ0||2

]
+

1

2
E
[
||ϑ0||2

]
.

Indeed, due to Remark 2.6, B∆t converges strongly in L2
(
(0, T )× Ω, H2(D)

)
to
∫ .

0
hdw and so, by continuity of the Laplace operator, ∆B∆t converges



21

strongly in L2(Ω × Q) to ∆
∫ .

0
hdw. Moreover, following [20] (Lemma 2.4.1

p.35),

∆

∫ .

0

hdw =

∫ .

0

∆hdw,

and the convergence holds. Note that thanks to the following embedding (see
[18] Lemme 8.1 p.297) :

L∞(0, T ;L2(Ω, H1(D))∩C
(
[0, T ], L2(Ω, L2(D))

)
⊂Cw

(
[0, T ], L2(Ω, H1(D))

) †
one gets that for all times t in [0, T ], Ũ∆t(t) belongs to L2(Ω, H1(D)) and

Ũ∆t(t) ⇀ U(t) in L2(Ω, H1(D)). Then owing to the lower semi-continuity of
the L2(Ω, H1(D))-norm

lim inf
∆t→0

E
[
‖∇Ũ∆t(T )‖2

]
> E

[
||∇U(T )||2

]
.

Using the same arguments on ϑ̃∆t, one gets also that

lim inf
∆t→0

E
[
‖ϑ̃∆t(T )‖2

]
> E

[
||ϑ(T )||2

]
.

Finally, the lower semi-continuity of the L2(Ω×Q)-norm gives us

||∂t(χ−
∫ .

0

hdw)||2L2(Ω×Q) +
1

2
E
[
||∇U(T )||2

]
+

1

2
E
[
‖ϑ(T )‖2

]
+ ||∇ϑ||2L2(Ω×Q)

+ lim sup
∆t→0

E

[∫
Q

α(∂t(χ̃
∆t − B̃∆t))∂t(χ̃

∆t − B̃∆t)dtdx

]
≤ E

[∫
Q

∫ t

0

∆hdw∂tUdtdx

]
+

1

2
||∇χ0||2 +

1

2
||ϑ0||2. (3.3)

Note that P -almost surely in Ω, U satisfies the heat equation{
∂tU −∆U = g,

U(0, .) = χ0,

where g = ϑ−χ̄+

∫ t

0

∆hdw. Since χ0 ∈ H1(D), the following energy equality

holds for any t ∈ [0, T ] (see [13] Theorem X.11 p.220):∫
Qt

|∂tU |2dsdx+

∫
Qt

χ̄∂tUdsdx+
1

2
||∇U(t)||2

=

∫
Qt

∫ s

0

∆hdw∂tUdsdx+

∫
Qt

ϑ∂tUdsdx+
1

2
||∇χ0||2,

†Cw
(
[0, T ], L2(Ω, H1(D))

)
denotes the set of functions defined on [0, T ] with values in

L2(Ω, H1(D)) which are weakly continuous.
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where Qt = (0, t)×D. Then by taking the expectation :

E

[∫
Qt

|∂tU |2dsdx
]

+ E

[∫
Qt

χ̄∂tUdsdx

]
+

1

2
E
[
||∇U(t)||2

]
(3.4)

= E

[∫
Qt

∫ s

0

∆hdw∂tUdsdx

]
+ E

[∫
Qt

ϑ∂tUdsdx

]
+

1

2
||∇χ0||2.

In the same manner, note that ϑ satisfies P -almost surely in Ω the heat
equation {

∂tϑ−∆ϑ = −∂tU,
ϑ(0, .) = ϑ0 ∈ H1(D),

and so the following energy equality holds for any t ∈ [0, T ] (see [23] Lemma
1.2 p260) :

1

2
E
[
||ϑ(t)||2

]
+ ||∇ϑ||2L2(Ω×Qt) + E

[∫
Qt

ϑ∂tUdsdx

]
=

1

2
||ϑ(0)||2. (3.5)

In this way, by injecting (3.4)-(3.5) written with t = T in (3.3) we finally
have

lim sup
∆t→0

E

[∫
Q

α
(
∂t(χ̃

∆t − B̃∆t)
)
∂t(χ̃

∆t − B̃∆t)dtdx

]
≤ E

[∫
Q

χ̄∂t
(
χ−

∫ t

0

hdw
)
dtdx

]
.

As α : R→ R is a Lipschitz-continuous nondecreasing function, the operator

Aα : L2(Ω×Q) → L2(Ω×Q)

u 7→ α(u),

is maximal monotone and one gets that χ̄ = α
(
∂t(χ−

∫ .

0

hdw)
)

(see Lions

[18] p.172). �

Proposition 3.2. Assume that h belongs to N 2
w(0, T,H2(D)). Then, the fol-

lowing results hold

(i) The application t ∈ [0, T ] 7→ E
[
‖∇χ(t)‖2

]
∈ R is continuous.

(ii) χ belongs to the space C
(
[0, T ], L2(Ω, H1(D))

)
.

Proof. (i) Using (3.4) and Lebesgue’s theorem, one shows the continuity of

t ∈ [0, T ] 7→ E
[
‖∇U(t)‖2

]
∈ R,

where U = χ−
∫ .

0

hdw.Moreover, since

∫ .

0

hdw is in C
(
[0, T ], L2(Ω, H1(D))

)
,

one gets that the application

t ∈ [0, T ] 7→ E

[
‖
∫ t

0

∇h(s)dw(s)‖2
]
∈ R
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is continuous and the announced result holds.

(ii) Due to (3.4), Lebesgue’s theorem and the fact that U = χ−
∫ .

0

hdw is an

element of C
(
[0, T ], L2(Ω, L2(D))

)
, one gets the continuity of the application

t ∈ [0, T ] 7→ E
[
‖U(t)‖2H1(D)

]
∈ R.

Note that as mentioned in the proof of Proposition 3.1, U belongs to the
space Cw

(
[0, T ], L2(Ω, H1(D))

)
. Combining this with the above continuity

result, one concludes that U is in C
(
[0, T ], L2(Ω, H1(D))

)
and due to the

regularity of Itô integral, it is the same for χ. �

Proposition 3.3. Assume that h belongs to N 2
w(0, T,H2(D)). Then the couple

(ϑ, χ) given by Proposition 2.13 and Proposition 2.14 is a solution of System
(1.1) in the sense of Definition 1.1.

Proof. Firstly, note that using Proposition 2.13, Proposition 2.14, Proposition
2.16 and Proposition 3.2, ϑ and χ own regularities required by Definition
1.1. Secondly, they satisfy respectively the initial conditions ϑ(0, .) = ϑ0

and χ(0, .) = χ0 in L2(D) owing to Proposition 2.15. Thirdly, thanks to
Proposition 3.1, by passing to the limit in (2.3)-(2.4) with respect to ∆t
and using the separability of H1(D), one gets t-almost everywhere in (0, T ),
P -almost surely in Ω and for any v in H1(D)

∫
D

∂tϑvdx+

∫
D

∂t
(
χ−

∫ .

0

hdw
)
vdx+

∫
D

∇ϑ.∇vdx = 0∫
D

α̃
(
∂t
(
χ−

∫ .

0

hdw
))
vdx+

∫
D

∇χ.∇vdx =

∫
D

ϑvdx.

Hence, (ϑ, χ) is a solution of (1.1) in the sense of Definition 1.1 �

We now have all the necessary tools to show the result of existence and
uniqueness for Problem (1.1) stated in Theorem 1.4.

3.2. Existence result for (1.1) when h ∈ N 2
w(0, T,H1(D))

Assume that h belongs to N 2
w(0, T,H1(D)). Owing to the density of C∞c (D)

inH1(D), we propose to approach h by a sequence (hn)n∈N ⊂ N 2
w(0, T,C∞c (D)).

Using Proposition 3.3, one is able to define the following sequences :

Definition 3.4. Set n,m ∈ N and consider ϑ0, χ0 in H1(D) and hn, hm be-
longing to N 2

w(0, T,C∞c (D)). We define the couples (ϑn, χn) and (ϑm, χm) as
solutions of Problem (1.1) in the sense of Definition 1.1 with the respective
sets of data (ϑ0, χ0, hn) and (ϑ0, χ0, hm).

For any n,m ∈ N, we introduce the notations

Un = χn −
∫ .

0

hndw and Um = χm −
∫ .

0

hmdw.

In what follows, our aim is to show that (ϑn)n∈N, (χn)n∈N and (Un)n∈N are
Cauchy sequences in suitable spaces.
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Lemma 3.5. The sequences (ϑn)n∈N, (χn)n∈N and (Un)n∈N introduced in Def-
inition 3.4 satisfy the following properties

(i) (ϑn)n∈N is a Cauchy sequence in N 2
w(0, T,H1(D)) ∩ L2(Ω, H1(Q)).

(ii) (χn)n∈N is a Cauchy sequence in N 2
w(0, T,H1(D)).

(iii) (Un)n∈N is a Cauchy sequence in L2
(
Ω, H1(Q)

)
.

(iv) For any t in [0, T ], (ϑn(t))n∈N and (χn(t))n∈N are Cauchy sequences in
L2(Ω, H1(D)).

Proof. Since the couples (ϑn, χn) and (ϑm, χm) satisfy the variational for-
mulation (1.3) respectively with hn and hm, one gets by subtracting them,
t-almost everywhere in (0, T ), P -almost surely in Ω and for any v in H1(D)
that ∫

D

∂t(ϑn − ϑm)vdx+

∫
D

∂t(Un − Um)vdx

+

∫
D

∇(ϑn − ϑm).∇vdx = 0. (3.6)

For a fixed t in [0, T ], we consider in (3.6) the test function

v =
(ϑn − ϑm)(t)− (ϑn − ϑm)(t−∆t)

∆t
.

By noticing that

∫
D

∇(ϑn(t)− ϑm(t)).∇
(
ϑn(t)− ϑm(t)−

(
ϑn(t−∆t)− ϑm(t−∆t)

))
dx

=
1

2

[
‖∇(ϑn − ϑm)(t)‖2 − ‖∇(ϑn − ϑm)(t−∆t)‖2

]
+

1

2
‖∇(ϑn − ϑm)(t)−∇(ϑn − ϑm)(t−∆t)‖2,

we thus obtain∫
D

∂t(ϑn − ϑm)
(ϑn − ϑm)(t)− (ϑn − ϑm)(t−∆t)

∆t
dx

+

∫
D

∂t(Un − Um)
(ϑn − ϑm)(t)− (ϑn − ϑm)(t−∆t)

∆t
dx

1

2∆t

[
||∇(ϑn − ϑm)(t)||2 − ||∇(ϑn − ϑm)(t−∆t)||2

]
+

1

2∆t
||∇(ϑn − ϑm)(t)−∇(ϑn − ϑm)(t−∆t)||2 = 0.
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By taking the expectation and the integral from ∆t to T , one gets∫ T

∆t

E

[∫
D

∂t(ϑn − ϑm)
(ϑn − ϑm)(t)− (ϑn − ϑm)(t−∆t)

∆t
dx

]
dt

+

∫ T

∆t

E

[∫
D

∂t(Un − Um)
(ϑn − ϑm)(t)− (ϑn − ϑm)(t−∆t)

∆t
dx

]
dt

+
1

2∆t

∫ T

∆t

E
[
||∇(ϑn − ϑm)(t)||2 − ||∇(ϑn − ϑm)(t−∆t)||2

]
dt

+
1

2∆t

∫ T

∆t

E
[
||∇(ϑn − ϑm)(t)−∇(ϑn − ϑm)(t−∆t)||2

]
dt = 0.

Then, a change of variables gives us∫ T

∆t

E

[∫
D

∂t(ϑn − ϑm)
(ϑn − ϑm)(t)− (ϑn − ϑm)(t−∆t)

∆t
dx

]
dt

+

∫ T

∆t

E

[∫
D

∂t(Un − Um)
(ϑn − ϑm)(t)− (ϑn − ϑm)(t−∆t)

∆t
dx

]
dt

+
1

2∆t

∫ T

T−∆t

E
[
||∇(ϑn − ϑm)(t)||2

]
dt ≤ 1

2∆t

∫ ∆t

0

E
[
||∇(ϑn − ϑm)(t)||2

]
dt.

By using Proposition 2.16, we obtain by passing to the limit with ∆t and
using the initial values:

E

[∫
Q

|∂t(ϑn − ϑm)|2dxdt
]

+ E

∫
Q

∂t(Un − Um)∂t(ϑn − ϑm)dx

+
1

2
E
[
||∇(ϑn − ϑm)(T )||2

]
≤ 1

2
E
[
||∇(ϑn − ϑm)(0)||2

]
= 0.

By denoting Qt = (0, t)×D, using the identity ab = 1
2 [(a+ b)2 − a2 − b2] in

the second term of the above equation and discarding nonnegative terms one
has (since T is arbitrary) for any t ∈ [0, T ]

||∂t(ϑn − ϑm)||2L2(Ω×Qt) + E
[
||∇(ϑn − ϑm)(t)||2

]
(3.7)

≤ ||∂t(Un − Um)||2L2(Ω×Qt).

In the same manner, using the test function ϑn − ϑm in (3.6), one shows the
following inequality for any t ∈ [0, T ]

E
[
||(ϑn − ϑm)(t)||2

]
+ 2||∇(ϑn − ϑm)||2L2(Ω×Qt)

≤ ||∂t(Un − Um)||2L2(Ω×Qt) + ||ϑn − ϑm||2L2(Ω×Qt). (3.8)

Similarly, exploiting the fact that (ϑn, χn) and (ϑm, χm) satisfy additionally
the variational formulation (1.4) respectively with hn and hm, one gets by
subtracting them, t-almost everywhere in (0, T ), P -almost surely in Ω and
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for any v in H1(D) that∫
D

∂t(Un − Um)vdx+

∫
D

(
α(∂t(Un))− α(∂t(Um))

)
vdx

+

∫
D

∇(χn − χm).∇vdx =

∫
D

(ϑn − ϑm)vdx. (3.9)

For a fixed t in [0, T ], by taking in (3.9) the test function

v =
(Un − Um)(t)− (Un − Um)(t−∆t)

∆t
,

we get∫
D

∂t(Un − Um)
(Un − Um)(t)− (Un − Um)(t−∆t)

∆t
dx

+
1

∆t

∫
D

∇(χn(t)− χm(t)).∇
(
χn(t)− χm(t)−

(
χn(t−∆t)− χm(t−∆t)

))
dx

− 1

∆t

∫
D

∇(χn(t)− χm(t)).∇
(∫ t

t−∆t

(hn − hm)dw
)
dx

+

∫
D

(
α(∂tUn)− α(∂tUm)

) (Un − Um)(t)− (Un − Um)(t−∆t)

∆t
dx

=

∫
D

(ϑn − ϑm)
(Un − Um)(t)− (Un − Um)(t−∆t)

∆t
dx.

Then, by taking the expectation, the integral from ∆t to T and using changes
of variables one arrives at (see [8], Proof of Theorem 1.4 for details)∫ T

∆t

E

[∫
D

∂t(Un − Um)
(Un − Um)(t)− (Un − Um)(t−∆t)

∆t
dx

]
dt

+
1

2∆t

∫ T

∆t

E
[
||∇(χn − χm)(t)||2

]
dt− 1

2∆t

∫ ∆t

0

E
[
||∇(χn − χm)(t)||2

]
dt

+

∫ T

∆t

E

[∫
D

(
α(∂tUn)− α(∂tUm)

) (Un − Um)(t)− (Un − Um)(t−∆t)

∆t
dx

]
dt

≤ ||∇(hn − hm)||2L2(Ω×Q)

+

∫
D

(ϑn − ϑm)
(Un − Um)(t)− (Un − Um)(t−∆t)

∆t
dx.

By passing to the limit with ∆t in this inequality, using Proposition 3.2 and
the initial value we obtain:

E

[∫
Q

|∂t(Un − Um)|2dxdt
]

+
1

2
E
[
||∇(χn − χm)(T )||2

]
+E

[∫
Q

(
α(∂tUn)− α(∂tUm)

)
∂t(Un − Um)dxdt

]
≤ ||∇(hn − hm)||2L2(Ω×Q) +

∫
D

(ϑn − ϑm)∂t(Un − Um)dx.
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Then, due to the coercivity of α, one also has for any t ∈ [0, T ], by still
denoting Qt = (0, t)×D,(

C̄α +
1

2

)
||∂t(Un − Um)||2L2(Ω×Qt) +

1

2
E
[
‖∇(χn − χm)(t)‖2

]
(3.10)

≤ ||∇(hn − hm)||2L2(Ω×Qt) +
1

2
||ϑn − ϑm||2L2(Ω×Qt).

In the same manner, using the test function Un−Um in (3.9), one shows the
following inequality for any t ∈ [0, T ]

1

2
E
[
||(Un − Um)(t)||2

]
+

1

2
||∇(χn − χm)||2L2(Ω×Qt)

≤ C2
α||∂t(Un − Um)||2L2(Ω×Qt) +

1

2
||Un − Um||2L2(Ω×Qt)

+
T

2
||∇(hn − hm)||2L2(Ω×Qt) + ||ϑn − ϑm||2L2(Ω×Qt). (3.11)

Now, by adding (3.8) and (3.11), one gets

E
[
||(ϑn − ϑm)(t)||2

]
+

1

2
E
[
||(Un − Um)(t)||2

]
≤ (C2

α + 1)||∂t(Un − Um)||2L2(Ω×Qt) +
T

2
||∇(hn − hm)||2L2(Ω×Qt)

+
1

2
||Un − Um||2L2(Ω×Qt) + 2||ϑn − ϑm||2L2(Ω×Qt). (3.12)

From (3.10)

||∂t(Un − Um)||2L2(Ω×Qt) ≤
1

C̄α+ 1
2

{
||∇(hn − hm)||2L2(Ω×Qt) +

1

2
||ϑn − ϑm||2L2(Ω×Qt)

}
,

substituting it in (3.12), we obtain

E
[
||(ϑn − ϑm)(t)||2

]
+

1

2
E
[
||(Un − Um)(t)||2

]
≤
(
C2
α + 1

C̄α+ 1
2

+
T

2

)
||∇(hn − hm)||2L2(Ω×Q)

+
1

2
||Un − Um||2L2(Ω×Qt) +

(
C2
α + 1

2C̄α+ 1
+ 2

)
||ϑn − ϑm||2L2(Ω×Qt).

By denoting for any t in [0, T ]

y(t) = E
[
||(ϑn − ϑm)(t)||2

]
+

1

2
E
[
||(Un − Um)(t)||2

]
,

Kn,m
α (t) =

(
C2
α + 1

C̄α + 1
2

+
T

2

)
||∇(hn − hm)||2L2(Ω×Qt)

and Ĉα =
C2
α + 1

2C̄α + 1
+ 2,
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we have for any t in [0, T ]

y(t) ≤ Kn,m
α (t) + Ĉα

∫ t

0

y(s)ds ≤ Kn,m
α (T ) + Ĉα

∫ t

0

y(s)ds. (3.13)

Firstly, Grönwall’s Lemma then asserts that for any t in [0, T ]

E
[
||(ϑn − ϑm)(t)||2

]
+

1

2
E
[
||(Un − Um)(t)||2

]
≤ Kn,m

α (T )eĈαt. (3.14)

Thus, by taking the supremum over [0, T ] in (3.14), one obtains the estimate

sup
t∈[0,T ]

E
[
||(ϑn − ϑm)(t)||2

]
+ sup
t∈[0,T ]

1

2
E
[
||(Un − Um)(t)||2

]
≤
(

2Ĉα +
T

2

)
eĈαT ||∇(hn − hm)||2L2(Ω×Q). (3.15)

Secondly, using (3.15) in (3.10) allows us to affirm that

(
C̄α +

1

2

)
||∂t(Un − Um)||2L2(Ω×Q) +

1

2
sup
t∈[0,T ]

E
[
‖∇(χn − χm)(t)‖2

]
≤
((
Ĉα +

T

4

)
TeĈαT + 1

)
||∇(hn − hm)||2L2(Ω×Q). (3.16)

Thirdly, thanks to (3.16) in (3.7), we obtain

||∂t(ϑn − ϑm)||2L2(Ω×Q) + sup
t∈[0,T ]

E
[
||∇(ϑn − ϑm)(t)||2

]
≤ 1

C̄α + 1
2

((
Ĉα +

T

4

)
TeĈαT + 1

)
||∇(hn − hm)||2L2(Ω×Q). (3.17)

Finally, since (hn)n is a Cauchy sequence in N 2
w(0, T,H1(D)) and owing to

(3.15), (3.16) and (3.17), one concludes that

(i) (ϑn)n∈N is a Cauchy sequence in N 2
w(0, T,H1(D)) ∩ L2(Ω, H1(Q)).

(ii) (χn)n∈N is a Cauchy sequence in N 2
w(0, T,H1(D)).

(iii) (Un)n∈N is a Cauchy sequence in L2
(
Ω, H1(Q)

)
.

(iv) For any t in [0, T ], (ϑn(t))n∈N and (χn(t))n∈N are Cauchy sequences in
L2(Ω, H1(D)).

(v.) (∂tϑn)n∈N is a Cauchy sequence in L2(Ω×Q).

�

As mentioned by Da Prato-Zabczyk [14], N 2
w(0, T,H1(D)) is com-

plete, thus due to Lemma 3.5, the following convergence results hold directly.
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Corollary 3.6. There exist ϑ in N 2
w(0, T,H1(D)) ∩ L2

(
Ω, H1(Q)

)
and χ in

N 2
w(0, T,H1(D)) such that the sequences (ϑn)n∈N, (χn)n∈N and (Un)n∈N (in-

troduced in Definition 3.4) satisfy the following convergence results

ϑn → ϑ in N 2
w(0, T,H1(D)) and L2(Ω;H1(Q)),

χn → χ in N 2
w(0, T,H1(D)),

∂tϑn → ∂tϑ in L2(Ω×Q)

∂tUn → ∂t
(
χ−

∫ .

0

hdw
)

in L2(Ω×Q)

∀t ∈ [0, T ], ϑn(t, .)→ ϑ(t, .) in L2(Ω, H1(D)),
∀t ∈ [0, T ], χn(t, .)→ χ(t, .) in L2(Ω, H1(D)).

Note that since (ϑn)n∈N converges in L2(Ω;H1(Q)), it also converges
in L2

(
Ω,C ([0, T ], L2(D))

)
and, using the regularity of the Itô integral, the

same is true for (χn)n∈N. Thus, using Corollary 3.6, we get that t-almost
everywhere in (0, T ), P -almost surely in Ω and for any v in H1(D)∫

D

∂tϑvdx+

∫
D

∂t(χ−
∫ .

0

hdw)vdx+

∫
D

∇ϑ.∇vdx = 0∫
D

α̃
(
∂t(χ−

∫ .

0

hdw)
)
vdx+

∫
D

∇χ.∇vdx =

∫
D

ϑvdx,

and we have the existence result when h ∈ N 2
w(0, T,H1(D)) as announced in

Theorem 1.4.

3.3. Uniqueness result for (1.1)

Theorem 3.7. For h in N 2
w(0, T,H1(D)) and initial data (χ0, ϑ0) ∈ H1(D)2

the solution in the sense of Definition 1.1 of System (1.1) is unique.

Proof. We consider h in N 2
w(0, T,H1(D)), and (χ, ϑ), (χ̂, ϑ̂) two solutions in

the sense of Definition 1.1 of System (1.1). Using the notations U = χ −∫ .

0

hdw and Û = χ̂−
∫ .

0

hdw, one has


∂t(ϑ− ϑ̂) + ∂t(U − Û)−∆(ϑ− ϑ̂) = 0 in (0, T )×D × Ω,

∂t(U − Û)−∆(U − Û) + α(∂tU)− α(∂tÛ) = ϑ− ϑ̂ in (0, T )×D × Ω,

∇(U − Û).n = ∇(ϑ− ϑ̂).n = 0 on (0, T )× ∂D × Ω,

(U − Û)(0, .) = 0 and (ϑ− ϑ̂)(0, .) = 0.

Denoting ξ = ϑ − ϑ̂ and u = U − Û , it follows that (ξ, u) is the solution of
the following system of heat equations

∂tξ −∆ξ = −∂tu in (0, T )×D × Ω,

∂tu−∆u = α(∂tÛ)− α(∂tU) + ξ in (0, T )×D × Ω,
∇u.n = ∇ξ.n = 0 on (0, T )× ∂D × Ω,

u(0, .) = 0 and ξ(0, .) = 0.
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Following the same arguments as in (3.5), note that ξ satisfies the energy
equality

1

2
E
[
‖ξ(t)‖2

]
+ E

[∫
Qt

|∇ξ|2dsdx
]

=
1

2
‖ξ(0)‖2 − E

[∫
Qt

ξ∂tudsdx

]
,

for any t in [0, T ] where Qt = (0, t)×D.
Then

E
[
‖ξ(t)‖2

]
+ 2‖∇ξ‖2L2(Ω×Qt) ≤ ‖∂tu‖

2
L2(Ω×Qt) + ‖ξ‖2L2(Ω×Qt). (3.18)

As in (3.4), one has for any t in [0, T ]

E

[∫
Qt

|∂tu|2dsdx
]

+
1

2
E
[
‖∇u(t)‖2L2(D)

]
=

1

2
‖∇u(0)‖2L2(D)

+ E

[∫
Qt

ξ∂tudsdx

]
− E

[∫
Qt

(
α(∂tU)− α(∂tÛ)

)
∂tudsdx

]
.

Note that this allows us to affirm thanks to Lebesgue’s theorem that the
application t ∈ [0, T ] 7→ E

[
‖∇u(t)‖2

]
∈ R is continuous.

Due to the coercivity property of α, one gets for any t in [0, T ]

(C̄α +
1

2
)||∂tu||2L2(Ω×Qt) +

1

2
E
[
‖∇u(t)‖2L2(D)

]
≤ 1

2
‖ξ‖2L2(Ω×Qt),

and then

||∂tu||2L2(Ω×Qt) ≤
1

1 + 2C̄α
‖ξ‖2L2(Ω×Qt). (3.19)

On the one hand, going back to (3.18), in virtue of (3.19), we have for any t
in [0, T ]

E
[
‖ξ(t)‖2

]
≤
(

1 +
1

1 + 2C̄α

)∫ t

0

E
[
‖ξ(s)‖2

]
ds,

and Grönwall’s Lemma allows us to assert that ξ = 0, thus ϑ = ϑ̃.
On the other hand, the study of the heat equation also provides the following
estimate on u for any t in [0, T ]:

1

2
E
[
||u(t)||2

]
− 1

2
||u(0)||2 + ||∇u||2L2(Ω×Qt)

≤ ||u||2L2(Ω×Qt) +
C2
α

2
||∂tu||2L2(Ω×Qt) +

1

2
‖ξ‖2L2(Ω×Qt),

which gives using (3.19) and the fact that ξ = 0

1

2
E
[
||u(t)||2

]
≤ ||u||2L2(Ω×Qt).

According to Grönwall’s Lemma, u = 0 which implies that χ = χ̃ and the
uniqueness result holds for (1.1). �
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4. Proof of Proposition 1.5

The proof of Lemma 3.5 allows us to show directly the following continuous
dependence result on the sequences (ϑn)n∈N, (χn)n∈N given by Definition 3.4
with respect to the sequence of integrands (hn)n∈N in the stochastic noise.

4.1. Preliminary result

Lemma 4.1. There exists a constant CTα > 0 which only depends on T , Cα
and C̄α such that the sequences (ϑn)n∈N, (χn)n∈N and (Un)n∈N introduced in
Definition 3.4 satisfy the following inequality for any t in [0, T ]

||∂t(ϑn − ϑm)||2L2(Ω×Qt) +
(
C̄α +

1

2

)
||∂t(Un − Um)||2L2(Ω×Qt)

+ E
[
||(ϑn − ϑm)(t)||2

]
+ E

[
||∇(ϑn − ϑm)(t)||2

]
+

1

4
E
[
||(χn − χm)(t)||2

]
+

1

4
E
[
‖∇(χn − χm)(t)‖2

]
≤ CTα

(
||hn − hm||2L2(Ω×Qt) + ||∇(hn − hm)||2L2(Ω×Qt)

)
, (4.1)

where Qt = (0, t)×D.

Proof. Owing to (3.13) and by using again Grönwall’s Lemma one gets for
any t in [0, T ]

E
[
||(ϑn − ϑm)(t)||2

]
+

1

2
E
[
||(Un − Um)(t)||2

]
≤ Kn,m

α (t) +

∫ t

0

ĈαK
n,m
α (s)eĈα(t−s)ds,

where

Kn,m
α (t) =

(
C2
α + 1

C̄α + 1
2

+
T

2

)
||∇(hn − hm)||2L2(Ω×Qt) and Ĉα =

C2
α + 1

2C̄α + 1
+ 2.

Thus we obtain

E
[
||(ϑn − ϑm)(t)||2

]
+

1

2
E
[
||(Un − Um)(t)||2

]
≤
(
1 + ĈαTe

ĈαT
)(C2

α + 1

C̄α + 1
2

+
T

2

)
||∇(hn − hm)||2L2(Ω×Qt),

And using this in (3.10) allows us to affirm for any t in [0, T ] that(
C̄α +

1

2

)
||∂t(Un − Um)||2L2(Ω×Qt) +

1

2
E
[
‖∇(χn − χm)(t)‖2

]
≤
{
T

2

(
1 + ĈαTe

ĈαT
)(C2

α + 1

C̄α + 1
2

+
T

2

)
+ 1

}
||∇(hn − hm)||2L2(Ω×Qt).

Now by injecting this last inequality in (3.7), we obtain for any t in [0, T ]

||∂t(ϑn − ϑm)||2L2(Ω×Qt) + E
[
||∇(ϑn − ϑm)(t)||2

]
≤ 1

C̄α + 1
2

{
T

2

(
1 + ĈαTe

ĈαT
)(C2

α + 1

C̄α + 1
2

+
T

2

)
+ 1

}
||∇(hn − hm)||2L2(Ω×Qt).
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Finally, by noticing that for any t in [0, T ]

E
[
||(χn − χm)(t)||2

]
≤ 2E

[
||(Un − Um)(t)||2

]
+ 2||hn − hm||2L2(Ω×Qt)

one gets

E
[
||(ϑn − ϑm)(t)||2

]
+

1

4
E
[
||(χn − χm)(t)||2

]
+ ||∂t(ϑn − ϑm)||2L2(Ω×Qt) + E

[
||∇(ϑn − ϑm)(t)||2

]
+
(
C̄α +

1

2

)
||∂t(Un − Um)||2L2(Ω×Qt) +

1

2
E
[
‖∇(χn − χm)(t)‖2

]
≤ (

1

C̄α + 1
2

+ 1)

{
T

2

(
1 + ĈαTe

ĈαT
)(C2

α + 1

C̄α + 1
2

+
T

2

)
+ 1

}
||∇(hn − hm)||2L2(Ω×Qt)

+
(
1 + ĈαTe

ĈαT
)(C2

α + 1

C̄α + 1
2

+
T

2

)
||∇(hn − hm)||2L2(Ω×Qt)

+
1

2
||hn − hm||2L2(Ω×Qt)

and thus the existence of a constant CTα which only depends on T,Cα, C̄α
and Ĉα such that

||∂t(ϑn − ϑm)||2L2(Ω×Qt) +
(
C̄α +

1

2

)
||∂t(Un − Um)||2L2(Ω×Qt)

+ E
[
||(ϑn − ϑm)(t)||2

]
+ E

[
||∇(ϑn − ϑm)(t)||2

]
+

1

4
E
[
||(χn − χm)(t)||2

]
+

1

4
E
[
‖∇(χn − χm)(t)‖2

]
≤CTα

(
||hn − hm||2L2(Ω×Qt) + ||∇(hn − hm)||2L2(Ω×Qt)

)
.

�

4.2. Proof of Proposition 1.5

Using a Cauchy sequence argument as in Subsection 3.2 and recalling the
uniqueness result of Theorem 3.7, one gets by passing to the limit in the
inequality (4.1) above the stability result announced in Proposition 1.5. More

precisely, for h, ĥ ∈ N 2
w(0, T,H1(D)) there exist (hn)n∈N and (ĥn)n∈N in

N 2
w(0, T, C∞c (D)) such that hn → h, ĥn → ĥ in N 2

w(0, T,H1(D)) for n →
∞. We fix initial data (ϑ0, χ0) ∈ H1(D)2 and consider solutions (ϑn, χn),

(ϑ̂n, χ̂n) with data (hn, ϑ0, χ0), (ĥn, ϑ0, χ0) respectively. Plugging (ϑn, χn) =

(ϑn, χn), (ϑm, χm) = (ϑ̂n, χ̂n) into (4.1) and using the convergence results
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from Corollary 3.6, we can pass to the limit and obtain

||∂t(ϑ− ϑ̂)||2L2(Ω×Qt) +
(
C̄α +

1

2

)
||∂t(U − Û)||2L2(Ω×Qt)

+ E
[
||(ϑ− ϑ̂)(t)||2

]
+ E

[
||∇(ϑ− ϑ̂)(t)||2

]
+

1

4
E
[
||(χ− χ̂)(t)||2

]
+

1

4
E
[
‖∇(χ− χ̂)(t)‖2

]
≤ CTα

(
||h− ĥ||2L2(Ω×Qt) + ||∇(h− ĥ)||2L2(Ω×Qt)

)
,

where (ϑ, χ), (ϑ̂, χ̂) are the unique solutions with data (h, ϑ0, χ0), (ĥ, ϑ0, χ0)

respectively, U := χ−
∫ ·

0
h dw, Û := χ̂−

∫ ·
0
ĥ dw.

5. Proof of Theorem 1.6

Under Assumptions H2 to H4, we are interested in the following system with
multiplicative noise:

∂tϑ+ ∂t(χ−
∫ .

0

H (χ)dw)−∆ϑ = 0 in (0, T )×D × Ω,

α̃

(
∂t(χ−

∫ .

0

H (χ)dw)

)
−∆χ = ϑ in (0, T )×D × Ω,

∇χ.n = ∇ϑ.n = 0 on (0, T )× ∂D × Ω,
χ(0, .) = χ0 and ϑ(0, .) = ϑ0.

Using Theorem 1.4, we define the application

f : N 2
w(0, T,H1(D)) → N 2

w(0, T,H1(D))×N 2
w(0, T,H1(D)),

S 7→ (ϑS , χS),

where (ϑS , χS) is the solution of the following system with additive noise
∂tϑS + ∂t(χS −

∫ .

0

H (S)dw)−∆ϑS = 0 in (0, T )×D × Ω,

α̃

(
∂t(χS −

∫ .

0

H (S)dw)

)
−∆χS = ϑS in (0, T )×D × Ω,

∇χS .n = ∇ϑ.n = 0 on (0, T )× ∂D × Ω,
χS(0, .) = χ0 and ϑS(0, .) = ϑ0,

in the sense of Definition 1.1 with h = H (S). Additionally, we consider the
following projection application

g : N 2
w(0, T,H1(D))×N 2

w(0, T,H1(D)) → N 2
w(0, T,H1(D)),

(u, v) 7→ v.

Our aim is to show that the composition g ◦ f admits a unique fixed-point
in N 2

w(0, T,H1(D)). The idea is to exploit the fact that, for any a > 0, the
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following exponential weight in time norm

N 2
w(0, T,H1(D)) → R+

v 7→
∫ T

0

e−atE
[
||v(t)||2H1(D)

]
dt

provides an equivalent norm to the usual one on N 2
w(0, T,H1(D)).

Set a > 0, consider S and Ŝ in N 2
w(0, T,H1(D)) and define f(S) = (ϑS , χS)

and f(Ŝ) = (ϑŜ , χŜ). According to [20] Lemma 2.41 p.35, note that H (S)

and H (Ŝ) belong to N 2
w(0, T,H1(D)). Using Proposition 1.5, one gets for

any t in [0, T ]

E
[
||(ϑS − ϑŜ)(t)||2

]
+ E

[
||∇(ϑS − ϑŜ)(t)||2

]
+

1

4
E
[
||(χS − χŜ)(t)||2

]
+

1

4
E
[
‖∇(χS − χŜ)(t)‖2

]
≤ CTα

(
||H (S)−H (Ŝ)||2L2(Ω×Qt) + ||∇(H (S)−H (Ŝ))||2L2(Ω×Qt)

)
≤ CTα

∫ t

0

E
[
||H (S)−H (Ŝ)||2H1(D)

]
ds. (5.1)

We fix t > 0. Multiplying (5.1) with e−at and integrating over (0, T ), we
obtain∫ T

0

e−atE
[
||(χS − χŜ)(t)||2

]
dt+

∫ T

0

e−atE
[
‖∇(χS − χŜ)(t)‖2

]
dt

≤ 4CTα

∫ T

0

e−at
∫ t

0

E
[
||(H (S)−H (Ŝ))(s)||2H1(D)

]
dsdt.

By using an integration by parts one gets∫ T

0

e−atE
[
||(χS − χŜ)(t)||2

]
dt+

∫ T

0

e−atE
[
‖∇(χS − χŜ)(t)‖2

]
dt

≤ 4CTαC
2
H

∫ T

0

e−at
∫ t

0

E
[
||(S − Ŝ)(s)||2H1(D)

]
dsdt

= 4CTαC
2
H ×

1

a

∫ T

0

e−atE
[
‖(S − Ŝ)(t)‖2H1(D)

]
dt

− 4CTαC
2
H ×

(1

a
e−aT

∫ T

0

E
[
‖(S − Ŝ)(t)‖2H1(D)

]
dt
)

≤ 4CTαC
2
H ×

1

a

∫ T

0

e−atE
[
‖(S − Ŝ)(t)‖2H1(D)

]
dt.

Finally ∫ T

0

e−atE
[
||(g ◦ f)(S)− (g ◦ f)(Ŝ)||2H1(D)

]
dt

≤ 4CTαC
2
H ×

1

a

∫ T

0

e−atE
[
‖(S − Ŝ)(t)‖2H1(D)

]
dt.
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Under the condition a > 4CTαC
2
H , g ◦ f is a contractive mapping, it has a

unique fixed-point and the result holds.
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Apl., 17(1):21–36, 1996.

[17] S. Kamin, L. A. Peletier, and J. L. Vázquez. On the Barenblatt equation of
elastoplastic filtration. Indiana Univ. Math. J., 40(4):1333–1362, 1991.
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Aix-Marseille Université, CNRS, Centrale Marseille
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