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Abstract. In this paper, we describe Fourier-based Wave Front Sensors (WFS) as linear integral operators, charac-
terized by their Kernel. In a first part, we derive the dependency of this quantity with respect to the WFS’s optical
parameters: pupil geometry, filtering mask, tip/tilt modulation. In a second part we focus the study on the special case
of convolutional Kernels. The assumptions required to be in such a regime are described. We then show that these
convolutional kernels allow to drastically simplify the WFS’s model by summarizing its behavior in a concise and
comprehensive quantity called the WFS’s Impulse Response. We explain in particular how it allows to compute the
sensor’s sensitivity with respect to the spatial frequencies. Such an approach therefore provides a fast diagnostic tool
to compare and optimize Fourier-based WFSs. In a third part, we develop the impact of the residual phases on the
sensor’s impulse response, and show that the convolutional model remains valid. Finally, a section dedicated to the
Pyramid WFS concludes this work, and illustrates how the slopes maps are easily handled by the convolutional model.

1 Introduction

Linear integral operators are the continuous version of matrices. They linearly transform an input
into an output depending on a quantity called Kernel. Mathematically, such an operation may be
written:

Output|X =

∫
dx K|X;x Input|x (1)

x (resp. X) is the variable of the input (resp. output) space, K making the link between those two
spaces. Examples of integral operators are many: Fourier, Hilbert, Laplace transforms, etc. are the
most famous. In a more general framework, it is absolutely relevant to try to describe a continuous
linear system thanks to an integral operator. Advantages of such an approach are many. First of
all, the Kernel allows to synthesize the system’s behavior into a compact and elegant mathematical
quantity. Moreover, due to the fact linear integral operators may be seen as the continuous version
of matrices (see Appendix C), the use of Kernel formalism may improve the understanding of
the discrete description of systems that numerical approach often requires. We finally note that
reconstructing the input from the output, i.e. inverting (1), depends on our capability to find the
”inverse Kernel” K−1 of the system. Fortunately, depending on the nature of K, many methods
already exist to calculate this inverse if it does exist. Knowing K is thus critical to build robust and
relevant reconstruction algorithms.

The purpose of this article is to use this powerful formalism to study optical systems which
probe the wavefront of the light. They are called Fourier-based Wave Front Sensors1 and are
essentially used in Adaptive Optics for Astronomy. The first part of this paper provides an optical
description of Fourier-based WFSs. We make explicit the input and output of such sensors and
introduce proper mathematical quantities to characterize the different optical elements. In a second
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part, we give the dependency of the Kernel with respect to these optical elements. The third part
is dedicated to the particular case of convolutional Kernel. Phase reconstruction, in that situation,
is greatly facilitated since the inverse Kernel has an explicit formulation. Moreover, it allows
to define the WFS’s Impulse Response and Transfer Function which are compact and meaningful
quantities allowing, for instance to rapidly visualize the WFS’s sensitivity (see Appendix A). Since
the convolutional Kernel case is not systematic, we give the assumptions it relies on. Another part
is dedicated to generalization of these results in presence of static and dynamic residual as it is
often the case, in practice, in Adaptive Optics. These results are finally applied to the most used
Fourier-based WFS which is the Pyramid WFSensor2 in Appendix B.

2 Fourier-based Wave Front Sensing

2.1 Optical system

We consider the optical system shown in Fig. 1. The first plane corresponds to the pupil plane
of the telescope. It contains a focusing device which is described as a perfect lens with a focal
f , an aperture and another element that we call modulation. We describe it in detail in the next
paragraph. The second plane is the focal plane which contains a filtering mask mathematically
described by its transparency function m and an imaging lens with focal f/2. The detector is
finally placed in the next plane which is conjugated to the first pupil plane.

Fig 1 Schematic view (in 1D) of a Fourier filtering optical system

2.2 Optical propagation

The incoming field is called ψi, we assume that its light is monochromatic at wavelength λ. In the
Adaptive Optics Wave Front Sensing context, the field is windowed by an entrance pupil. We call
its phase φ for turbulent phase and describe the pupil geometry thanks to its indicator function IP .
Besides, we assume that the total flux is unitary. Under these assumptions, we have:

ψi = IP eıφ (2)

Let’s note that turbulent phase has a priori an infinite support. Nevertheless, due to windowing by
the finite aperture, only the part which goes through the entrance pupil has a physical interest and
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may be coded by the WFS. As a consequence, the quantity to be measured, i.e. the sensor’s input
is the turbulent phase windowed by the pupil:

WFS’s input: IPφ (3)

The incoming field is then shaped by the ”modulation”. Modulation consists in adding a dy-
namic aberration to the field via a controlled moving device placed in the entry pupil plane. The
movement is regular and may be described as a cycle (although it can be generalised). The detector
is then synchronized with it in order to have one image per cycle. This system was initially intro-
duced by2 in order to adjust the Pyramid WFS’s linearity range. It is specific to this sensor yet it
should remain general. In this paper, we are interested in the particular case of ”tip/tilt modulation”
which consists in adding a tip/tilt aberration in the field. This modulation phase is called φmod and
defined as:

φmod(~α)|~r =
2π

λ
~α.~r (4)

The vector ~r codes the position in the pupil plane while ~α codes the amplitudes of the modulation
tip and tilt. Brief clarifications about notations: φmod(~α)|~r means that the function φmod depends on
one true spatial vector~r but also on another non-spatial parameter ~α. To describe the modulation,
we also need to indicate the time spent for each modulation phase. To do so, we introduce the
modulation weighting function w. Usually, this function directly depends on the time variable but
we prefer here to use as variable the tip/tilt amplitudes ~α:

w : R2 → R+

~α 7→ w|~α
(5)

The weighting function is now a 2D function and w|~α codes the time spent for the modulation
phase φmod(~α). Such an approach presents several advantages. First, it allows to visualize the
tip/tilt modulation in its natural focal plane. Indeed, in this plane ~α vector correspond to a spatial
shift (that’s why, we do not use the notation w(~α) but w|~α). Subsequently, the weighting function
directly gives the profile of the modulation. Thus, it becomes possible to envision 2D modulation,
as for instance a disk modulation (the classical description only allowed 1D modulation, as for
instance ring modulation). To ensure the energy conservation, we finally enforce that the weighting
function has a unitary 1-norm: ∫

R2

w|~α d2~α = 1 (6)

Regarding the optical Fourier filtering stage, it is based on the fact that the focal plane corre-
sponds to the reciprocal space (i.e. the spatial frequencies space) of the phase (or pupil) space.
This fact is directly linked to Fraunhofer’s diffraction. Subsequently, a mask placed in this plane
acts like a spatial frequencies filter. A relevant way to describe this mask consists in using its
transparency function m. For a more detailed description of this quantity, the curious reader may
refer to.1

Describing mathematically the filtering process consists in getting the field in the detector’s
plane, we call it ψd(~α) since it depends on the modulation phase. Optical propagation laws indicate
that this field equals to the convolution product between the pupil plane field and the Fourier
transform of the transparency function of the mask:

ψd(~α) =
[
IP exp

(
ı(φ+ φmod(~α)

)]
? m̂ (7)
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where .̂ is the Fourier transform and ? the 2D convolution product. The last step consists in convert-
ing the detector’s field into photo-electrons. Physically, this detection consists in the integration
during the modulation cycle of the squared modulus of ψd. The resulting intensity, which depends
on the phase φ, equals to:

I(φ) =

∫
R2

d2~α w|~α
∣∣∣[IP exp

(
ı(φ+ φmod(~α)

)]
? m̂
∣∣∣2 (8)

In the wave front sensing context, it is relevant to give the dependence of this intensity with
respect to the phase. A way to efficiently describe this dependence has been shown in detail in.1 It
consists in doing a Taylor’s development on the phase term:

exp(ıφ) =
∞∑
q=0

ıqφq

q!
(9)

which allows then to decompose the intensity into phase-constant, linear, quadratic, cubic, etc.
terms:

I(φ) = Iconstant + Ilinear(φ) + Iquadratic(φ) + Icubic(φ) + ... (10)

We note that the constant term does not contain any information about phase since it does not
depend on φ. Consequently, it is common practice to apply a return-to reference operation on the
intensity which consists in numerically subtracting Iconstant to I . The resulting quantity which may
be seen as the WFS’s output is called differential intensity:

∆I(φ) ≡ I(φ)− Iconstant (11)
= Ilinear(φ) + Iquadratic(φ) + ... (12)

The first phase dependence of ∆I is thus the linear one. We note that this numerical operation
is easy to do in practice since Iconstant equals to the intensity when there is no turbulent phase, i.e.
I(0). Finally, we specify that this return-to-reference operation is in practice associated to a flux
normalization which is not necessary here since the flux has been assumed unitary.

3 Linear Model

A standard approximation consists in assuming that the WFS works in its linearity regime. Math-
ematically, it means that the differential intensity only contains the linear term:

∆I(φ) ≈ Ilinear(φ) (13)

Calculating the linear regime of a WFS, i.e. the phase subspace where non-linear terms may be
neglected, is a challenging task which requires the study of the WFS’s dynamic range but it is
not the topic of this paper. Subsequently, we consider that the linear regime of a WFS essentially
corresponds to the small phases domain:

φ << 1 (14)

Such an assumption does make sense in Adaptive Optics context since most of the wave front
sensing is done in closed loop, i.e. when phase-to-be-measured are residuals of the atmospheric
turbulent phase.
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3.1 Linear intensity

Within the small phases approximation framework, WFS’s output equals the linear intensity. We
give an explicit expression of it initialy developed in:1

Ilinear(φ) = 2Im
[ ∫

R2

d2~α w|~α
((

IP eıφmod(~α)
)
? m̂
)((

IP e−ıφmod(~α)φ
)
? ¯̂m
)]

(15)

where .̄ means the complex conjugate. The linear intensity is a 2D map corresponding to the
perfectly linear response of the WFS regarding to the phase φ. By using the tip/tilt nature of the
modulation (4), it becomes possible to reveal the spatial variations of Ilinear:

Ilinear(φ)|~R = 2Im
[ ∫

R4

d2~r’d2~r IP |~r’(IPφ)|~rm̂|~R−~r’
¯̂m|~R−~r

∫
R2

d2~αw|~αe
2ıπ
λ
~α.(~r’−~r)

]
(16)

where ~R is the position vector in the intensity plane and ~r and ~r’ the two integration variables
coming from convolution products. We realize that, by integrating along tip/tilt amplitudes ~α, the
2D Fourier transform of the weighting function appears:

Ilinear(φ)|~R = 2Im
[ ∫

R4

d2~r’d2~r IP |~r’(IPφ)|~rm̂|~R−~r’
¯̂m|~R−~rŵ|~r’−~r

]
(17)

Such a result has already been observed for the 1D Pyramid WFS with linear tip/tilt modulation
in.3 Its 2D generalization for any kind of modulations and masks is here allowed thanks to the fact
that weighting function is considered as depending on tip/tilt amplitude vector ~α and not on the
time variable.

3.2 Fourier based WFS’s kernel

At this point, (17) is sufficiently developed to be interpreted as an integral transform performed on
the input phase. Indeed, we can write

Ilinear(φ)|~R =

∫
R2

d2~r K|~R;~r (IPφ)|~r (18)

where the Kernel K equals to:

K|~R;~r = 2Im
[

¯̂m|~R−~r
∫
R2

d2~r’ IP |~r’ m̂|~R−~r’ ŵ|~r’−~r

]
(19)

We observe that such a kernel depends on the WFS optical characteristics. More precisely, we see
that it actually depends on ”pupil plane” functions: m̂, ŵ and IP . Moreover, it is worth noticing
that this kernel may be also understood as the continuous interaction matrix with respect to the
natural basis of the direct phase space, i.e. the ”Dirac phase basis”. Such a fact is obvious when
looking at (18). This property of the Kernel is fundamental since the decomposition of an arbitrary
phase on the Dirac phase basis is absolutely trivial. In other word, K is a very general descriptor
of a WFS since it allows to compute naturally the WFS’s response to any set of phases.

Finally, since most of the Fourier-based WFSs work without modulation, we give the Kernel
when the tip/tilt modulation mirror generates a motionless and centered focal spot. In this case, the
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weighting function is a Dirac function. Subsequently, its Fourier transform equals to the identity
function. The resulting kernel is:

Without modulation: K|~R;~r = 2Im
[

¯̂m|~R−~r (IP ? m̂)|~R
]

(20)

In that specific case, we observe that the matrix associated to this kernel may be understood as an
Hadamard’s product between a vertical matrix and a circulant one (see Appendix C).

As a conclusion we will remember that the Kernel of a Fourier based Wave Front Sensor may
be written as a real function of three ”pupil plane” quantities and two spatial vectors, one in the
input space the other in the output space.

K(m̂, ŵ, IP )|~R;~r (21)

In other words, for a given optical configuration, K is a continuous 2D matrix. Such a fact explains
why the Kernel requires in general, onerous simulations in terms of computational time. Using it
to lead an exhaustive study of Fourier based WFSs seems thus unrealistic. Moreover, despite the
elegance of its expression, the input/output relation (18) remains difficult to invert directly; K has
to have additional properties to be exploited effectively. That is the goal of the next part where we
will work with convolutional Kernels, i.e. Kernels which are not function of ~R and ~r but only of
their difference ~R−~r.

4 Convolutional model

From now, we will study the consequences of having a Kernel which would be convolutional. In
that case, it exists a function, that we call IR for Impulse Response which allows to write:

K|~R;~r = IR|~R−~r (22)

The input/output relation of the WFS becomes convolutional:

Ilinear(φ) = (IPφ) ? IR (23)

It is worth noticing that convolutional systems are also called shift invariant. Indeed, we observe
that if T is a translation operator, the convolution implies that Ilinear(T [φ]) = T [Ilinear(φ)]. In other
words, knowing the WFS’s response for a given phase is enough to know the response to any
translation of this phase. Such a result explain why a convolutional Kernel may be more rapidly
computed: the associated matrix is pure circulant, i.e. a strongly redundant matrix. On the other
hand, (23) clarifies the notation ”Impulse Response”, indeed this quantity corresponds to the WFS
response when the phase is a pure impulse, i.e. a centered Dirac.

4.1 Required assumptions

Since Kernel is not in general convolutional, we are now interested on the assumptions needed to
have such a Kernel. Our starting equation is (19). By taking a closer look at it, we observe that
the main difficulty comes from the combined presence of functions depending on ~r’ and ~r’ − ~r
variables; this fact is an obvious obstacle to shift invariance. In other words, converging toward the
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ŵ and ∂IP
Fig 2 Overlay of the Fourier transform of the weighting function (background) and the pupil edge (white circle). We
consider here a circular pupil and a ring modulation with a modulation radius ensuring (27).

convolutional model consists in eliminating one of two previous dependency. To do so, we make a
Taylor’s development of the pupil indicator function IP |~r’ around ~r’−~r:

IP |~r’ = IP |~r’−~r +~r ·
(
~∇IP

∣∣
~r’−~r

)
+ ... (24)

where ~∇ is the 2D gradient operator. Such a development allows to write the Kernel as:

K|~R;~r = 2Im
[

¯̂m(m̂ ?
(
ŵIP )

)]∣∣
~R−~r + 2~r · Im

[
¯̂m(m̂ ?

(
ŵ~∇IP )

)]∣∣
~R−~r + ... (25)

The convolutional model consists in keeping the first term (which has a convolutional form) and
neglecting the next ones (which do not). In most cases, such a simplification is not exact and consti-
tute an approximation of the linear model. We call this assumption the sliding pupil approximation
since it corresponds to the following assumption:

IP |~r’ ≈ IP |~r’−~r (26)

Nevertheless, we note that (26) is not an assumption in two cases. First one is a bit unrealistic
but worthy of mention: it is the infinite pupil case. Indeed we observe that IP = I implies a pure
convolutional kernel. The second case is much more interesting since it shows how it is possible
to choose the tip/tilt modulation in order to improve the accuracy of the convolutional model. It
consists in using a weighting function w which ensures:

ŵ∂IP = 0 (27)

where ∂IP corresponds to the area where the entrance pupil has discontinuities. In other words,
a Fourier-based WFS is a convolutional sensor if the Fourier Transform of the weighting function
ŵ is barely null on the edge of the pupil. Such a condition is actually quite simple to reach. For
a circular pupil and a ring modulation, for instance, ŵ is the first Bessel function of the first kind:
J0. In order to ensure (27), we need adapt the modulation radius in such a way that the pupil radius
corresponds to a Bessel function’s zero. An example is shown on Fig. 2. In other words, it would
be possible to improve the accuracy of the convolutional model on the condition to properly set the
modulation radius.
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4.2 Impulse Response and Transfer function

Assuming the sliding pupil approximation, it is possible to identify the WFS’s Impulse Response
IR in (25):

IR = 2Im
[

¯̂m
(
m̂ ? (ŵIP )

)]
(28)

The Impulse Response is a concise way to characterize a Fourier-based WFS while assuming it
is shift invariant. We observe that the computational cost which is required to calculate the IR
depending on the optical parameters (see Fig. 3) is absolutely negligible compared to calibration
matrices’ approaches. Finally, we emphasize on the fact that the circulant matrix IR|~R−~r may be
seen as the response of the sensor with respect to the Dirac phase basis, i.e. the natural basis of
the phase space. To get the response of the WFS in the phase spatial frequencies space, i.e. in a

arg(m) w IP
Fig 3 Optical parameters needed to compute the Impulse Response. From left to right: argument of the transparency
function, weighting function and pupil’s indicator function. We chose the particular case of the 4-sided Pyramid with
a ring modulation and a circular entrance pupil.

IR
Fig 4 Impulse response corresponding to the optical parameters of Fig. 3.

focal plane, we just have to consider the 2D Fourier transform of the impulse response that we call
Transfer Function TF:

TF ≡ ÎR (29)

For the sake of clarity, we do not give here the full expression of this important quantity. The
reader is referred to the paragraph 5.3 for a comprehensive formulation of the TF depending on
the optical parameters. Indeed, we will firstly generalize the convolutional model to more realistic
wave front sensing contexts.
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5 Wave front sensing in presence of residual phases

In this part, we complicate the sensing context by studying a typical Adaptive Optics case : the
presence in the pupil plane of residual phases which are distinct from the phase-to-be-measured.
They may be static (as for instance the vast majority of Non Common Path Aberrations (NCPA))
or dynamic (as for instance uncorrected turbulent phase). In the first case, we call these terms φs

for static residuals. In the same way, we call the dynamic ones φd and we assume their statisti-
cal behavior to be known. In particular, the notation

〈
.
〉

means ”average on the residual phases
statistics”.

The residual phases are taken into account exactly as the tip/tilt modulation, i.e. by adding
phases to the incoming field. We thus replicate the calculations of paragraph 3.1 while assuming
the sliding pupil approximation (26) and using the linearity of the average operation. The WFS’s
kernel associated to this new situation is:

K|~R;~r = 2Im
[

¯̂m|~R−~r
∫
R2

d2~r’ m̂|~R−~r’ (ŵIP )|~r’−~r Rs|~r’;~rRd|~r’;~r

]
(30)

where functions Rs and Rd characterize the static and dynamic Residual phases:

Rs|~r’;~r ≡ e−ıφs|~r eıφs|~r’ (31)

Rd|~r’;~r ≡
〈
e−ıφd|~r eıφd|~r’

〉
(32)

We observe unfortunately that residual phases break the convolutional model: it is impossible to
write (30) as a convolutional relation without doing supplementary assumptions.

5.1 Dynamic residuals

We firstly consider dynamic residuals. In an Adaptive Optics context, we can assume that they are
Gaussian-distributed and zero-mean phase, it allows us to simplify the function Rd into:

Rd|~r’;~r = e−
1
2

〈
(φd|~r’−φd|~r)2

〉
= e−

1
2

D|~r’;~r (33)

where D is the structure function of the residual phases.4 This quantity is much more easy to
compute and well-known concerning the full or residual atmospheric turbulence. In order to go
even further, we can use the eventual stationarity of the dynamic residuals which says that the
structure function only depends on the distance between the points where it is computed:

D|~r’;~r = D|~r’−~r =⇒ Rd|~r’;~r = Rd|~r’−~r (34)

Thus, the set of assumptions ”Gaussian-distributed + zero-mean + stationarity” allows to make
Rd function of ~r’ − ~r only. In other words, if these assumptions are valid, sensing in presence
of dynamic residuals is compatible with the convolutional kernel. It also means that obtaining K
does not require doing a large number of statistical realizations : knowing the structure function is
enough. Such a fact implies a significant acceleration of numerical simulations. Finally, it is worth
noticing that to take dynamic residuals into account, we just have to change the weighting function
by using the structure function D:

ŵIP → ŵIP e−
1
2

D (35)

Such a fact is, afterwards, quite logical. The tip/tilt modulation itself may be understood as a
”dynamic residual phases”; its weighting function is a way to characterize its statistics.
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5.2 Static residual

We are now interested in static residual. We observe in (31) that Rs does not depend on ~r’−~r only.
Thus the kernel is not convolutional due to the presence of static residual. To be able to use the
convolutional model, we perform a Taylor’s development of the phases difference in (31) around
~r’−~r:

φS|~r’ − φS|~r = (~r’−~r) ·
(
~∇φS

∣∣
~r’−~r

)
+ ...|~r’;~r (36)

= Dφs|~r’−~r + ...|~r’;~r (37)

where D is a differential operator defined as:

Dφ|~r ≡ ~r · ~∇φ|~r (38)

We observe that keeping the first term in (37) makes Rs a function of ~r’ − ~r only. Generally this
approximation is not valid but it is worth noticing that the only static residual phases for which
it is not an approximation are pure tip/tilt aberrations. Physically, it means that the only static
residuals which are rigorously compatible with the convolutional model are tip/tilt. This is not that
surprising: adding such a static phase in the pupil plane is absolutely equivalent to using a shifted
weighting modulation. Nevertheless, it can be shown that the first term of (37) are predominant
compared to the next ones as soon as φs only contains low order aberrations. To summarize, if
this ”low order approximation” is valid the convolutional model becomes usable again; taking into
account static residual just consists in adapting the weighting function:

ŵIP e−
1
2

D → ŵIP e−
1
2

DeıDφs (39)

5.3 Effective Modulation

We are now ready to give the Impulse Response in presence of dynamic and static residual phases.
To do so, we examine the convolutional Kernel when the three following assumptions are valid:

• ”Sliding pupil approximation” about the pupil geometry.

• ”Gaussian-distribution + zero-mean + stationarity” about the dynamic residuals statistics.

• ”Low order static aberration approximation” about static residual phase.

K|~R;~r = 2Im
[

¯̂m|~R−~r
∫
R2

d2~r’ m̂|~R−~r’

(
ŵIP e−

1
2

DeıDφs
)
|~r’−~r

]
(40)

At first sight, this Kernel depends on 5 distinct quantities: 3 related to the parameters of the optical
Fourier filtering system (m,w,IP ) and 2 which characterizes the residual phases (D,Dφs) but it is
actually possible to reduce drastically this complexity by introducing a concise quantity that we
call ω and which is defined via its Fourier transform:

ω̂ ≡ ŵIP e−
1
2

DeıDφs (41)

Physically, ω may be seen as an effective modulation weighting function when taking into account
the finite size of the pupil and the residual phases. To be convinced of this, we will lead a small
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mental experiment by including just before the filtering mask, an imaginary camera. This one will
allow us to visualize in the focal plane the effects of the tip/tilt modulation and residual phases.
We start with the most basic sensing context, i.e. an infinite pupil without any residual phases.
In that case, the fictive camera will record the weighting function w, exactly as if w were the
shape of an extended object. Thus the effective weighting function rigorously equals to the tip/tilt
weighting function, cf. (42). Unfortunately, this case is not realistic: the pupil cannot have an
infinite size, this one necessarily windows the incoming field which will result in a blurring of
the tip/tilt weighting function. More precisely, w is convolved with the Point Spread Function
associated to the pupil. In the Fourier space, it exactly corresponds to (43). If we add now a static
residual φs, the Point Spread Function will be degraded. Thus, a new term has to be added in ω;
it is the (44). We can repeat this argumentation for dynamic residual phases only (45). The most
general case corresponds to (46); it allows to understand the sensing in presence of dynamic and
static residual phases as a tip/tilt modulation using the effective weighting function ω. An example
is given on Fig. 5 which shows how to compute the effective weighting function when sensing in
open loop on a typical turbulent atmosphere. We may observe a blurring of the original weighting
function due to the low-pass filtering induced by the IP e−

1
2

D term. Physically, the residual phases
act like a supplementary modulation.

Infinite Pupil ω̂ = ŵ (42)
Finite Pupil ω̂ = ŵIP (43)

Finite Pupil + static residual ω̂ = ŵIP eıDφs (44)

Finite Pupil + dynamic residuals ω̂ = ŵIP e−
D
2 (45)

Finite Pupil + dynamic & static ω̂ = ŵIP eıDφse−
D
2 (46)

In conclusion, to characterize a WFS in the convolutional model, a generic Impulse Response
depending on the mask m and the effective weighting function w only is sufficient:

IR = 2Im
[

¯̂m(m̂ω)
]

(47)

To take into account the tip/tilt modulation, the pupil geometry and the residual phases, we just
have to use (43) to (46). Such a result is also valid for the Transfer Function which has a concise
expression when depending on m and w.

TF = ı( ˆ̂m ?mω −m ? ˆ̂mω) (48)

Indeed, we observe that the TF only requires basic mathematical operations: conjugation, convo-
lution and double Fourier transform (i.e. symmetry operation). It is worth noticing that (48) is
even more clear if the optical system is centro-symmetric. (It is for instance the case of the 4-faces
Pyramid WFS with a ring modulation and isotropic residual phases.) As a matter of fact, we get:

TF = 2Im
[
m ?mω

]
(49)

The computational simplicity of (48) or (49) is especially interesting because of its link with the
WFS’s sensitivity regarding to the phase spatial frequencies (for more details, see appendix A).
Indeed this quantity is the essential to know how noises are propagating in AO loops, see for
instance5 or to build efficient convolution based phase reconstructors.6
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Fig 5 Numerical method to compute the effective weighting function in presence of dynamic residual phases. We
consider in this example a ring modulation with a modulation radius of 7 λ/D and a typical Kolmogorov turbulence
structure function with r0 = D/4.

6 Conclusion

This paper is dedicated to a natural extension of the theoretical work done in1 about Fourier-based
WFSs. Using the mathematical framework describing these sensors, we showed that they may be
understood as 2D integral operators which are completely characterized by their Kernel.

In the first part, we provided an explicit expression of this quantity depending on the WFS’s
optical parameters: pupil geometry, weighting function of the tip/tilt modulation and filtering mask
and showed that it can be understood as the continuous calibration matrix with respect to the Dirac
phase basis. Nevertheless, in spite of the generality of the kernel’s expression, this one remains
difficult to calculate numerically because of the computational complexity introduced by the tip/tilt
modulation.

The particular case of convolutional kernels, which correspond to highly redundant circulant
matrices, solves this problem. In this case, the WFS’s output equals the convolution product be-
tween the phase-to-be-measured and a quantity called the Impulse Response of the sensor. It was
found that this quantity directly depends on the optical parameters and then allows to calculate
performance criterion like the sensor’s sensitivity with respect to the spatial frequencies in a much
faster way than existing numerical simulations. The convolutional model then represents an ideal
tool to compare and optimize in an exhaustive way the Fourier based WFSs, as for instance the
very abundant Pyramid WFSs class. Indeed, if such a study has already been done for the filter-
ing masks (n-faces Pyramids,7 Axicon;8–11 Flattened Pyramid;12 masks with manufacturing errors,
etc.) the tip/tilt modulation still remained to be explored due to the computing time it required.
Thanks to the convolutional model, all the 1D modulations (ring, square, etc.) but also 2D mod-
ulations (disc, Gaussian, etc.) are easily taken into account. This also opens the way to random
modulation or sensing with extended objects as Laser Guide Stars.
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In Appendix B, we showed how the convolutional model could be applied to the classical 4-
faces pyramid when using the slopes maps rather than differential intensity as output of the WFS.
We also proved that the sensitivity derived from the convolutional model is in total agreement with
experimental measurements.13

Since the convolutional model is an approximation, we paid special attention to the required
assumptions. In particular, we showed that the infinite pupil approximation6, 14, 15 is not the only
way to justify the use of that model: a weaker assumption called the sliding pupil assumption
allows to be closer to the real model since it does take into account the pupil geometry’s. These re-
sults suggests that advances may be done in deconvolution-based phase reconstruction by adapting
algorithms to sliding pupil approximation.

Finally, we extended the convolutional model to more realistic sensing contexts. The goal was
to know how to adapt the convolutional Kernel in presence of residual phases which differ from the
phase-to-be-measured. Two cases were addressed: static residual to handle for instance Non Com-
mon Path Aberrations and dynamic residuals to take into account non-corrected turbulent phases.
We showed that under realistic assumptions about residuals statistics, one only has to modify the
modulation weighting function, as for instance by introducing the structure function of the residual
phases. These results are an important step in the theoretical understanding of wave front sensing
in presence of residuals. Indeed, they demonstrate that these ”non pure tip/tilt phases” which vary
in the pupil plane during the sensing may still be described via the tip/tilt modulation weighting
function. Consequently, the convolutional model remains valid when sensing with residuals.

This result opens the path to detailed studies of the so-called ”optical gain”. These ”optical
gains” correspond to variations of the Pyramid WFS sensitivity in presence of partially-corrected
turbulent phases. A solution to this problem consists in adjusting modal gains in the AO loop to
compensate the loss of sensitivity.16 The determination of the modal gains can be derived from
empirical methods,17 and the convolutional model now provides an alternative approach to estimate
the optimal optical gain directly.
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Appendix A: Sensitivity with respect to phase spatial frequencies

This appendix aims to show the link between the Transfer Function and the sensitivity with respect
to phase spatial frequencies. Such a basis describes phases in terms of Sines and Cosines:{

φcos
~k : ~r→ cos

(
2π~k.~r

)
and φsin

~k : ~r→ sin
(

2π~k.~r
)

with ~k ∈ R2
}

(50)

where ~k may be seen as a position vector in the spatial frequencies space. Usually, the sensitivity is
defined thanks to a scalar which quantifies the ratio between WFS’s output and input. For instance,
the sensitivity with respect to a phase mode φ is defined as:

||Ilinear(IPφ)||2
||φ||2

(51)

We showed in1 that such a definition was consistent with18 and19 approaches. In our case, a more
convenient way to represent the sensitivity consists in grouping the sine and cosine sensitivities
into a unique number associated to ~k.

s|~k ≡
√∣∣∣∣∣∣Ilinear(IPφcos

~k
)
∣∣∣∣∣∣2
2

+
∣∣∣∣∣∣Ilinear(IPφsin

~k
)
∣∣∣∣∣∣2
2

(52)

where we purposely did not write a scalar coefficient allowing to normalize these phases on the
pupil support with respect to RMS norm. From now, we will assume that the convolutional model
is valid to simplify this expression. We have for instance for the cos term:∣∣∣∣Ilinear(IPφcos

~k )
∣∣∣∣2
2

=
∣∣∣∣(IPφcos

~k ) ? IR
∣∣∣∣2
2

(53)

=
∣∣∣∣∣∣ÎPφcos

~k
× TF

∣∣∣∣∣∣2
2

(54)

=
∣∣∣∣∣∣(ÎP ? φ̂cos

~k

)
× TF

∣∣∣∣∣∣2
2

(55)

where we used the Plancherel theorem. Moreover, we know that

φ̂cos
~k

=
δ~k + δ−~k

2
and φ̂sin

~k
=
δ~k − δ−~k

2ı
(56)

As a consequence,∣∣∣∣∣∣(ÎP ? φ̂cos
~k

)
× TF

∣∣∣∣∣∣2
2

=
1

4

∫
R2

d~r
∣∣∣ÎP |~r−~kTF|~r + ÎP |~r+~kTF|~r

∣∣∣2 (57)

∣∣∣∣∣∣(ÎP ? φ̂sin
~k

)
× TF

∣∣∣∣∣∣2
2

=
1

4

∫
R2

d~r
∣∣∣ÎP |~r−~kTF|~r − ÎP |~r+~kTF|~r

∣∣∣2 (58)

which gives∣∣∣∣∣∣(ÎP ? φ̂cos
~k

)
× TF

∣∣∣∣∣∣2
2

+
∣∣∣∣∣∣(ÎP ? φ̂sin

~k

)
× TF

∣∣∣∣∣∣2
2

=

1

2

∫
R2

d~r
∣∣ÎP ∣∣2∣∣∣

~r−~k

∣∣TF
∣∣2∣∣∣

~r
+

1

2

∫
R2

d~r
∣∣ÎP ∣∣2∣∣∣

~r+~k

∣∣TF
∣∣2∣∣∣

~r
(59)
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With |ÎP |2, we identify the Point Spread Function the diffraction limited imaging system. Since
the indicator pupil function is real, the PSF is necessarily centro-symmetric. The sensitivity with
respect to spatial frequencies finally equals to:

s|~k =
√
|TF|2 ? PSF

∣∣∣
~k

(60)

This formula explains why the convolutional model is so efficient to explore the abundant world of
Fourier-based WFSs. Indeed, it proves that it is possible to get very quickly an idea of the WFS’s
the response with respect to spatial frequencies; there is no need to build an interaction matrix via
time demanding end-to-end codes, using our knowledge of the system’s optical parameters (m, w
and IP ) and the residuals nature (D and Dφs) in (48) and (60) is enough.

Appendix B: Application to the Pyramid WFS

In this appendix we apply the previous developments to the most famous and used20–23 Fourier-
based WFS which is the Pyramid Wave Front Sensor. We study the following configuration: a
4-sided pyramid with an apex angle large enough to completely separate the pupil images that this
optical device produces. In order to handle independently these 4 pupil images, we assume that
they are generated by 4 Fourier based WFSs using 4 different filtering masks m1, m2, m3 and m4.
Each of them corresponds to one quadrant of the cartesian tessellation performed by the Pyramid,
see Fig. 6. Moreover, we assume that the effective modulation function ω is identical for these 4
WFSs.

Fig 6 Focal plane tessellation for the 4-sided Pyramid WFS. The 1, 2, 3 and 4 indices correspond the the mask’s
numbers.

∆I1(φ) = (IPφ) ? IR(m1, ω) (61)
∆I2(φ) = (IPφ) ? IR(m2, ω) (62)
∆I3(φ) = (IPφ) ? IR(m3, ω) (63)
∆I4(φ) = (IPφ) ? IR(m4, ω) (64)

where
IR(mi, ω) = 2Im

[
¯̂mi(m̂i ? ω̂)

]
(65)
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The set of the differential intensities {∆Ii} may constitute the Pyramid WFS’s output. Neverthe-
less historically we prefer to combine them to define two new signals called the slopes maps:

Sx = (∆I4 + ∆I2)− (∆I1 + ∆I3) (66)
Sy = (∆I1 + ∆I2)− (∆I4 + ∆I3) (67)

The slopes maps have many advantages. They firstly improve the linearity range of the PWFS
but they also condense in a smaller signal the phase information. Finally they allow to understand
physically how the Pyramid performs the wave front sensing: as a matter of fact, Sx (resp. Sy)
may be seen as the phase derivative in the spatial frequencies space along the x-axis (resp. a-axis).
Since (66) and (67) transform linearly the differential intensities, it is still possible to associate to
them two impulses responses. Indeed, if we define

IRx ≡
(
IR(m2, ω) + IR(m4, ω)

)
−
(
IR(m1, ω) + IR(m3, ω)

)
(68)

IRy ≡
(
IR(m1, ω) + IR(m2, ω)

)
−
(
IR(m4, ω) + IR(m3, ω)

)
(69)

the WFS’s input/output relation remains convolutional:

Sx = (IPφ) ? IRx (70)
Sy = (IPφ) ? IRy (71)

Sx

Sy

Linear Convolutional Residuals
model model

Fig 7 Comparison between the slopes maps along x (top) and y (bottom) axis for an arbitrary turbulent phase in the
linear (left) and convolutional (middle) models. Right inserts give the residuals between the two maps. We assume a
circular pupil and a ring modulation with a modulation radius of 2 λ/D. The 6 figures have the same greyscale; black
corresponds to the mimimum value whereas white corresponds to the maximum.

In order to check the validity of the convolutional model, we give on Fig. 7 the slopes maps
when calculating for the linear (left) and convolutional (middle inserts) models. We choose an
input phase which follows a typical atmospheric turbulence. We ensure that the WFS is working
in its linearity range. We may observe on the residuals maps (right insert) that these models are in
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good agreement except at the edge of the pupil. Such a fact confirms the predictions of (27) which
says that the sliding pupil approximation is not valid on the pupil discontinuities. These results are
another proof in favor of phase reconstructors based on deconvolution.

We are now interested in the PWFS’s sensitivity with respect to the spatial frequencies. To do
so, we just have to know the transfer functions associated to the slopes maps. These ones may
be calculated directly from IRx and IRy but it is also possible to give the TFs’ dependency with
respect to the masks and the effective weighting function thanks to (48):

TFx = 2ı
[
m3 ? (m2ω)−m2 ? (m3ω) +m1 ? (m4ω)−m4 ? (m1ω)

]
(72)

TFy = 2ı
[
m3 ? (m2ω)−m2 ? (m3ω)−m1 ? (m4ω)−m4 ? (m1ω)

]
(73)

It is then possible to use (60) to compute from TFx and TFy the sensitivities associated to Sx and
Sy with respect to the spatial frequencies:

Sensitivity along x axis =
√
|TFx|2 ? PSF (74)

Sensitivity along y axis =
√
|TFy|2 ? PSF (75)

We give on Fig. 8 these sensitivities for two modulation radii: 0.5 λ/D on the left inserts and 2
λ/D on the right ones. Color scale goes from 0-black which corresponds to non-seen frequencies
to 1-white which codes the best seen frequencies. For the slopes map Sx, we observe that the best

Fig 8 Sensitivity with respect to the spatial frequencies associated to the slopes maps along x (top) and y (bottom)
axis. Two modulation radii are used: 0.5 (left) and 2 (right) λ/D. Axis are graduated in λ/D.

sensitivity lies around the x-axis while the worst is around the y one. In another word, Sx does
measure spatial frequencies in the x-direction but is blind to those in the y-direction. Fortunately,
the other slopes map Sy is complementary. The association of the two slopes maps is therefore
able to all the spatial frequencies. Nevertheless, it is worth noticing that low spatial frequencies,
i.e. those with are in the midst of the images, have degraded sensitivity in both slopes maps. The
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number of these badly seen frequencies is even increasing with the modulation radius. We also
observe that the transition frequency between this degraded response and the flat-gray response
exactly corresponds to the modulation radius. Such results are in perfect agreement with previous
works3 about the link between sensitivity and modulation.

It is also worth mentioning that the total sensitivity is maximum on the neighborhood of the
edges of the pyramid mask. Such a fact is not surprising since we know from Foucault and his
knife-edge test24 that wave front sensing efficiently works where discontinuities are. We note that
this area of maximum signal grows with the modulation radius. It comes from the fact that the
modulated Point Spread Function enlarges with the modulation and thus communicates more with
the edges of the pyramid mask.

The convolutional model is therefore able to reproduce well-known behaviors of the Pyramid
WFS but it also constitutes a significiant improvement in the theoretical understanding of this
widely used sensor. As a matter of fact, it is the only 2D model able to accurately mimic the cross
structure which as been observed experimentally.13

Appendix C: From Integral transform to Matrix transform

We give in this appendix some elements allowing to understand the link between kernels and
matrices. First, we use the lexicographic order for all the 2D images: phase, mask, weighting
function, differential intensity, etc. handled in this article. As a consequence, 2D variables become
1D variable:

~R → X (76)
~r → x (77)

(78)

With such notations, an integral transform may be written:

Output|X =

∫
dx K|X;x Input|x (79)

In order to make appear a matrix transform, we discretize the spatial variables. Previous integral
thus becomes a sum:

Outputi =
∑
j

Ki,j Inputj (80)

We obviously identify a matrix operation:

Output = K Input (81)

where K may be understood as:


Output1
Output2

...
Outputn

 =

y
X

−−−−−−−−−−−−−−−−−−−−→
K1,1 K1,2 · · · K1,n

K2,1 K2,2 · · · K2,n
...

...
. . .

...
Kn,1 Kn,2 · · · Kn,n



x 
Input1
Input2

...
Inputn

 (82)
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x is thus the input space variable while X is the output space variable.
Thanks to this parallel, we may interpret Kernels in the matrix formalism. A typical decompo-

sition of Kernel is for instance:

K|X;x = V|X ×H|x × C|X−x × U|X;x (83)

V, H and C are 1-variable functions and K and U have 2-variables. × is the usual scalar multipli-
cation. In the matrix formalism, previous equation may be written:

Ki,j = Vi ◦Hj ◦ Ci−j ◦Mi,j (84)

where ◦ is the Hadamard product which corresponds to a ”coefficient by coefficient” multiplica-
tion:

(A ◦ B)i,j = Ai,j × Bi,j (85)

Thanks to this interpretation we may detail the structure of V, H and C matrices (there is nothing
to say about the Unspecified matrix U). H is a matrix only depending on the input variable x, it is
thus an horizontal matrix:

H =


h1 h2 . . . hn
h1 h2 hn
... . . . ...
h1 h2 . . . hn


In the same way, V only depends on the output variable X . Is is a vertical matrix:

V =


v1 v1 . . . v1
v2 v2 v2
... . . . ...
vn vn . . . vn


C depends on X − x. In the matrix formalism, such a type of matrix is called circulant. It has the
following form:

C =


c0 c1 . . . cn−1
cn−1 c0 cn−2

... . . . ...
c1 c2 . . . c0
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