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Abstract. We provide a general framework for deriving Hamiltonian electromagnetic

gyrofluid models from a Hamiltonian system of gyrokinetic equations. The presented

procedure permits to derive gyrofluid models for an arbitrary number of moments

with respect to the velocity coordinate parallel to an equilibrium magnetic field. The

resulting gyrofluid models account, in particular, for finite Larmor radius effects,

equilibrium temperature anisotropies and fluctuations of the magnetic field in the

direction parallel to the equilibrium magnetic field, thus generalizing Hamiltonian

gyrofluid models previously presented in the literature. The Hamiltonian reduction

procedure leading from the parent gyrokinetic model to the gyrofluid models is

formulated in two stages. In the first step, after having shown that the parent

gyrokinetic system indeed posseses a Hamiltonian structure, a Hamiltonian system

is derived, by means of a Poisson sub-algebra argument, which describes the evolution

of the perturbation of the gyrocenter distribution function, averaged with respect to

the magnetic moment coordinate. The second stage brings from the latter model

to the gyrofluid models by means of a closure relation, applicable at an arbitrary

order in the moment hierarchy, which guarantees the preservation of a Hamiltonian

structure. Casimir invariants of the noncanonical Poisson brackets of the gyrofluid

models are provided. It is also shown how, in the two-dimensional limit, the gyrofluid

model equations can be cast in the form of advection equations for Lagrangian

invariants transported by generalized incompressible velocity fields, thus extending

results obtained for previous Hamiltonian gyrofluid and drift-fluid models. The

Hamiltonian reduction procedure is applied to derive a five-field gyrofluid model

evolving the first two moments for the electron species and the first three moments for

the ion species. The Casimir invariants and the Lagrangian advection formulation are

provided explicitly for the five-field model. Remarks concerning possible variants of

the procedure are discussed. As an example, it is shown how, by means of a variant of

the procedure, it is possible to derive an isothermal two-field model for kinetic Alfvén

waves including equilibrium electron temperature anisotropy effects.
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1. Introduction

Reduction from kinetic to fluid systems is a frequently adopted operation for modelling

many-particle systems, such as gases and plasmas, that can be treated as continuous

media. Indeed, fluid systems possess the advantage that the corresponding dynamical

variables, i.e. the fluid moments, depend on a reduced number of coordinates,

with respect to the dynamical variables of the original kinetic models, consisting of

distribution functions. This makes fluid models in general more amenable to analytical

treatments, with respect to kinetic models, and also less demanding in terms of

computational resources required for numerical integration. Clearly, due to the loss

of information occurring in the reduction procedure, the drawback of fluid models is

their inability in describing, for instance, phenomena such as wave-particle interactions

in plasmas. When an accurate description of such phenomena is not prior, however, fluid

models provide an effective alternative to the more complete kinetic models. In most

cases, the starting point in reductions from kinetic to fluid systems is a kinetic model (e.g.

Vlasov-Maxwell or Vlasov-Poisson) which contains partial differential equations ∂tf = F

evolving one-particle distribution functions of the form f(x1, · · · , xm, v1, · · · vn, t), with

1 ≤ m,n ≤ 3. The coordinates (x1, · · · , xm) ∈ Rm indicate a position in space, whereas

(v1, · · · , vn) ∈ Rn indicate a set of coordinates in velocity space and t ∈ R indicates time.

The evolution operator F is, in general an integro-differential operator depending on

x1, · · · , xm, v1, · · · , vn, t, on f and, possibly, on further dynamical variables that might

be present in the system (e.g. electromagnetic fields in the case of the Vlasov-Maxwell

system). The value of the function f(x1, · · · , xm, v1, · · · vn, t) represents the probability

density of finding a particle at position (v1, · · · , vn) in the velocity space, with spatial

coordinates (x1, · · · , xm) at time t. The reduction consists of deriving, from the kinetic

model, a fluid model evolving in time a finite set P = {fi1,··· ,in(x1, · · · , xm, t) : 0 ≤

ij ≤ Nj for j = 1, · · · , n}, of (fluid) moments fi1,··· ,in , where N1, · · · ,Nn are non-

negative integers determining the number of moments retained in the fluid model.

The fluid moments thus only depend on a reduced number of coordinates (spatial
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coordinates and time) and are typically obtained by integrating, in velocity space, the

distribution function multiplied by a polynomial in the velocity coordinates. Upon

choosing a basis of the form P1(v1), · · · ,Pn(vn) for the polynomials in velocity space,

the generic moment fi1,··· ,in(x1, · · · , xm, t), with respect to the chosen basis, can be

defined as fi1,··· ,in(x1, · · · , xm, t) =
∫
dv
∏n

j=1Pj
ij(vj)f(x1, · · · , xm, v1, · · · , vn, t), where

dv indicates the volume element in velocity space. One of the main difficulties in the

reduction procedure, as is well known, lies in the fact that the evolution equation for a

moment fi1,··· ,in ∈ P, (which, according to the ordinary procedure, is obtained from the

kinetic equation ∂tf = F upon multiplying both sides of the equation by
∏n

j=1Pj
ij(vj)

and integrating over velocity space), is of the form ∂tfi1,··· ,in = Gi1,··· ,in , where the

evolution operator Gi1,··· ,in can depend also on a (possibly infinite) number of moments

fj1,··· ,jn not belonging to P because, for some k, jk > Nk.

This leads to a closure problem, which consists of imposing, for all moments fj1,··· ,jn

appearing in the evolution operators Gi1,··· ,in but not belonging to P, relations of the

form fj1,··· ,jn = Pj1,··· ,jn , where Pj1,··· ,jn is a set of operators depending only on the

moments belonging to P. In this way, the evolution operators Gi1,··· ,in only depend on

the moments fi1,··· ,in ∈ P and the resulting system is closed. Clearly, the choice of the

closure operators Pj1,··· ,jn is crucial in determining the dynamical properties of the fluid

system.

In the physics of strongly magnetized plasmas, one of the most commonly adopted

kinetic theories is the so called gyrokinetic theory (see, e.g. Refs.[1, 2]). A large number

of gyrokinetic models have been derived, with various assumptions depending on specific

applications. The gyrokinetic model considered in this manuscript, which was derived

in Ref. [3], belongs to the class of so-called δf gyrokinetic models, which assume

the distribution functions to be close to equilibrium ones. The model describes the

evolution of the first order (according to a prescribed ordering) perturbations of the

equilibrium distribution functions for each particle species. In particular, the model can

be formulated as a system of evolution equations for the perturbations of the gyrocenter
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distribution functions f̃s(x1, x2, x3, v‖, µ0s, t), corresponding to the case m = 3, n = 2

of the general situation described above. Such evolution equations are valid only to

a certain order (for instance they neglect terms which are higher than quadratic in

the small perturbations). The coordinates in velocity space are denoted as v‖ and

µs and represent the gyrocenter velocity coordinate along the equilibrium magnetic

field and the adiabatic invariant related to the species s. In principle, space and

velocity coordinates of the gyrocenter distribution functions are obtained by means

of a near-identity transformation from the guiding-center coordinates (see, e.g. Ref.

[4]). However, for the perturbation f̃s, it is required to consider, for each coordinate,

only the leading order term in this transformation. In particular, only the leading order

term µ0s, corresponding to the magnetic moment in the presence of the unperturbed

magnetic field, contributes in the expression for the adiabatic invariant µs. The higher

order terms indeed yield negligible contributions, in the asymptotic regime of validity of

the model. δf gyrokinetic equations are evolution equations of the form ∂tf̃s = Fs, where

Fs are operators, associated with the particle species s, that depend on f̃s (and possibly

on electromagnetic fields, if these are independent dynamical variables of the system,

satisfying their own evolution equations). A fluid reduction problem, as above described,

emerges, when one intends to obtain, from the gyrokinetic equations ∂tf̃s = Fs, a

gyrofluid [4] system, that is a closed system of equations of the form ∂tPi1,i2s = Gi1,i2s ,

with Pi1,i2s(x1, x2, x3, t) =
∫
dvP i11 (v‖)P i22 (µs)f̃s(x1, x2, x3, v‖, µs, t), for 0 ≤ i1 ≤ N1s ,

0 ≤ i2 ≤ N2s , with non-negative integers N1s , N2s . We remark that, due to the presence

of the so called gyroaverage operators, which involve all powers of the magnetic moment

coordinate µs in the parent gyrokinetic system, the evolution operators Gi1,i2 depend

on an infinity of moments with respect to the µs coordinate, for a given basis.

In the plasma physics literature, various approaches to the closure problem of

gyrofluid models (also outside the δf limit) have been adopted. In Refs. [5, 6, 7, 8, 9],

electrostatic and electromagnetic gyrofluid models have been derived, adopting closure

relations such that the dispersion relations obtained from the linearized gyrofluid
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models agree with those of the linearized gyrokinetic parent equations. Thanks to this

approach, the phenomenon of Landau damping, which requires a kinetic description,

can be modelled, at least in the linear phase, also by means of gyrofluid models. In

Ref. [4], although the closure problem is not explicitly addressed, an expansion of

the perturbation of the distribution functions is assumed, which allows to determine

moments involving gyroaverage operators. Closure relations guaranteeing energy

conservation in gyrofluid models are adopted in Refs. [10, 11, 12]. In recent years,

a number of gyrofluid models were derived [13, 14, 15, 16], for which, in addition to

energy conservation, the existence of a noncanonical Hamiltonian structure was proved.

This guarantees that, in the non-dissipative limit, the intrinsic Hamiltonian character of

the original gyrokinetic dynamics is preserved. This property also turned out to be useful

for deriving invariant quantities (Casimir invariants), carrying out stability analyses [16]

and interpreting numerical simulations of magnetic reconnection by means of gyrofluid

models [17, 18, 15]. In the above References [13, 14, 15, 16], the Hamiltonian structure

of the gyrofluid models was, however, found a posteriori, once the model equations

were derived by imposing a closure relation guaranteeing energy conservation. Also,

all of the models described in such references, apply to plasmas with β � 1 (where β

indicates the ratio between the internal and the magnetic pressure in the plasma), thus

neglecting perturbations of the magnetic field along the direction of the equilibrium

magnetic field (we point out, however, the existence of a model, described in Ref. [19],

accounting for such perturbations, but for which no Hamiltonian structure is known).

Equilibrium temperature anisotropies were also neglected in those models, assuming that

the equilibrium distribution function of the parent gyrokinetic model was a Maxwellian

distribution.

The purpose of this paper is to provide a general framework for deriving gyrofluid

models from a Hamiltonian gyrokinetic system, in such a way that the resulting gyrofluid

models also possess a Hamiltonian structure. The Hamiltonian reduction that we

present, permits to derive Hamiltonian gyrofluid models evolving an arbitrary number
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of moments with respect to the (normalized) v‖ coordinate. A convenient choice of

the basis of polynomials adopted for defining the moments is the customary one,

consisting of Hermite polynomials for the (normalized) parallel velocity and of Laguerre

polynomials for the (normalized) magnetic moment. The gyrofluid models derived with

this procedure are valid also for values of β ∼ 1 and account for equilibrium temperature

anisotropies, originating from the choice of a bi-Maxwellian equilibrium distribution

function in the parent gyrokinetic model. Therefore, the Hamiltonian gyrofluid models

derived with our procedure, permit to extend the Hamiltonian gyrofluid models present

in the literature, by the inclusion of parallel magnetic perturbations and equilibrium

temperature anisotropies. These two aspects can be particularly relevant in view of the

application of gyrofluid models for the investigation of phenomena relevant to space

plasmas. In this respect, the reduced gyrofluid models presented here, could act as

a tool, complementary to more realistic (but also more complex) kinetic and fluid

models, for the investigation of basic phenomena relevant for the solar wind and the

magnetosphere. These could include, for instance, instabilities induced by equilibrium

temperature anisotropies, kinetic Alfvén wave turbulence and collisionless reconnection

in asymmetric configurations. A complete description of space plasma phenomena would

of course require much more complex models accounting for, among other aspects,

inhomogeneous equilibria and more realistic boundary conditions. Such description

lies outside the scope of the present reduced gyrofluid models.

It is important to point out that the results obtained from the different approaches

to closures mentioned above, are not necessarily in conflict among each other. In

particular, results obtained from our procedure, which emphasizes the importance of a

Hamiltonian structure, could be compatible with those obtained from more traditional

approaches based on kinetic closures or energy conservation. The Hamiltonian

derivation, nevertheless, provides additional information on the model and puts it on

more solid ground. From this point of view, the case where higher-order closures are

imposed on both coordinates in velocity space (i.e. N1s ≥ 2 and N2s ≥ 2) and for which
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a Hamiltonian theory is, at the moment, essentially absent, represents an interesting and

challenging problem, also with regard to the comparison between the results obtained by

means of the different approaches. Moreover, as above mentioned, the present procedure

permits to derive gyrofluid models in their non-dissipative limit. Dissipative terms,

possibly obtained from the linear kinetic theory, can of course be added a posteriori.

The structure of the paper is the following. In Sec. 2 we introduce and review

the main physical ingredients of the parent gyrokinetic model (which is taken from

Ref. [3]) in the non-dissipative limit. In Sec. 3 we show that such gyrokinetic model

possesses, as required, a Hamiltonian structure. In Sec. 4 we present the Hamiltonian

reduction to gyrofluid models, which is formulated in two stages. The first one brings

from the Hamiltonian parent gyrokinetic model to a reduced Hamiltonian model, still

of kinetic nature, which evolves the perturbation of the gyrocenter distribution function

averaged with respect to the magnetic moment coordinate. The parent gyrokinetic

model evolves the perturbation of the distribution function denoted, for the species

s, as f̃s(x, y, z, v‖, µ0s, t) (actually, an alternative variable g̃s(x, y, z, v‖, µ0s, t), including

perpendicular magnetic perturbations, is most often used in the paper). The model

obtained after the first stage of the reduction, on the other hand, evolves the averaged

distribution function f0s(x, y, z, v‖, t), thus reducing the dimension of the velocity

coordinate space from n = 2 to n = 1. The preservation of the Hamiltonian character

is guaranteed, in this stage, by the property that functionals of f0s form a sub-algebra

with respect to the Poisson bracket of the parent gyrokinetic model. We remark that

the first stage of the reduction implies that all moments of f̃s(x, y, z, v‖, µ0s, t) of order

i2 ≥ 1 with respect to Laguerre polynomials in a normalized µ0s coordinate are set equal

to zero. Physically, this corresponds to setting equal to zero all the moments involving

powers of the velocity component perpendicular to the equilibrium magnetic field, such

as, for instance, the perpendicular temperature and heat flux. This solves (although

rather brutally) the above mentioned closure problem with respect to moments in the

magnetic moment coordinate. The second stage leads from the reduced kinetic model
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obtained from the first stage, to the actual Hamiltonian gyrofluid models, evolving

moments f0i1s(x, y, z, t) of f0s(x, y, z, v‖, t), with respect to a basis of normalized Hermite

polynomials in the velocity coordinate v‖. The procedure of the second stage extends

results obtained in Ref. [20] and leads to a family of Hamiltonian gyrofluid models for

an arbitrary number Ns + 1 of moments, for each species. Casimir invariants of the

resulting models are presented and it is shown that, in the limit of invariance along

the direction of the equilibrium magnetic field, the model equations take the form of

advection equations for Lagrangian invariants. The result of the Hamiltonian reduction

is exemplified in Sec. 5, where a five-field Hamiltonian gyrofluid model for a plasma

consisting of two species is constructed, following the procedure described in Sec. 4.

The Casimir invariants and the two-dimensional formulation of the model in terms of

Lagrangian invariants are provided. Section 6 discusses some possible variants of the

reduction procedure, that can allow to obtain further Hamiltonian gyrofluid models.

A concrete example is discussed, which consists of a two-field model for kinetic Alfvén

waves, including corrections due to electron inertia, finite ion Larmor radius and finite

β effects as well as equilibrium temperature anisotropy. The model does not descend

directly from the reduction procedure of Sec. 4 but requires a variant of it, for it assumes

an isothermal closure. We conclude in Sec. 7. At the end of the paper we also provide

the Appendix A, where we discuss properties of the operators that permit to express

electromagnetic fields in terms of the distribution function in the parent gyrokinetic

model.

2. Parent gyrokinetic model

We consider as starting point the gyrokinetic system presented in Ref. [3] (and

corresponding to Eqs. (C58), (C66), (C67) and (C68) of such reference) in the specific

case where the plasma consists of only two species, namely electrons and (single ionized)

ions. The equilibrium distribution function is taken to be a bi-Maxwellian for both

species with no equilibrium drifts. In this limit, Eqs. (C58), (C66), (C67) and (C68) of
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Ref. [3] can be written (also with the help of Eq. (C60) of the same reference), as

∂g̃s
∂t

+
c

B0

[
J0(as)φ̃−

v‖
c
J0(as)Ã‖ + 2

µ0sB0

qs

J1(as)

as

B̃‖
B0

, g̃s

]

+ v‖
∂

∂z

(
g̃s +

qs
T0‖s

F0s

(
J0(as)φ̃−

v‖
c
J0(as)Ã‖ + 2

µ0sB0

qs

J1(as)

as

B̃‖
B0

))
= 0, (1)

∑
s

qs

∫
dWs J0(as)g̃s =

∑
s

q2
s

T0⊥s

∫
dWsF0s

(
1− J2

0 (as)
)
φ̃

−
∑
s

qs

∫
dWs 2

µ0sB0

T0⊥s

F0sJ0(as)
J1(as)

as

B̃‖
B0

, (2)

∑
s

qs

∫
dWs v‖J0(as)

(
g̃s −

qs
T0‖s

v‖
c
F0sJ0(as)Ã‖

)

= − c

4π
∇2
⊥Ã‖ +

∑
s

q2
s

ms

∫
dWsF0s

(
1− 1

Θs

v2
‖

v2
th‖s

)
(1− J2

0 (as))
Ã‖
c
, (3)

∑
s

β⊥s
n0

∫
dWs 2

µ0sB0

T0⊥s

J1(as)

as
g̃s = −

∑
s

β⊥s
n0

qs
T0⊥s

∫
dWs 2

µ0sB0

T0⊥s

F0sJ0(as)
J1(as)

as
φ̃

−

(
2 +

∑
s

β⊥s
n0

∫
dWsF0s

(
2
µ0sB0

T0⊥s

J1(as)

as

)2
)
B̃‖
B0

. (4)

Eq. (1) is a gyrokinetic equation governing the evolution of the perturbation of the

generalized gyrocenter distribution function g̃s (note the different notation for this

function with respect to Ref. [3]), whereas Eqs. (2), (3) and (4) relate electromagnetic

perturbations with the distribution functions and correspond to the quasi-neutrality

relation and to Ampère’s law in the direction parallel and perpendicular to the magnetic

equilibrium guide field, respectively.

We formulate the system over the domain {(x, y, z, v‖, µ0s, t) : −Lx ≤ x ≤

Lx,−Ly ≤ y ≤ Ly,−Lz ≤ z ≤ Lz,−∞ ≤ v‖ ≤ +∞, µ0s ≥ 0, t ≥ 0}, where x, y, z

are Cartesian coordinates indicating the spatial variables, v‖ is the velocity coordinate

parallel to an equilibrium uniform and constant guide field of amplitude B0 directed

along the z axis of the Cartesian coordinate system, µ0s is the magnetic moment

of the particle of species s (with s = e for electrons and s = i for ions) in the

equilibrium, straight and homogeneous magnetic field, in the absence of electromagnetic

perturbations. The coordinate µ0s is related to the perpendicular velocity coordinate v⊥
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by µ0s = msv
2
⊥/(2B0), with ms indicating the mass of the particle of species s. Clearly,

the coordinates µ0e and µ0i are not independent but it will be convenient to use one

or the other according to the dependent variable under consideration. We remark that

we make use of the coordinate µ0s instead of the coordinate v⊥ adopted in Ref. [3], for

it turns out to be more practical in our case, given our choice (5) for the equilibrium

distribution function. The coordinate t is the time coordinate, whereas Lx, Ly and

Lz are three positive constant determining the boundaries of the spatial domain. We

assume that the variables depending on x, y, and z satisfy periodic boundary conditions

with respect to these coordinates. In particular, we assume that such space-dependent

variables admit a Fourier series representation with respect to x, y and z. For variables

depending also on v‖ and µ0s, we assume that their values decay to zero as v‖ → ±∞ and

also as µ0s → +∞, for every s, whereas we assume that they have a smooth dependence

on x, y, z, v‖ at any time t, at µs = 0, for every s.

As above anticipated, compared to Ref. [3], we restrict our analysis to the case

where the equilibrium distribution functions F0s are bi-Maxwellians with no equilibrium

flows. Given its order of accuracy, the model requires to make use only of the leading

order term, with respect to electromagnetic perturbations or in Larmor radius expansion,

of the bi-Maxwellian equilibrium distribution functions of gyrocenter particle invariants.

In terms of the adopted coordinates v‖ and µ0s, the explicit expressions for such

distribution functions at leading order are given by

F0s(v‖, µ0s) =
(ms

2π

)3/2 n0

T
1/2
0‖s
T0⊥s

e
−
msv

2
‖

2T0‖s
−µ0sB0
T0⊥s , (5)

where n0 is the uniform equilibrium density (assumed to be identical for both species),

whereas T0‖s and T0⊥s are the uniform equilibrium temperatures for the s-th species, in

the direction parallel and perpendicular to the guide field, respectively. First order

corrections, due to electromagnetic perturbations, to the leading order distribution

functions (5) intervene in the transformation that relates the perturbation of the

gyrocenter distribution function with the perturbation of the particle distribution
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function [3].

In the system (1)-(4) the function g̃s is defined by

g̃s(x, y, z, v‖, µ0s, t) = f̃s(x, y, z, v‖, µ0s, t) +
qs
T0‖s

v‖
c
F0s(v‖, µ0s)J0(as)Ã‖(x, y, z, t), (6)

where f̃s is the perturbed distribution function for the gyrocenters of the species s, qs

is the charge of the particle of the s-th species (given that we are considering single

ionized ions we have qe = −e and qi = e, where e is the proton charge) and c is the

speed of light. The constants vth‖s =
√
T0‖s/ms, on the other hand, indicate the thermal

parallel speed associated with the species s.The field Ã‖ indicates the perturbation of

the magnetic field in the plane perpendicular to the guide field. More precisely, up to

second order terms in the perturbations, we consider a magnetic field B of the form

B(x, y, z, t) = ∇Ã‖(x, y, z, t)× ẑ + (B0 + B̃‖(x, y, z, t))ẑ, (7)

with B̃‖ indicating, on the other hand, the perturbation along the direction of the guide

field.

Resorting to the Fourier-series representation of the space-dependent variables, and

upon introducing the wave numbers kx = mπ/Lx, ky = nπ/Ly and kz = pπ/Lz for

m,n, p ∈ Z, we can introduce the standard gyroaverage operator J0. Given a field f

periodic in the spatial variables, we represent it as f(x, t) =
∑

k∈D fk(t) exp(ik · x),

where k = (kx, ky, kz) , x = (x, y, z), and D is the lattice defined by D =

{(mπ/Lx, nπ/Ly, pπ/Lz) : (m,n, p) ∈ Z3}. Clearly, in order for the system (1)-(4) to

be well defined, it is required that the equations (2)-(4) permit to express φ̃, Ã‖ and B̃‖

in terms of g̃e and g̃i. This might in principle impose conditions on some of the Fourier

components of g̃e and g̃i . This issued is discussed in the Appendix. The gyroaveraged

field J0(as)f is then defined as J0(as)f(x, t) =
∑

k∈D J0(as)fk(t) exp(ik · x), where J0 is

the zeroth order Bessel function and

as =
k⊥v⊥
ωcs

=
k⊥
ωcs

√
2µ0sB0

ms

, (8)

with k⊥ =
√
k2
x + k2

y the perpendicular wave number and ωcs = eB0/(msc) the cyclotron

frequency associated with the species s. The above definition of the gyroaverage operator
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J0 is extended in a standard and straightforward way to the other gyroaverage operators

appearing in Eqs. (1)-(4) and involving also the first order Bessel function J1.

We complete the definitions of the quantities appearing in Eqs. (1)-(4) by

specifying that φ̃ = φ̃(x, y, z, t) indicates the electrostatic potential perturbation,

dWs = dv‖(2πB0/ms)dµ0s is a volume element in velocity space and

Θs =
T0⊥s

T0‖s

, β⊥s = 8π
n0T0⊥s

B2
0

(9)

are two parameters measuring, for each species s, the equilibrium temperature

anisotropy and the ratio between perpendicular equilibrium kinetic pressure and

magnetic pressure based on the guide field, respectively. The canonical bracket [ , ],

on the other hand, is defined as [f, g] = ∂xf∂yg − ∂yf∂xg for two functions f and g.

The model (1)-(4) is derived in Ref. [3] by performing an asymptotic expansion of

the Boltzmann-Maxwell system, based on the following gyrokinetic ordering (adapted

to our notation and assumptions):

ω

ωcs
∼ ρ⊥s

L
∼ kz
k⊥
∼ U⊥
vA
∼
|Ã‖|
B0

∼
U‖
vA
∼
B̃‖
B0

∼ f̃s
F0s

� 1, (10)

k⊥ρ⊥s ∼ Θs ∼ β⊥s ∼ τ⊥s ∼ 1. (11)

In Eqs. (10)-(11) we introduced the following quantities:

ρ⊥s =
v⊥
ωcs

, vA =
B0√

4πmin0

, τ⊥s =
T0⊥s

T0⊥e
, (12)

corresponding to the gyroradius of the particle of species s, to the Alfvén speed based on

the guide field and to the ratio between the equilibrium perpendicular temperatures of

the species s and of the electron species, respectively. In Eqs. (10)-(11) we also denoted

with ω, L, U‖ and U⊥, characteristic values of the frequency of the perturbations, of a

macroscopic length scale of the system and of fluid velocities in the direction parallel to

the guide field and in the plane perpendicular to it, respectively. In Eqs. (10)-(11), kz,

k⊥, Ã‖, B̃‖, f̃s and ρ⊥s are to be intended as characteristic values of the corresponding

quantities.
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Eqs. (10)-(11) determine also the regime of validity of the model. We remark that,

apart from standard gyrokinetic assumptions such as low-frequency, strong anisotropy

of the perturbations and finite gyroradius effects, the model is valid for values of β⊥s

of order unity, which is consistent with retaining the parallel magnetic perturbations

B̃‖. Equilibrium temperature anistropy is also retained but strong anisotropies are

not allowed (Θs ∼ 1). Also, the perturbation of the gyrocenter distribution function is

assumed to be a small disturbance of the equilibrium bi-Maxwellian. The latter actually

also represents a particular choice for a spatially homogeneous distribution function

which satisfies the Vlasov equation at the lowest order according to the ordering (10)-

(11) [3]. Our simple choice of the bi-Maxwellian allows for the inclusion of equilibrium

temperature anisotropies and at the same time makes easier the comparison with

previous reduced fluid or gyrofluid models (see, e.g. Ref. [21]) that could be derived

assuming a Maxwellian distribution .

Further details about the properties of the model can be found in Ref. [3].

It is worth mentioning, at the end of this Section, that the δf gyrokinetic model

(1)-(4) can also be derived, in a way alternative to that described in Ref. [3], and which

is based on well known gyrokinetic theory, the foundations thereof, are reviewed, for

instance, in Ref. [1]. In particular, the δf gyrokinetic equation (1) can be obtained

from the gyrokinetic equation

∂fs
∂t

+ Ẋs ·
∂fs
∂Xs

+ U̇s
∂fs
∂Us

= 0, (13)

where the dot indicate time derivatives along a gyrocenter orbit and fs = fs(Xs, Us, µs, t)

is the full gyrocenter distribution function for the species s. The variables Xs, Us and

µs are gyrocenter variables obtained by means of near-identity transformations from

the guiding center variables adopted for the unperturbed equilibrium state. These

transformations are given explicitly, for instance, in Ref. [4]. In particular, the adiabatic

invariant µs does not evolve in time (i.e. µ̇s = 0), whereas the evolution of Xs and Us
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is governed by [4]

Ẋs = Usẑ +
c

B0

ẑ ×∇

(
J0(as)φ̃(Xs, t)−

Us
c
J0(as)Ã‖(Xs, t) + 2

µ0sB0

qs

J1(as)

as

B̃‖
B0

(Xs, t)

)
,

(14)

U̇s = − qs
msc

J0(as)
∂Ã‖
∂t

(Xs, t)−
qs
ms

(
1

B0

[
J0(as)Ã‖(Xs, t), J0(as)φ̃(Xs, t)

+2
µ0sB0

qs

J1(as)

as

B̃‖
B0

(Xs, t)

]
+

∂

∂Zs

(
J0(as)φ̃(Xs, t) + 2

µ0sB0

qs

J1(as)

as

B̃‖
B0

(Xs, t)

))
,

(15)

where spatial derivatives are taken with respect to the coordinates Xs. Upon inserting

into Eq. (13) the expressions for Ẋs and U̇s given by Eqs. (14) and (15) one obtains a

gyrokinetic equation in a fixed Eulerian frame of coordinates. In the resulting equation

one can insert the expression for the gyrocenter distribution function descending from

the δf approximation, i.e. fs = F0s(Us, µs) + f̃s(Xs, Us, µs, t). If one takes for the

function F0s the expression for the bi-Maxwellian given in Eq. (5) and applies the

ordering (10)-(11), one obtains namely Eq. (1) as leading order evolution equation for

f̃s. We recall that, up to higher order terms negligible in this model, the expression for

the adiabatic invariant µs is given by [3, 4]

µs = µ0s − 2µ0s
J1(as)

as

B̃‖
B0

(X0s, t) +
qs
B0

(
eik·ρ⊥s − J0(as)

) (
φ̃(X0s, t)−

v‖
c
Ã‖(X0s, t)

)
.

(16)

where ρ⊥s = (1/ωcs)(ẑ × v), with v = vxx̂+ vyŷ + vz ẑ, and X0s = x− ρ⊥s is the vector

indicating the guiding center position related to the species s.

3. Hamiltonian formulation of the parent gyrokinetic model

In this Section we present the Hamiltonian structure of the gyrokinetic model (1)-(4).

Such structure is inherited from the Hamiltonian character of gyrocenter dynamics (see,

e.g. Ref. [1]).

We recall that a dynamical system possesses a Hamiltonian structure (see, e.g.

Refs. [22, 23]) if it can be cast in the following form:

∂χi
∂t

= {χi, H}, i = 1, · · · , N. (17)
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In Eq. (17) χ1, · · · , χN is a set of suitable dynamical variables (with N positive

integer) possibly depending on coordinates other than time. H = H(χ1, ..., χN) is

the Hamiltonian functional (corresponding to the total energy of the system, conserved

by the dynamics) and { , } is a Poisson bracket, i.e. a bilinear antisymmetric operation

satisfying the Leibniz and the Jacobi identity.

The Hamiltonian structure of the model (1)-(4) turns out to be analogous to that

of some ”δf” drift-kinetic models [24, 25, 26, 20]. In particular, physical intuition

suggests that, in terms of the two dynamical variables χ1 = g̃e and χ2 = g̃i, a candidate

Hamiltonian functional is given by

H(g̃e, g̃i) =
1

2

∑
s

∫
d3xdWs

(
T0‖s

g̃2
s

F0s

+qsg̃s

(
J0(as)φ̃−

v‖
c
J0(as)Ã‖ + 2

µ0sB0

qs

J1(as)

as

B̃‖
B0

))
, (18)

which can be shown, by direct computation, to be a quantity conserved by the dynamics.

In terms of the actual gyrocenter perturbed distribution functions f̃s, the Hamiltonian

(18) takes the form

H(f̃e, f̃i) =
1

2

∑
s

∫
d3xdWs

(
T0‖s

f̃ 2
s

F0s

+qsf̃s

(
J0(as)φ̃+

v‖
c
J0(as)Ã‖ + 2

µ0sB0

qs

J1(as)

as

B̃‖
B0

))
, (19)

which is more perspicuous from the physical point of view. The first term on the

right-hand side of Eq. (19) corresponds to the internal plasma free energy, whereas

the three remaining contributions on the right-hand side, with the help of Eqs. (2)-

(4), yield the electromagnetic energy, with contributions coming from the polarization

and magnetization effects. The candidate Hamiltonian functional (19) represents then

the total energy of the system and generalizes the Hamiltonian functionals of Refs.

[24, 25, 26, 20] by the inclusion of finite Larmor radius effects, parallel magnetic

perturbations and equilibrium temperature anisotropy.

Analogy with Hamiltonian drift-kinetic models suggests that the Poisson bracket,
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expressed in terms of the variables g̃e and g̃i, on the other hand, be given by

{F,G} = −
∑
s

∫
d3xdWs

(
c

B0qs
g̃s[Fg̃s , Gg̃s ] +

v‖
T0‖s

F0sFg̃s
∂Gg̃s

∂z

)
. (20)

The Poisson bracket (20) is the sum of two independent Poisson brackets, associated

with the two particle species. The subscripts on the functionals F and G indicate

functional derivatives so that, for instance, Fg̃s = δF/δg̃s.

Poisson brackets of the same form were presented in Refs. [24, 25, 26, 20], therefore

we do not provide here a verification of the Poisson bracket properties, and in particular

of the Jacobi identity.

We remark in particular that, the finite Larmor radius effects, as well as the parallel

magnetic perturbations and temperature anisotropy effects present in this model, but

not considered in Refs. [24, 25, 26, 20], intervene in the Hamiltonian, not in the Poisson

bracket.

Direct computation shows that the Hamiltonian (18) and the Poisson bracket (20)

indeed yield, using Eq. (17), the model equations (1). In order to see this it is convenient

to note that, from Eq. (18) one has

Hg̃s = T0‖s

g̃s
F0s

+ qs

(
J0(as)φ̃−

v‖
c
J0(as)Ã‖ +

2µ0sB0

qs

J1(as)

as

B̃‖
B0

)
. (21)

This relation follows from the property∫
d3xdWs f(x, v‖, µ0s, t)Jiss′g(x, v‖, µs′ , t)

=

∫
d3xdWs′ g(x, v‖, µs′ , t)Jis′sf(x, v‖, µ0s, t), (22)

for two functions f and g and with i = 1, 2, 3, s = e, i and s′ = e, i. The operators

J1ss′
,J2ss′

,J3ss′
are defined as

J1ss′
f = qsJ0(as)Lφs′f, J2ss′

f = −qs
v‖
c
J0(as)LAs′f,

J3ss′
f = 2µ0s

J1(as)

as
LBs′f (23)

for a function f . We indicated with Lφs , LAs and LBs the operators allowing to express

φ̃, Ã‖ and B̃‖, respectively, in terms of g̃e and g̃i and which are defined in Eqs. (A.17),

(A.24) and (A.18), respectively.
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4. Hamiltonian reduction to gyrofluid models

In this Section, we carry out a reduction of the parent model (1)-(4) leading to gyrofluid

models evolving an arbitrary number of moments. The reduction is such to preserve

the existence of a Hamiltonian structure in the resulting gyrofluid models and can be

carried out in two steps. A first Hamiltonian reduction, described in Sec. 4.1, leads

from the parent model (1)-(4) to a Hamiltonian model evolving the perturbation of the

gyrocenter distribution function averaged with respect to the magnetic moment. The

second step leads from the latter model to the Hamiltonian gyrofluid models.

4.1. First Hamiltonian reduction: from gyrocenter distribution functions to averaged

distribution functions

We begin the procedure by assuming that the following decomposition is valid:

g̃s(x, v‖, µ0s, t) = feqs(µ0s)
+∞∑
n=0

Ln

(
µ0sB0

T0⊥s

)
gns(x, v‖, t), (24)

where the Ln, with non-negative integer n, are the Laguerre polynomials and

feqs(µ0s) =
ms

2πT0⊥s

e
−µ0sB0
T0⊥s . (25)

Due to the orthogonality of Laguerre polynomials, we have the relations

gls(x, v‖, t) =
2πB0

ms

∫
dµ0s Ll

(
µ0sB0

T0⊥s

)
g̃s(x, v‖, µ0s, t), (26)

for any non-negative integer l. The functions gls correspond, for each species s,

to moments of the generalized distribution function g̃s, with respect to Laguerre

polynomials in the normalized squared perpendicular velocity µ0sB0/T0⊥s = v2
⊥/v

2
th⊥s

,

where vth⊥s = (T0⊥s/ms)
1/2 is the thermal perpendicular velocity associated with the

species s.

We can also transfer the decomposition (24) to the gyrocenter distribution function

f̃s in the following way:

f̃s(x, v‖, µ0s, t) = feqs(µ0s)
+∞∑
n=0

Ln

(
µ0sB0

T0⊥s

)
fns(x, v‖, t). (27)
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Equation (24) can then be written as

g̃s(x, v‖, µ0s, t) = feqs(µ0s)

(
+∞∑
n=0

Ln

(
µ0sB0

T0⊥s

)
fns(x, v‖, t) +

qs
T0‖s

v‖
c
Feqs(v‖)J0(as)Ã‖(x, t)

)
(28)

= feqs(µ0s)
+∞∑
n=0

Ln

(
µ0sB0

T0⊥s

)fns(x, v‖, t) +
qs
T0‖s

v‖
c
Feqs(v‖)

e−
k2⊥ρ

2
th⊥s
2

n!

(
k2
⊥ρ

2
th⊥s

2

)n
Ã‖(x, t)

 ,

where

Feqs(v‖) = n0

√
ms

2πT0‖s

e
−
msv

2
‖

2T0‖s . (29)

Note that Feqs(v‖)feqs(µ0s) = F0s(v‖, µ0s). We also remark that, for the last step of Eq.

(28), we made use of the relation [27]

J0(as) = J0

(
k⊥ρth⊥s

√
2µ0sB0

T0⊥s

)
= e−

k2⊥ρ
2
th⊥s
2

+∞∑
n=0

1

n!
Ln

(
µ0sB0

T0⊥s

)(
k2
⊥ρ

2
th⊥s

2

)n
, (30)

with ρth⊥s =
√
T0⊥s/ms/ωcs indicating the perpendicular thermal radius for the species

s.

Upon introducing the gyroverage operators

G1ns =
2πB0

ms

∫
dµ0s feqs(µ0s)Ln

(
µ0sB0

T0⊥s

)
J0(as), (31)

G2ns =
2πB0

ms

∫
dµ0s feqs(µ0s)Ln

(
µ0sB0

T0⊥s

)
µ0sB0

T0⊥s

J1(as)

as
, n = 0, 1, 2, · · · , (32)

from Eqs. (26) and (28) it also follows that

gls = fls +
qs
T0‖s

v‖
c
Feqs(v‖)G1lsÃ‖. (33)

Applying the expansion (24), the Hamiltonian (18) can be transformed in terms of the

new variables gls as

H(g0e , g1e , · · · , g0i , g1i , · · · ) =
1

2

∑
s

+∞∑
n=0

∫
d3xdv‖

(
T0‖s

g2
ns

Feqs

+qsgns

(
G1nsφ̃−

v‖
c
G1nsÃ‖ + 2

T0⊥s

qs
G2ns

B̃‖
B0

))
. (34)
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As far as the Poisson bracket (20) is concerned, we first remark that, by the chain

rule for functional derivatives, one has the relation

Fg̃s =
+∞∑
n=0

Ln

(
µ0sB0

T0⊥s

)
F̄gns , (35)

for functionals F and F̄ such that F (g̃s) = F̄ (g0s , g1s , · · · ).

With the help of the relation (35), the Poisson bracket (20) can be expressed in

terms of the new variables in the following way:

{F,G} = −
∑
s

∫
d3xdv‖

 c

B0qs

+∞∑
n,n′=0

n′+n∑
p=|n′−n|

Cnn′pgps [Fgns , Ggn′s
]

+
v‖
T0‖s

Feqs

+∞∑
n=0

Fgns
∂

∂z
Ggns

)
(36)

where the constants Cnn′p permit to express a product of Laguerre polynomials as a

linear combination of such polynomials in the following way:

Ln(x)Ln′(x) =
n′+n∑

p=|n′−n|

Cnn′pLp(x). (37)

The expressions for the constants Cnn′p are derived, for instance, in Ref. [28], and are

given by

Cnn′p =

(
−1

2

)n+n′−p∑
m

(n+ n′ −m)!

(n−m)!(n′ −m)!(2m− n− n′ + p)!(n+ n′ − p−m)!
, (38)

where the sum over the integers m is defined by requiring that none of the arguments

of the factorials be negative.

We perform a reduction on the expansion (24) by imposing that

fls = 0, for l ≥ 1, s = e, i. (39)

In terms of the generalized distribution functions gls , the reduction (39) corresponds to

gls =
qs
T0‖s

v‖
c
Feqs(v‖)G1lsÃ‖, for l ≥ 1, s = e, i. (40)

The condition (39) amounts to setting to zero all moments of the gyrocenter

distribution function, involving finite powers of the perpendicular velocity. For instance,
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this amounts to setting equal to zero the gyrofluid perpendicular temperature and

perpendicular heat flux fluctuations. Although this is a rather strong restriction, it

could be suitable, for instance, to plasmas for which the evolution of the perpendicular

temperature fluctuations (in terms of particle moments) is adiabatic.

As a consequence of the imposed conditions (40), the Hamiltonian (34) becomes

H(g0e , g0i) =
1

2

∑
s

∫
d3xdv‖

(
T0‖s

g0s
2

Feqs

+qsg0s

(
G10sφ̃−

v‖
c
G10sÃ‖ + 2

T0⊥s

qs
G20s

B̃‖
B0

))
. (41)

On the other hand, the relations (2), (3) and (4), after the truncation, read

∑
s

qs G10s

∫
dv‖ g0s = n0

∑
s

(
q2
s

T0⊥s

(1− Γ0(bs))φ̃− qs(Γ0(bs)− Γ1(bs))
B̃‖
B0

)
, (42)

∑
s

(
qsG10s

∫
dv‖ v‖g0s −

q2
sn0

msc
G2

10sÃ‖

)
= − c

4π
∇2
⊥Ã‖ +

∑
s

q2
sn0

msc

(
1− 1

Θs

)
(1− Γ0(bs))Ã‖, (43)

∑
s

2
β⊥s
n0

G20s

∫
dv‖ g0s = −

∑
s

β⊥s
qs
T0⊥s

(Γ0(bs)− Γ1(bs))φ̃

−

(
2 + 2

∑
s

β⊥s (Γ0(bs)− Γ1(bs))

)
B̃‖
B0

, (44)

where Γn(bs) = In(bs) exp(−bs), with In indicating the modified Bessel function of

order n and bs = k2
⊥ρ

2
th⊥s

. In order to derive Eq. (43), use was made of the relation∑+∞
n=0 G2

1ns = Γ0(bs). Following the arguments provided in the Appendix, it is possible to

find conditions for expressing φ̃, Ã‖ and B̃‖ in terms of the g0s . With the electromagnetic

fields expressed in terms of the generalized distribution functions g0s , one sees that the

Hamiltonian (41) effectively only depends on g0e and g0i . For functionals F and G

which, as the Hamiltonian (41), only depend on g0s , the Poisson bracket (36) reduces to

{F,G} = −
∑
s

∫
d3xdv‖

(
c

B0qs
g0s [Fg0s , Gg0s ]−

v‖
T0‖s

FeqsFg0s
∂

∂z
Gg0s

)
. (45)

Because {F,G} is also a functional of the g0s only, the functionals of g0i and g0e form a

sub-algebra with respect to the Poisson bracket (36). This guarantees that the reduced
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system preserves a Hamiltonian structure (in particular, the bracket (45) satisfies the

properties of a Poisson bracket), and the evolution of the observables of the system is

governed by the Hamiltonian (41) and the Poisson bracket (45). Following Eq. (17),

the evolution of the averaged distribution functions g0s , for a species s, is given by

∂g0s

∂t
+

c

B0

[
G10sφ̃−

v‖
c
G10sÃ‖ + 2

T0⊥s

qs
G20s

B̃‖
B0

, g0s

]

+ v‖
∂

∂z

(
g0s +

qs
T0‖s

Feqs

(
G10sφ̃−

v‖
c
G10sÃ‖ + 2

T0⊥s

qs
G20s

B̃‖
B0

))
= 0. (46)

Eq. (46), complemented by Eqs. (42)-(44), provides a system that governs the evolution

of the gyrocenter distribution functions averaged over the magnetic moment (recall that,

from Eqs. (6) and (26), we have g0s = (2πB0/ms)
∫
dµ0s(f̃s + (qs/T0‖s)(v‖/c)F0sJ0Ã‖))

in such a way that the Hamiltonian character of the parent (not averaged) gyrokinetic

model is preserved. This generalizes previous Hamiltonian models for drift-kinetic

equations [24, 20], by taking into account parallel magnetic fluctuations, finite Larmor

radius effects and equilibrium temperature anisotropies. From it, one can also obtain,

in the appropriate collisionless limit, the hybrid fluid-kinetic model of Ref. [29].

4.2. Second Hamiltonian reduction: from averaged distribution functions to gyrofluid

moments

In this second stage, we consider as parent model the Hamiltonian model derived in

Sec. 4.1 and consisting of Eqs. (46), (42)-(44). It turns out that, in order to obtain,

from such model, a Hamiltonian gyrofluid model, it is possible to extend the procedure

adopted in Ref. [20], which we will refer to in the following. As a result, a class of

Hamiltonian gyrofluid models for moments of arbitrary order in the parallel velocity

coordinate, will be derived.

We begin by assuming that the following decomposition of the functions g0s in
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terms of Hermite polynomials is valid:

g0s(x, v‖, t) =
+∞∑
n=0

g0ns(x, t)√
n!

Hn

(
v‖
vth‖s

)
Feqs(v‖),

=
+∞∑
n=0

f0ns(x, t)√
n!

Hn

(
v‖
vth‖s

)
Feqs(v‖) +

qs
T0‖s

v‖
c
Feqs(v‖)G10sÃ‖(x, t). (47)

In Eq. (47), Hn indicates the Hermite polynomial of order n, with n a non-negative

integer. The functions g0ns and f0ns are then proportional to moments, with respect

to the Hermite polynomials in the normalized parallel velocity coordinate v‖/vth‖s ,

of the averaged distribution functions g0s and f0s , respectively. Indeed, due to the

orthogonality relation of Hermite polynomials, one has

g0ns =
1

n0

√
n!

∫
dv‖Hng0s , f0ns =

1

n0

√
n!

∫
dv‖Hnf0s . (48)

From the definition (47), it follows that g0ns = f0ns for n 6= 1, and g01s = f01s +

(qs/T0‖s)(vth‖s/c)G10sÃ‖, where we also made use of the fact that H1(v‖/vth‖s) = v‖/vth‖s .

In order to exemplify the relation between the moments g0ns and the usually adopted

gyrofluid moments, we specify that the following relations hold:

g00s =
Ñs

n0

, g01s =
Ũs
vth‖s

+
qs

msvth‖sc
G10sÃ‖, (49)

g02s =
T̃‖s√

2msv2
th‖s

, g03s =

√
2

3

Q̃‖s
n0T0‖svth‖s

, (50)

where Ñs =
∫
dv‖f0s , Ũs =

∫
dv‖v‖f0s/n0, T̃‖s = (msv

2
th‖s

/n0)
∫
dv‖(v

2
‖/v

2
th‖s
−

1)f0s , Q̃‖s = (msv
3
th‖s

/2)
∫
dv‖(v

3
‖/v

3
th‖s
− 3v‖/vth‖s)f0s are the fluctuations of the

gyrofluid density, parallel velocity, parallel temperature and parallel heat flux,

respectively, for the species s.

From the relation (48) and from Eq. (46), one can obtain the following hierarchy
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of evolution equations for the functions g0ns :

∂g0ns

∂t
+

c

B0

[
G10sφ̃+

2T0⊥s

qs
G20s

B̃‖
B0

, g0ns

]
−
√
n+ 1

vth‖s
B0

[G10sÃ‖, g0n+1s ]−
√
n
vth‖s
B0

[G10sÃ‖, g0n−1s ]

+
√
n+ 1vth‖s

∂g0n+1s

∂z
+
√
nvth‖s

∂g0n−1s

∂z
+ δn1

qs
T0‖s

vth‖s
∂

∂z

(
G10sφ̃+

2T0⊥s

qs
G20s

B̃‖
B0

)
(51)

− (δn0 + δn2)
√
n!

qs
T0‖s

v2
th‖s

c

∂

∂z
G10sÃ‖ = 0, n = 0, 1, 2, · · · ,

where use was made of the relation xHn(x) = Hn+1(x)+nHn−1(x). These equations are

complemented by the relations (42)-(44) for the electromagnetic fields which, in terms

of the moments g0ns , become∑
s

qs G10sg00s =
∑
s

(
q2
s

T0⊥s

(1− Γ0(bs))φ̃− qs(Γ0(bs)− Γ1(bs))
B̃‖
B0

)
, (52)

∑
s

G10s

(
n0qsvth‖sg01s −

q2
sn0

msc
G10sÃ‖

)
= − c

4π
∇2
⊥Ã‖ +

∑
s

q2
sn0

msc

(
1− 1

Θs

)
(1− Γ0(bs))Ã‖, (53)∑

s

2β⊥sG20sg00s = −
∑
s

β⊥s
qs
T0⊥s

(Γ0(bs)− Γ1(bs))φ̃

−

(
2 + 2

∑
s

β⊥s (Γ0(bs)− Γ1(bs))

)
B̃‖
B0

, (54)

From Eq. (51) one can see that the evolution equation of g0ns , for a generic n, depends

on the higher order moment g0n+1s . The hierarchy is thus not closed and some additional

constraints are required if one intends to reduce the infinite system, given by Eqs. (51),

to a closed system with a finite number of equations. However, we can first remark that,

by a simple extension of the arguments provided in the Appendix, when the relations

(52)-(54) can be inverted, one can write

φ̃ =
∑
s

Lφsg00s , Ã‖ =
∑
s

LAsg01s , B̃‖ =
∑
s

LBsg00s , (55)

for appropriate linear symmetric operators Lφs , LAs and LBs . When this property is

taken into account, one sees that the system (51) falls into the framework treated in

Ref. [20] (more precisely, Eq. (51) has to be compared with Eq. (26) of Ref. [20]).
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In such reference, it was shown that infinite hierarchy of the type of Eq. (51) can be

truncated at an arbitrary order, while preserving the Hamiltonian structure. This is

accomplished by imposing

g0Ns+1s = αsg0Nss , s = e, i, (56)

where Ne,i are arbitrary positive integers that fix the desired order of truncation for

each species, and αe,i are real constants.

The truncated system of evolution equations resulting from imposing the closures

(56) to the hierarchy (51), can then be written as

∂g0ms

∂t
+

c

B0

[
G10sφ̃+

2T0⊥s

qs
G20s

B̃‖
B0

, g0ms

]
−
vth‖s
B0

[G10sÃ‖,Wsmng0ns ]

+ vth‖s
∂

∂z
Wsmng0ns + δm1vth‖s

qs
T0‖s

∂

∂z

(
G10sφ̃+

2T0⊥s

qs
G20s

B̃‖
B0

)
(57)

−
√
m!(δm0 + δm2)v2

th‖s

qs
T0‖sc

∂

∂z
G10sÃ‖ = 0, 0 ≤ m ≤ Ns,

where the sum over the repeated index n is understood and Wsmn indicate the elements

of a pair of symmetric matrices Ws, for s = e, i, defined as

Wsmn =
√
mδm,n+1 +

√
m+ 1δm,n−1 + αs

√
Ns + 1δm,Nsδn,Ns , . (58)

for 0 ≤ m ≤ Ns, 0 ≤ n ≤ Ns and s = e, i. We establish as a convention in this paper,

that in the expression Amn for the element of a matrix A, the first index m refers to the

row of the matrix, and the second index n to the column.

As described in Ref. [20], it is convenient, for a system of the type (57), to introduce,

for each species, the alternative set of dynamical variables Gis defined as

Gis(x, t) = UTsimg0ms(x, t), 0 ≤ is ≤ Ns, s = e, i, (59)

In Eq. (59) Usim indicate the elements of the pair of orthogonal matrices Us such that, for

each species s, UTs WsUs = Λs, where Λs = diag(λ0s , λ1s , · · · , λNs) with λ0s , λ1s , · · · , λNs

the eigenvalues of the matrix Ws. In terms of such variables, in fact, the Poisson bracket
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for the truncated Hamiltonian system (57) (complemented by the relations (55)) takes

the remarkably simpler form [20]

{F,G} = −
∑
s

Ns∑
i=0

(
c

qsB0n0v(is)

∫
d3xGis

[
δF

δGis

,
δG

δGis

]
+

vth‖s
T0‖sn0

λis

∫
d3x

δF

δGis

∂

∂z

δG

δGis

)
,

(60)

where the constants v(is) are determined by imposing that the eigenvectors of the

matrices Us be orthonormal. In particular we notice that, for each species s, the matrices

Us have the form

Us =


v(0s) v(1s) · · · · · · v(Ns)

λ0sv(0s) λ1sv(1s) · · · · · · λNsv(Ns)
λ20s−1
√

2
v(0s)

λ21s−1
√

2
v(1s) · · · · · ·

λ2Ns−1
√

2
v(Ns)

. . · · · · · · .

. . · · · · · · .

 , (61)

We notice also that, in terms of the variables Gis , Eqs. (57) take the simpler form

∂Gis

∂t
+

c

B0

[
G10sφ̃+

2T0⊥s

qs
G20s

B̃‖
B0

− λis
vth‖s
c
G10sÃ‖, Gis

]
+ vth‖sλis

∂Gis

∂z

+ vth‖s
√
m!UT

sim

(
δm1

qs
T0‖s

∂

∂z

(
G10sφ̃+

2T0⊥s

qs
G20s

B̃‖
B0

)
− vth‖s(δm0 + δm2)

qs
T0‖sc

∂

∂z
G10sÃ‖

)
= 0,

(62)

for 0 ≤ i ≤ Ns and s = e, i. In the two-dimensional (2D) limit in which the dependence

on the z coordinate is suppressed, the equations of motion (62) reduce, for a given

species s, to

∂Gis

∂t
+ ṽis · ∇Gis = 0, 0 ≤ i ≤ Ns, (63)

where

ṽis = ẑ ×∇

(
G10sφ̃+

2T0⊥s

qs
G20s

B̃‖
B0

− λis
vth‖s
c
G10sÃ‖

)
. (64)

This shows that, in the 2D limit, the system (57) can be cast in the form of advection

equations for the Lagrangian invariants Gis , transported by the incompressible velocity

fields ṽis defined in Eq. (64).

The Hamiltonian for the system (57), (52)-(54), on the other hand, is best expressed

in terms of the original variables g0ns and is obtained [20] directly from the Hamiltonian
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of the parent model by replacing into Eq. (41), the following truncation of the expansion

(47):

g0s(x, v‖, t) =
Ns∑
n=0

g0ns(x, t)√
n!

Hn

(
v‖
vth‖s

)
Feqs(v‖). (65)

The resulting Hamiltonian reads

H(g00e , · · · , g0Nee , g00i , · · · , g0Nii)

=
1

2

∑
s

n0

∫
d3x

(
T0‖s

Ns∑
n=0

g2
0ns + qsg00s

(
G10sφ̃+

2T0⊥s

qs
G20s

B̃‖
B0

)
− qsg01s

vth‖s
c
G10sÃ‖

)
.

(66)

The Hamiltonian (66) can then be expressed in terms of the variables Gis . By inverting

the relation (59) it is possible to express the gyrofluid moments g0ns in terms of the

variables Gis . The resulting expression, combined with the Poisson bracket (60), yields

the gyrofluid evolution equations (62). With regard to this last step, it is helpful to

remark that, by means of the expression (61) and making use of the symmetry of the

operators G10s , G20s , Lφs , LAs and LBs , one finds that the functional derivatives of the

Hamiltonian with respect to the fields Gis are given by

δH

δGis

= qsn0v(is)

(
G10sφ̃+

2T0⊥s

qs
G20s

B̃‖
B0

)
− qsn0λisv(is)

vth‖s
c
G10sÃ‖, (67)

for i = 0, · · · ,Ns and s = e, i.

Noncanonical Hamiltonian systems such as those belonging to the class of gyrofluid

models we derived, are characterized by conservation laws associated with Casimir

invariants. These are functionals C of the field variables such that {F,C} = 0, for

all functionals F , and where { , } is the Poisson bracket of the system. It follows,

in particular, that ∂tC = {C,H} = 0, which justifies why such functionals C are

invariant. In the case of the gyrofluid systems (57), complemented by Eqs. (52)-(54),

the identification of the Casimir invariants becomes simplest if carried out in terms of

the variables Gis . Indeed, from the expression (60) for the Poisson bracket in terms of

such variables, it is possible to see that the functionals

Cis =

∫
d3xGis , i = 0, · · · ,Ns, s = e, i, (68)
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are Casimir invariants. In the 2D limit, in particular, infinite families of such invariants

exist, and are given by

Cis =

∫
d2x Cis(Gis), i = 0, · · · ,Ns, s = e, i, (69)

where Cis are arbitrary functions. The existence of such infinite families is related to the

possibility, offered by the 2D limit, of casting the system in the Lagrangian invariant

form (63). This feature is common to many fluid and gyrofluid reduced models for

plasmas [21, 20, 30, 15, 13, 14, 31, 16].

5. Example: a five-field model

In this Section we provide an example of Hamiltonian gyrofluid model that can be built

by means of the above described procedure.

In this example we consider a model describing the evolution of the first two

moments for the electron species (i.e. g00e and g01e ) and of the first three moments

for the ion species (i.e. g00i , g01i and g02i), which corresponds to setting Ne = 1

and Ni = 2. We close the hierarchy of Eqs. (51) by imposing that the gyrofluid

electron parallel temperature and ion parallel heat flux fluctuations are both zero, i.e.,

g02e = g03i = 0, which, from Eq. (56), amounts to setting αe = αi = 0.

We express the model in terms of the following set of normalized variables, which

provide a physically more transparent notation and make the connections with models

already present in the literature easier:

x =
x̃

ρs
, y =

ỹ

ρs
, z =

z̃

ρs
, t = ωcit̃, (70)

φ =
eφ̃

T0⊥e

, A‖ =
Ã‖
B0ρs

, B‖ =
B̃‖
B0

, Us =
Ũs
cs⊥

, (71)

Ns = g00s , As = sgn(qs)
ms

mi

vth‖s
cs⊥

g01s , T‖s =
√

2g02s (72)

where

cs⊥ =

√
T0⊥e

mi

, ρs =
cs⊥
ωci

(73)
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are referred to as sound speed and sonic Larmor radius, respectively, and are both related

to the perpendicular electron equilibrium temperature. In Eqs. (70)-(72), the tilde

symbol refers to dimensional quantities. We also remark that the explicit expressions

for the dynamical variables Ae and Ai, corresponding to gyrofluid versions of the electron

and ion parallel canonical momenta, are given by

Ae = G10eA‖ − δ2Ue, Ai = G10iA‖ + Ui, (74)

where δ2 = me/mi is the mass ratio.

Taking into account these considerations, the resulting five-field model consists of

the following five evolution equations, obtained from truncating Eqs. (57),

∂Ne

∂t
+ [G10eφ− 2G20eB‖, Ne]− [G10eA‖, Ue] +

∂Ue
∂z

= 0, (75)

∂

∂t
(G10eA‖ − δ2Ue) + [G10eφ− 2G20eB‖,G10eA‖ − δ2Ue] +

1

Θe

[G10eA‖, Ne]

+
∂

∂z

(
G10eφ− 2G20eB‖ −

Ne

Θe

)
= 0, (76)

∂Ni

∂t
+ [G10iφ+ 2τ⊥iG20iB‖, Ni]− [G10iA‖, Ui] +

∂Ui
∂z

= 0, (77)

∂

∂t
(G10iA‖ + Ui) + [G10iφ+ 2τ⊥iG20iB‖,G10iA‖ + Ui]−

τ⊥i
Θi

[G10iA‖, Ni + T‖i ]

+
∂

∂z

(
G10iφ+ 2τ⊥iG20iB‖ +

Ni

Θi

)
= 0, (78)

∂T‖i
∂t

+ [G10iφ+ 2τ⊥iG20iB‖, T‖i ]− 2[G10iA‖, Ui] + 2
∂Ui
∂z

= 0, (79)

complemented by the relations

G10iNi − G10eNe =

(
1− Γ0(bi)

τ⊥i
+ 1− Γ0(be)

)
φ− (Γ0(bi)− Γ1(bi)− Γ0(be) + Γ1(be))B‖,

(80)

G10eUe − G10iUi =
2

β⊥e
∇2
⊥A‖ +

((
1− 1

Θi

)
(Γ0(bi)− 1) +

(
1− 1

Θe

)
Γ0(be)− 1

δ2

)
A‖,

(81)

2τ⊥iG20iNi + 2G20eNe =

− 2

(
1

β⊥e
+ Γ0(be)− Γ1(be) + τ⊥i(Γ0(bi)− Γ1(bi))

)
B‖ + (Γ0(be)− Γ1(be)− Γ0(bi) + Γ1(bi))φ,

(82)
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descending from Eqs. (52)-(54). This model generalizes previous gyrofluid models

such as those of Refs. [16, 14, 13] in the absence of equilibrium magnetic curvature

and density gradients (which could be added a posteriori), by including parallel

magnetic fluctuations, equilibrium temperature anisotropy and electron FLR effects.

In particular, by including the terms related to magnetic curvature, the model could

be used for instance to extend the analysis of the Ion Temperature Gradient instability

performed in Ref. [16].

By construction, the model (75)-(79),(80)-(82) is Hamiltonian. The Hamiltonian

functional corresponds to (66) and, in the normalized variables, it reads

H(Ne, Ni, Ae, Ai, T‖i)

=
1

2

∫
d3x

(
N2
e

Θe

+
τ⊥i
Θi

N2
i +

A2
e

δ2
+ A2

i +
τ⊥i
Θi

T 2
‖i

2
(83)

+Ni(G10iφ+ 2τ⊥iG20iB‖)−Ne(G10eφ− 2G20eB‖)− AiG10iA‖ −
Ae
δ2
G10eA‖

)
.

Given that, for the five-field model under consideration, αe = αi = 0, from Eq. (58)

we obtain that the expressions for the matrices We and Wi are given by

We =

(
0 1

1 0

)
, Wi =

0 1 0

1 0
√

2

0
√

2 0

 (84)

and the corresponding eigenvalues read

λ0e = 1, λ1e = −1, (85)

λ0i =
√

3, λ1i = −
√

3, λ2i = 0. (86)

The orthogonal matrices Ue and Ui, on the other hand, correspond to

Ue =

(
1√
2

1√
2

1√
2
− 1√

2

)
, Ui =


1√
6

1√
6
−
√

2
3

1√
2
− 1√

2
0

1√
3

1√
3

1√
3

 (87)
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Consequently, the alternative set of variables {G0e , G1e , G0i , G1i , G2i} is given by

G0e =
g00e√

2
+
g01e√

2
, G1e =

g00e√
2
− g01e√

2
, (88)

G0i =
g00i√

6
+
g01i√

2
+
g02i√

3
, G1i =

g00i√
6
− g01i√

2
+
g02i√

3
, (89)

G2i = −
√

2

3
g00i +

g02i√
3
, (90)

or, in terms of the variables (70)-(72),

G0e =
Ne√

2
−
√

Θe

2

Ae
δ
, G1e =

Ne√
2

+

√
Θe

2

Ae
δ
, (91)

G0i =
Ni√

6
+

√
Θi

2τ⊥i
Ai +

T‖i√
6
, G1i =

Ni√
6
−

√
Θi

2τ⊥i
Ai +

T‖i√
6
, (92)

G2i = −
√

2

3
Ni +

T‖i√
6
. (93)

According to Eq. (68), the Casimir invariants of the model are given by

C0e =

∫
d3xG0e , C1e =

∫
d3xG1e , (94)

C0i =

∫
d3xG0i , C1i =

∫
d3xG1i , C2i =

∫
d3xG2i . (95)

In the 2D limit, following Eq. (69), the model admits five infinite families of Casimir

invariants, corresponding to

Cme =

∫
d2x Cme(Gme), m = 0, 1, (96)

Cni =

∫
d2x Cni(Gni), n = 0, 1, 2, (97)

with C0,1e and C0,1,2i arbitrary functions.

Also, from Eq. (63), it emerges that, in 2D, the system can be cast in the following

form of advection equations

∂Gme

∂t
+ vme · ∇Gme = 0, m = 0, 1, (98)

∂Gni

∂t
+ vni · ∇Gni = 0, n = 0, 1, 2, (99)
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where

v0e = ẑ ×∇
(
G10eφ− 2G20eB‖ −

G10eA‖

δ
√

Θe

)
, (100)

v1e = ẑ ×∇
(
G10eφ− 2G20eB‖ +

G10eA‖

δ
√

Θe

)
, (101)

v0i = ẑ ×∇
(
G10iφ+ 2τ⊥iG20iB‖ −

√
3τ⊥i
Θi

G10iA‖

)
, (102)

v1i = ẑ ×∇
(
G10iφ+ 2τ⊥iG20iB‖ +

√
3τ⊥i
Θi

G10iA‖

)
, (103)

v2i = ẑ ×∇
(
G10iφ+ 2τ⊥iG20iB‖

)
, (104)

which follows from Eq. (64) upon using the normalized variables (70)-(72). Compared

to the models of Refs. [16, 14], one notices that the presence of parallel magnetic

perturbations affects the stream functions associated with the velocity fields that advect

the Lagrangian invariants. The presence of equilibrium temperature anisotropy affects

the stream functions too. In particular, from Eqs. (100)-(103), one sees that, depending

on whether the perpendicular temperature dominates over the parallel one or not,

the contribution to the generalized velocity fields due to the perpendicular magnetic

fluctuations (associated with A‖) becomes less or more relevant.

6. Remarks about variants of the procedure

The procedure for deriving Hamiltonian gyrofluid models described in Sec. 4 admits

some possible variants that might be helpful, should one be interested in incorporating

specific physical effects into the model. On one hand, it is possible to consider

expressions for the gyroaverage operators G1e,i and G2e,i different from those that follow

from Eqs. (31)-(32). In the latter case, due to the assumed expansions (24) and (47),

it follows that

G10s = exp(−bs/2), G20s =
exp(−bs/2)

2
. (105)

This is in agreement with Ref. [4]. However, in the plasma physics literature, alternative

choices for the expressions of the gyroaverage operators are also frequently used (see,

e.g. Refs. [5, 9, 11]), in particular if a better agreement with the linear kinetic theory is
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prior. In the procedure described in Sec. 4 no use was made of the explicit expression

for the operators G10e,i and G20e,i (the only ones appearing in the final gyrofluid models).

In particular, for the resulting models to be Hamiltonian, it was not required that such

gyroaverage operators have the expressions (105). The important property is that the

gyroaverage operators be symmetric, i.e. such that
∫
d3x fG10sg =

∫
d3x gG10sf and∫

d3x fG20sg =
∫
d3x gG20sf for two functions f and g and for s = e, i. Provided that

this requirement is satisfied, linear differential operators (independent on the v‖ and µ0s

coordinate) other than those of Eq. (105) can be used, if so wished, in order to derive

Hamiltonian gyrofluid models with the above procedure.

A second variant concerns the relations (55) between electromagnetic quantities and

gyrofluid moments. Also in this case, the above procedure can in principle be applied

for operators Lφs , LAs and LBs other than those obtained by inverting the relations

(52)-(54). It suffices that the (typically integral) operators Lφs , LAs and LBs be linear,

symmetric, invertible and independent on the coordinates v‖ and µ0s.

In order to exemplify a variant of the procedure described in Sec 4, we derive a two-

field model that generalizes, by including equilibrium electron temperature anisotropy,

the two-field model for kinetic Alfvén waves presented in Ref. [31].

The model describes the evolution of only the first two moments of the electron

species, so that s = e and Ne = 1. The closure on the parallel temperature fluctuations

is again isothermal so that αe = 0. Electron gyroaverage effects are neglected, assuming

be � 1. The following expressions for the gyroaverage operators are then taken:

G10e = 1, G20e =
1

2
, (106)

which, of course, trivially satisfy the properties mentioned at the beginning of Sec. 6.

Following these prescriptions, from Eq. (57), we obtain that the two evolution
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equations of the model are given by

∂Ne

∂t
+ [φ−B‖, Ne]− [A‖, Ue] +

∂Ue
∂z

= 0, (107)

∂

∂t
(A‖ − δ2Ue) + [φ−B‖, A‖ − δ2Ue] +

1

Θe

[A‖, Ne]

+
∂

∂z

(
φ−B‖ −

Ne

Θe

)
= 0. (108)

On the other hand, the relations (55) for this model follow from

Ne + (1− Γ0(bi) + Γ1(bi))B‖ + (1− Γ0(bi)− τ⊥iδ2∇2
⊥)

φ

τ⊥i
= 0, (109)

Ue = b∗∇2
⊥A‖, (110)

B‖ = −β⊥e
2

(Ne − (1− Γ0(bi) + Γ1(bi))φ+ (1 + 2τ⊥i(Γ0(bi)− Γ1(bi)))B‖), (111)

which can be obtained from Eqs. (2)-(4) by applying the ordering specified in Ref. [31]

and allowing for equilibrium electron temperature anisotropy (note that, in order to

derive Eq. (110) from Eq. (81), an expansion in the limit δ2 → 0 was performed, which

is consistent with the limit be → 0 yielding Eq. (106)).

In Eq. (110) the parameter

b∗ =
2

β⊥e
+ 1− 1

Θe

, (112)

was introduced, which clearly reduces to 2/β⊥e in the absence of electron temperature

anisotropy. We remark that the inequality b∗ < 0 corresponds to the condition for

firehose instability (see, e.g. Ref. [32]).

Ion gyrofluid moments do not appear in the relations (109)-(111), (according to

Ref. [31], in this model Ni = T‖i = 0 and the evolution of Ui is decoupled) so that the

relations (55), in normalized variables, reduce to

φ =
e

T0⊥e

LφeNe, A‖ = − cs⊥
δ2vth‖e

LAe
B0ρs

Ae, B‖ =
LBe
B0

Ne, (113)

with the operators Lφe , LAe and LBe satisfying the required above mentioned properties.

Ion gyroaverage effects, on the other hand, are taken into account and are associated

with the functions Γ0(bi) and Γ1(bi).
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We remark that the relation (111) cannot be obtained as an asymptotic limit of Eq.

(54) (or, in normalized form, of Eq. (82)). In particular, the factor 1, corresponding to

the first term of the three terms multiplying B‖ on the right-hand side of Eq. (111),

cannot be obtained from Eq. (54). Its origin comes from the closure assumption of

Ref. [31], according to which the fluctuations of the perpendicular electron temperature,

denoted, in normalized form, with T⊥e, satisfy the relation T⊥e = −B‖, corresponding to

an isothermal closure on the (particle, instead of gyrocenter) perpendicular temperature

fluctuations as well. This closure is not compatible with the closure assumption

(39) adopted in our procedure, and which concerns the moments with respect to

the perpendicular velocity. More explicitly, the gyrocenter perpendicular electron

temperature fluctuations are defined by

T⊥e(x, t) =
1

n0

∫
dWe

(
µ0eB0

T0⊥e

− 1

)
f̃e(x, v‖, µ0e, t) (114)

= − 1

n0

∫
dWe L1

(
µ0eB0

T0⊥e

)
feqe(µ0e)

+∞∑
n=0

Ln

(
µ0eB0

T0⊥e

)
fne(x, v‖, t) = − 1

n0

∫
dv‖ f1e(x, v‖, t),

(115)

where use was made of the expansion (27) and of the orthogonality of Laguerre

polynomials. According to our closure (39), we would have f1e = 0, which implies

T⊥e = 0. This is evidently in contrast with the closure T⊥e = −B‖ used to derive

Eq. (111) from Eq. (4). Nevertheless, because the Equations (109)-(111) still lead to

relations of the form (113), a Hamiltonian gyrofluid model can be derived. This shows

that, in principle, our procedure can be extended to include also relations between

electromagnetic fields and gyrofluid moments different from those descending from Eqs.

(52)-(54).

The Hamiltonian functional of the model, obtained from (66), reads

H(Ne, Ae) =
1

2

∫
d3x

(
N2
e

Θe

+
A2
e

δ2
−Ne(φ−B‖)−

Ae
δ2
A‖

)
. (116)

Making use of Eq. (110) and of the relation Ae = A‖− δ2Ue, the Hamiltonian (116) can
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be rewritten as

H(Ne, Ae) =
1

2

∫
d3x

(
N2
e

Θe

+ δ2U2
e + b∗|∇⊥A|2 −Ne(φ−B‖)

)
, (117)

which lets emerge the contribution due to the parallel kinetic energy and to

the perpendicular magnetic energy, modified by magnetization effects due to the

temperature anisotropy. These two contributions correspond to the second and third

term of Eq. (117), respectively.

Finally, we remark that, becauseNe = 1 and αe = 0, as in the five-field model of Sec.

5, the matrices We and Ue are again those appearing in Eqs. (84) and (87). Likewise,

the expressions for the alternative variables G0e and G1e , as well as for the Casimir

invariants and for the 2D formulation in terms of Lagrangian invariants are analogous

(provided, of course, that the form (106) is taken for the gyroaverage operators) to those

for the two electron moments of the five-field model and correspond to Eqs. (91), (94)

and (98), respectively.

7. Conclusions

We presented a framework based on a Hamiltonian reduction, which makes it possible to

derive Hamiltonian gyrofluid models for an arbitrary number of moments in the parallel

velocity coordinate. The resulting models include, in addition to finite Larmor radius

effects, magnetic perturbations along the equilibrium magnetic field and equilibrium

temperature anisotropies, which are not present in Hamiltonian gyrofluid models

available in the literature. The Hamiltonian reduction is presented in two stages. A

first reduction leads from the original Hamiltonian gyrokinetic model (1)-(4), evolving

the variables g̃s(x, v‖, µ0s, t) (or, equivalently, the variables f̃s(x, v‖, µ0s, t)) to the

Hamiltonian model (46), (42)-(44) evolving the averaged perturbation of the distribution

function g0s(x, v‖, t) (or f0s(x, v‖, t)) depending on a reduced number of coordinates.

The second stage applies a closure to the system (46), (42)-(44) yielding Hamiltonian

gyrofluid models (57), (52)-(54), evolving the moment variables g0ms(x, t) (or f0ms(x, t)),

for 0 ≤ m ≤ Ns, with arbitrary Ns. Casimir invariants for the Hamiltonian gyrofluid
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models were presented and it was shown that, in the two-dimensional limit, they can

be cast in form of systems of advection equations for Lagrangian invariants (associated

with the Casimir invariants), transported by generalized incompressible flows. The five-

field model presented in Sec. 5 and the two-field model presented in Sec. 6, permit to

observe the features of the general models by means of concrete examples.

The analysis of the physical properties of the gyrofluid models derived by means

of the above procedure is an on-going work. In particular, as anticipated in Sec. 1,

the inclusion of finite β effects and of equilibrium temperature anisotropy make these

models suitable for application to space plasmas. For instance, they could be applied

for the investigation of instabilities, such the firehose or the swelling instability, induced

by equilibrium temperature anisotropy and relevant for the solar wind. A comparison

with the results obtained from the linearized parent gyrokinetic system, analyzed in Ref.

[33], would also be a natural step in order to identify advantages and limitations of the

reduced gyrofluid models with respect to the original gyrokinetic model.

We remark that the gyrofluid models considered in the present paper are derived

from a gyrokinetic system evolving small perturbations of the equilibrium distribution

functions. A natural step forward would be to identify Hamiltonian reductions of ”full-

f” gyrokinetic systems (such as that adopted, for instance, in Ref. [12]), following the

direction of Refs. [26, 34], where Hamiltonian closures for drift-kinetic models were

derived. The additional nonlinearities present in such systems, however, makes the

treatment of the electromagnetic problem considerably more complex.

With regard to more mathematical aspects, an obvious question concerns the

possibility to find Hamiltonian reductions leading to gyrofluid models evolving also

finite order moments with respect to the coordinate µ0s. Hamiltonian reduced models

evolving also such moments were presented in Refs. [35, 36, 37] but did not take into

account finite Larmor radius effects when both parallel and perpendicular temperature

fluctuations for the same species were considered. In Ref. [11] an energy conserving

gyrofluid model including both parallel and perpendicular temperature as well as heat
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flux fluctuations is presented, but its Hamiltonian structure has not been found yet. The

presence of gyroaverage operators associated with the functions J0 and J1, depending

on µ0s, in the parent gyrokinetic system, makes the gyrofluid moment equations depend

in principle on an infinite number of moments with respect to the µ0s coordinates. This

provides a significant difference with respect to the hierarchy of equations (51) obtained

by taking moments only with respect to the v‖ coordinate. Identifying sub-algebras

other than the trivial one adopted in this paper, involving functionals of moments with

respect to polynomials in µ0s, appears not to be an easy task and is part of future work.
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Appendix A. The invertibility of the operators acting on φ̃, Ã‖ and B̃‖ in

the quasi-neutrality relation and in Ampère’s law

The quasi-neutrality relation (2), the parallel (3) and perpendicular (4) Ampère’s law

relate the electromagnetic perturbations φ̃, Ã‖ and B̃‖ to the functions g̃e and g̃i. In

order for the fields φ̃, Ã‖ and B̃‖ to be well defined, it is necessary that such fields can

be expressed in the form

φ̃ = Lφe g̃e + Lφi g̃i, (A.1)

Ã‖ = LAe g̃e + LAi g̃i, (A.2)

B̃‖ = LBe g̃e + LBi g̃i, (A.3)

for some operators Lφe,i , LAe,i , LBe,i . Moreover, the expression (21) for the functional

derivative of the gyrokinetic Hamiltonian follows from the symmetry of the operators

Jiss′ , for i = 1, 2, 3, which in turn depends on the form of the operators Lφe,i , LAe,i , LBe,i .
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These issues turn out to be rather simple to handle under our assumption of spatial

domain with periodic boundary conditions, and are discussed hereafter.

Namely by virtue of the hypothesis of periodicity, we perform the following Fourier

series expansions in the spatial coordinates:

g̃s(x, v‖, µ0s, t) =
∑
k∈D

g̃sk(v‖, µ0s, t)e
ik·x, (A.4)

φ̃(x, t) =
∑
k∈D

φ̃k(t)eik·x, B̃‖(x, t) =
∑
k∈D

B̃‖k(t)eik·x, (A.5)

Ã‖(x, t) =
∑
k∈D

Ã‖k(t)eik·x. (A.6)

For each wave vector k, the linear relations (2) and (4) yield

Mekg̃ek +Mikg̃ik = Mφkφ̃k +MBkB̃‖k, (A.7)

Nekg̃ek +Nikg̃ik = Nφkφ̃k +NBkB̃‖k, (A.8)

respectively, where the Fourier multipliers Msk,Mφk,MBk, Nsk, Nφk, NBk are defined by

Msk =

∫
dWs J0(as), Nsk =

β⊥s
n0

∫
dWs 2

µ0sB0

T0⊥s

J1(as)

as
, (A.9)

Mφk = n0

∑
s

|qs|
T0⊥s

(1− Γ0(bs)), Nφk = −
∑
s

β⊥s
qs
T0⊥s

(Γ0(bs)− Γ1(bs)), (A.10)

MBk = − n0

B0

∑
s

sgn(qs)(Γ0(bs)− Γ1(bs)), NBk = − 2

B0

(
1 +

∑
s

β⊥s(Γ0(bs)− Γ1(bs))

)
.

(A.11)

On the other hand, Eq. (3) yields

Oekg̃ek +Oikg̃ik = OAkÃ‖k, (A.12)

where

Osk = qs

∫
dWs v‖J0(as), (A.13)

OAk =
∑
s

q2
sn0

msc
Γ0(bs) +

c

4π
k2
⊥ +

∑
s

q2
sn0

msc

(
1− 1

Θs

)
(1− Γ0(bs)). (A.14)

We begin by discussing the invertibility of the operators appearing in the system (A.7)-

(A.8), which involves φ̃k and B̃‖k.



Hamiltonian gyrofluid reductions of gyrokinetic equations 39

Because the operators Mφk,MBk, Nφk and NBk all consist of linear combinations of

multiplication operators in Fourier space, the invertibility condition amounts, for each

k, to the determinant of the matrix

Qk =

(
Mφk MBk

Nφk NBk

)
(A.15)

not to be zero. Such determinant is given by

detQk = −2
n0

B0

e
∑
s

1− Γ0(bs)

T0⊥s

(
1 +

∑
s′

β⊥s(Γ0(bs′)− Γ1(bs′))

)

− 8π
en2

0

B3
0

(∑
s

(Γ0(bs)− Γ1(bs))

)2

< 0. (A.16)

Indeed, the first term on the right-hand side of Eq.(A.16) is always negative or zero,

given that 1 − Γ0(bs) ≥ 0 and Γ0(bs) − Γ1(bs) > 0 for all bs. Because of the latter

inequality, on the other hand, the second term on the right-hand side of Eq. (A.16)

is strictly negative. Consequently, it is possible to solve the system (A.7)-(A.8) for

every k and eventually express φ̃ and B̃‖ in the form (A.1), (A.3), with the help of the

representations (A.5), in the following way:

φ̃(x, t) =
∑
k∈D

φ̃k(t)eik·x =

=
∑
k∈D

Lφek g̃ek(v‖, µ0s, t)e
ik·x +

∑
k∈D

Lφik g̃ik(v‖, µ0s, t)e
ik·x

≡ Lφe g̃e + Lφi g̃i, (A.17)

B̃‖(x, t) =
∑
k∈D

B̃‖k(t)eik·x =

=
∑
k∈D

LBek g̃ek(v‖, µ0s, t)e
ik·x +

∑
k∈D

LBik g̃ik(v‖, µ0s, t)e
ik·x

≡ LBe g̃e + LBi g̃i, (A.18)

with

Lφsk =
1

detQk

(NBkMsk −MBkNsk), (A.19)

LBsk =
1

detQk

(MφkNsk −NφkMsk). (A.20)
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As far as Eq. (A.12) is concerned, solving with respect to Ã‖k is possible without

imposing restrictions on g̃e and g̃i, if OAk never vanishes for all k. If Θs ≥ 1 for

s = e, i then this condition is satisfied. This follows from the fact that Γ0(bs) > 0,

1 − Γ0(bs) ≥ 0 and k2
⊥ ≥ 0 for all k. If Θe or Θi are less than one, then a sufficient

condition for invertibility can be found assuming that one of the species (say ions) has an

isotropic equilibrium distribution (Θi = 1), whereas electrons have parallel equilibrium

temperature greater than the perpendicular equilibrium temperature (i.e. Θe < 1). In

this case the quantity OAk reads

OAk =
∑
s

q2
sn0

msc
Γ0(bs) +

c

4π
k2
⊥ +

e2n0

mec

(
1− 1

Θe

)
(1− Γ0(be)). (A.21)

The sum of the first two terms on the right-hand side of Eq. (A.21) is positive, whereas

the last term, which depends on the temperature anisotropy, is negative for be > 0 and

vanishes for be = 0. If the absolute value of the latter term is sufficiently small, however,

OAk is always positive and Eq. (A.12) can be solved with respect to Ã‖k for every k.

For k2
⊥ = 0 this is always the case. For k2

⊥ > 0, the condition OAk > 0 can be rewritten

as

1

Θe

< 1 +
δ2Γ0(bi) + Γ0(be) + k2

⊥d
2
e

1− Γ0(be)
≡ Ψ(k2

⊥), (A.22)

where de = c(me/(4πe
2n0))1/2 is the electron skin depth. For k2

⊥ > 0 the function Ψ

is continuous, takes always values greater than 1 and, in particular, it is bounded from

below by an infimum taken at a value of k2
⊥ that we denote with k2

inf . Therefore, if the

condition

1 > Θe >
1

Ψ(k2
inf )

(A.23)

is satisfied, then the condition (A.22) is satisfied for every k and the magnetic potential

Ã‖ is well defined.
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More explicitly, we can write

Ã‖(x, t) =
∑
k∈D

Ã‖k(t)eik·x =

=
∑
k∈D

LAek g̃ek(v‖, µ0s, t)e
ik·x +

∑
k∈D

LAik g̃ik(v‖, µ0s, t)e
ik·x

≡ LAe g̃e + LAi g̃i, (A.24)

where

LAsk =
Osk

OAk

. (A.25)

If, on the other hand, for Θe < 1 and/or Θi < 1, there exist some wave vector k̄ such

that OAk̄ = 0, then, for Eq. (A.12) to hold, we require that g̃ek̄ = g̃ik̄ = 0, which

imposes some restrictions on the generalized distribution functions g̃e and g̃i.

By a similar argument is is also possible to find conditions for the magnetic potential

appearing in Eq. (43).

Given the expressions (A.17), (A.18) and (A.24) for the operators Lφs , LBs and LAs

and the definition (23) for the operators Jiss′ , the property (22) follows easily.
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