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Abstract

1. Images are resourceful data for ecologists and can provide a more

complete information than other methods to study biodiversity and the

interactions between species. Automated image analysis however often

relies on extensive datasets, not implementable by small research teams.

We are here proposing an object detection method that allows the analysis

of high-resolution images containing many animals interacting in a small

dataset.

2. We developed an image analysis pipeline named ‘CORIGAN’ to extract the

characteristics of the community. CORIGAN is based on the YOLOv3 model

as the core of image detection. To illustrate potential applications, we use

images collected during a sentinel prey experiment.

3. Our pipeline can be used to detect, count and study the physical

interactions between various animals. On our example dataset, the model

reaches 86.6% precision and 88.9% recall at the species level or even at

the caste level for ants. The training set required fewer than 10 h of

labelling. Based on the pipeline output it was possible to build the trophic

and non-trophic interactions network describing the studied community.

4. CORIGAN relies on generic properties of the detected animals and can be

used for a wide range of studies and supports. Here, we study

invertebrates on high-resolution images, but the same processing can be

transferred for the study of larger animals on satellite or aircraft images.

Keywords: Image processing, Animal detection, Interaction study, 

Convolutional Neural Network, Trophic networks, Sentinel prey study, On-field 
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1. Introduction

Understanding the functioning of ecosystems depends on accurate information 

on biodiversity, species behaviour, trophic and non-trophic interactions, and 

other ecosystem properties. Such information can be very useful for biodiversity 

conservation, invasive species monitoring, and biological pest control (Reid et al. 

2005). 

However, classical methods used to sample biodiversity or to identify the 

behaviours of species are often either time consuming, information-poor, or 

expensive.  Depending on the studied species and objectives of the studies, 

these methods include direct observation, the use of trap cameras, Barber traps, 

sentinel prey, or satellite images for instance. Among these methods, camera 

observations have several advantages and present few biases. For the study of 

arthropods with sentinel preys, Grieshop et al. (2012) demonstrate the 

usefulness of the collected data and mentioned as only limits of this techniques 

the small sampling window of a camera and the time investment needed for 

image analysis. In fact, ecologists and biologists are therefore increasingly using 

automated methods to analyse images (Pimm et al. 2015).

To date, one of the most developed applications of computer vision in ecology is 

the identification of species (Wäldchen, Mäder & Cooper 2018; Weinstein 2018).  

In comparison with species identification, the counting of objects and the 

describing of animal behaviours and interactions are less developed applications 

of computer vision in ecology (Weinstein 2018). Furthermore, the existing 

methods to identify, count, or describe animals are often designed for specific 

uses and rely on extensive datasets and citizen science initiatives (Norouzzadeh 

et al. 2018; Willi et al. 2018). 
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In the current manuscript, we describe the CORIGAN pipeline that uses object 

detection to identify and locate numerous small objects in high-resolution images

and uses these detections to compute information about species interactions. We

illustrate how CORIGAN can be applied on a small custom dataset of images of 

invertebrate communities from a sentinel prey experiment in a tropical 

agrosystem. 

2. Materials and methods

2.1. Overview

2.1.1.Image and detection processing

We use the YOLOv3 Convolutional Neural Network (CNN) (Redmon et al. 2018) as

core of our image-processing pipeline. This model outputs the bounding box 

coordinates of the objects it recognizes on an input image. As this model is best 

fit for small images featuring large objects, we have developed an image-

processing pipeline inspired from satellite images analysis methods (Van Etten, 

2018) to be able to work with high-resolution images featuring numerous small 

objects. The image-processing is summarized in Fig. 1 and details on image 

labelling, processing and CNN training are presented in Supplementary Material 

1. Images are first sliced into  nslices x nslices  pixel slices with a given overlap to 

reduce the risk of an object being cut in non-identifiable parts.

For model training, ground truth labels of the train dataset are recomputed within

each slice referential with Pobject and Pslice parameters to handle how small and 

large labels will be recomputed. The CNN is then trained on this new dataset. 

Here, we have performed data augmentation as Redmon et al. (2018) and payed 

particular attention to overfitting, given the size of our example dataset.
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For model testing, detection is performed on slices using trained model weights 

and a separate test dataset. These detections are then merged back together 

within the referential of the original image. The overlap of the slicing may 

generate duplicates and a refining of the detections with Overlap Threshold (OT) 

and Confidence Threshold (CT) parameters is performed to suppress duplicates. 

Refined detections are then compared with ground truth to assess the 

performances of the model. Detected and ground truth bounding boxes are 

compared using Intersection over Union (IoU), which is the ratio between the 

area of intersection and the area of union of two bounding boxes. An IoU of 1 

indicates that the detected box and ground truth box overlap perfectly. 

Detections are accepted as True Positive (TP) if IoU > 0.5 and if the detected 

class is correct. Otherwise, the detection is considered as False Positives (FP). As 

well, duplicates are considered as FP. If a ground truth object is missed, it is 

considered as False Negative (FN). Overall performances are assessed with 

precision, recall and F1-score.

precision=
TP

TP+FP

recall=
TP

TP+FN

F1=
2× precision×recall
precision+recall

For each class, the Average Precision (AP) is computed as the area under the 

precision-recall curve. AP is used to compare performances between classes.

Once the model shows acceptable performances and the best processing 

parameters determined, the pipeline can be used to study interactions between 

animals.
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2.1.2.Interactions

Since we observe animals on a 2D surface, we can thus use the intersection of 

bounding boxes to detect physical interactions between two individuals. There 

may be intersections of bounding boxes without real physical contact but the 

intersection of bounding boxes ensures that animals are within very close range 

to each other. We chose to consider this as a physical interaction, as this means 

that at least one of the participants of the interaction is willing to engage physical

contact with the other. 

To provide further nuances, interactions may be characterized depending on the 

known or observed behaviour of a species towards another. In our example, 

interactions between predators and prey are labelled as predation if the prey is 

alive and scavenging if the prey is already dead at the beginning of the 

experiment. Interactions between two predators of different species are labelled 

as competition, whereas interactions between two predators of the same social 

species are labelled as cooperation. Finally, animals whose behaviour towards 

others where not clearly identified are labelled as undefined. Moreover, the 

number of individuals of a predator species interacting with a prey on an image is

counted, providing information about the predator unit investment needed for 

the capture of a prey during a predation event. All results are exported in csv 

dataframes. R scripts are provided for analysis and production of graphics.

2.2. Example dataset

To illustrate how CORIGAN can assess multiple species and interactions within 

images, we have conducted sentinel prey experiments, using eggs and dead or 

alive adults of Cosmopolites sordidus and larvae of Metamasius sp. as prey under

the camera.
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Detailed protocol is presented in Supplementary Material 2. These experiments 

have produced 1240 images of 3000x 4000 pixels and we have used 95 images 

as training dataset, 95 different images as test dataset and 1191 to study 

invertebrate interactions. Training and test dataset feature 4087 invertebrates 

belonging to 24 classes: these include 21 species and morphospecies; three ant 

species are further labelled to caste level (minor or major workers). For the sake 

of clarity, results are here presented with these classes summarized into seven 

super-classes (ant, cockroach, weevil, spider, larva, egg, slug) but see Table 1 in 

Supplementary Material 3 for complete results on all classes. An output example 

for a test image of this dataset is shown Figure 2.

3. Results

3.1. Network performance

Given our dataset, we choose nslice = 416 pixels and an overlap of 0.2. Each 

original image then generates 108 slices. Labels are kept for Pobject = 0.4 and 

Pimage = 0.5. We choosed an OT of 0.4.and a CT of 0.2. Details on the choice of 

values of these parameters are provided in Supplementary Material 1.

Given our hardware (detailed in Supplementary Material 1), training on 95 

images (corresponding to 10 260 slices) required about 24 h. Tests on 93 original

images (meaning 10 044 slices) required < 5 min. The presented state of the 

network shows maximal test performance and a test loss to training loss ratio of 

1.01. 

The model had a precision of 86.6%, a recall of 88.9%, and an F1-score of 87.8% 

on detailed classes. If classes are summarized into super-classes, precision, 

recall, and F1 increased to 89.6%, 91.2%, and 90.4% respectively. AP for the 

different super-classes are shown on Table 1.
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3.2. Interaction analysis

All interactions between animals are displayed on Figure 3. Such a matrix can be 

used to show the importance of intra-specific interactions. For instance, our 

example shows numerous intraspecific interactions for the ants Pheidole 

radozkowskii and Solenopsis geminata. Interspecific interactions can be shown as

an interaction network and qualified given the participants of the interaction (Fig.

4). 

The number of predators interacting with a prey on an image are shown on 

Table 2. For example, smaller ants (e.g. P. radoszkowskii, S. geminata) need to 

invest more individuals for the capture of one prey than larger ants (e.g. 

Odontomachus bauri)

4. Discussion

4.1. Time investment to apply the method

For our example, labelling (train and test datasets) took 12h of human work. This 

time can as well be reduced with the use of active learning methods(Qiu et al. 

2016). Using our method, with accurate knowledge of the imaged species, a 

dataset achieving 90% precision requires less than a day of work and is 

applicable by small research teams working on custom datasets.

4.2. Interaction and predation definition

In the current research, we assessed interactions between two individuals as the 

overlapping of bounding boxes. A source of error while studying interactions is 

the confusion between species of similar size and general morphology. The high 

number of interactions between P. radoszkowskii and S. geminata, for example, 

was an artefact mostly due to confusion between the two classes. In images 
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displaying an S. geminata attack on Metamasius larvae, 1050 of 9436 S. 

geminata were also incorrectly detected as P. radoszkowskii, resulting in the 

generation of false positives. These confusions mostly occur in complex, crowded

scenes, which are difficult to assess even for a human observer (see Figure 5). 

4.3. Robustness of the method

One problem facing deep-learning methods, especially with small datasets, is 

overfitting. Here, despite the limited amount of training data, our model was not 

overfitted, as indicated by the test loss to training loss ratio and the test 

performances. Our model is robust partly as a consequence of the slicing of the 

original image. With the slicing of original images, the model does not learn 

directly from the original images but from the slices after pre-processing (with 

our example parameters, this means a 108 times larger dataset). Furthermore, a 

vast majority of the slices show background that provides various details and 

shapes at a precise level (branches, soil particles, etc.) that could have been 

confounded with invertebrates. These details are learned by the model and 

reduce possible confusion. This effect could be associated with hard negative 

mining, which has been a successful strategy to improve neural network 

performance (e.g. Ogier Du Terrail & Jurie 2017; Sun, Wu & Hoi 2018). Data 

augmentation is also important for ensuring robustness (Godfellow et al., 2016), 

particularly with small datasets. Performances and robustness of the model 

depends on the dataset but the use of high-resolution images and slicing ensures

a relative robustness even for small datasets.

4.4. Further improvements

To reduce the risk of false positives and false negatives (especially when dealing 

with unknown species), hierarchical classification approaches could be 

developed. These methods are a known technique to improve model 
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generalisation and have been shown relevant for handling biological data 

(Redmon & Farhadi 2016; Colonna, Gama & Nakamura 2018).

In our example dataset, images were taken with short time steps and are not 

independent, leading to a possible bias in the frequency of interactions. This bias 

could be overcome by the tracking of individuals over multiple images (e.g. see 

Romerro-Ferrero et al. 2019).
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Table 1. AP per super-classes. This underlines a limitation of the use of deep 

learning with small datasets, as class imbalance can lead to poor performances 

on rare classes. See Table 1 in Supplementary Material 3 for detailed results on 

all classes.

Super-
classes

Classes Training
examples

Test examples AP (+ SD)

Ant 10 1467 1395 0.84 ± 0.29
Cockroach 3 35 31 0.18 ± 0.15
Egg 1 89 85 0.85 ± 0.00
Larva 1 296 294 0.94 ± 0.00
Slug 2 16 14 0.63 ± 0.55
Spider 6 18 14 0.64 ± 0.50

  Weevil 1 173 167  0.90 ± 0.00
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Table 2. Mean (+ SD) numbers of predators surrounding an individual sentinel 

prey (± standard variation) as detected by automated image analysis. The values

in parentheses (n) are the number of predation events recorded between the two

species. msp = morphospecies, and Na indicates cases where predator was not 

detected in interaction with the prey.

Predator Metamasius 
larva (n)

Cosmopolites 
sordidus 
carcass (n)

Cosmopolites
egg (n)

Blattidae msp1 1.05 ± 0.22 
(19)

1.00 ± 0.00 (2) Na

Camponotus atriceps 
minor

Na 1.00 ± 0.00 (6) Na

Camponotus atriceps 
major

Na 1.00 ± 0.00 (1) Na

Nylanderia msp1 1.00 ± 0.00 
(1)

1.00 ± 0.00 (3) Na

Odontomachus bauri 1.16 ± 0.37 
(6)

1.00 ± 0.00 (10) Na

Pheidole radoszowskii 
minor

3.03 ± 2.25 
(153)

1.03 ± 0.16 (35) Na

Pheidole radoszowskii 
major

1.37 ±  0.61 
(45)

1.00 ± 0.00 (2) Na

Solenopsis geminata 
minor

3.47 ±  2.05 
(120)

1.94 ± 0.46 (347) 1.00 ± 0.00 (2)
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Figure 1. Overview of the proposed method.
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Figure 2. Output of the pipeline for an image of the test dataset. Values on x 

and y axes are pixel coordinates. 
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Figure 3. Interaction matrix showing interactions on our example dataset.301
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Figure 4.  Trophic and non-trophic interaction network between species of the 
observed community.
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Figure 5. Example of complex situation leading to misclassifications, FP and FN. 

Some minor worker of Solenepsis geminata were confused with minor worker of 

Pheidole radoszkowskii, another species of the Myrmicinae subfamily and of 

similar size.
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