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The Mohr-Coulomb criterion is widely used in geosciences and solid mechanics to relate the state
of stress at failure to the observed orientation of the resulting faults. This relation is based on the
assumption that macroscopic failure takes place along the plane that maximizes the Coulomb stress.
Here, this hypothesis is assessed by simulating compressive tests on an elasto-damageable material
that follows the Mohr-Coulomb criterion at the mesoscopic scale. We find that the macroscopic

fault orientation is not given by the Mohr-Coulomb criterion.

Instead, for a weakly disordered

material, it corresponds to the most unstable mode of damage growth, which we determine through
a linear stability analysis of its homogeneously damaged state. Our study reveals that compressive
failure emerges from the coalescence of damaged clusters within the material and that this collective
process is suitably described at the continuum scale by introducing an elastic kernel that describes

the interactions between these clusters.

In 1773, Charles-Augustin de Coulomb proposed his
celebrated failure criterion for materials loaded under
shear or compression [1]. He postulated that failure oc-
curs along a fault plane when the applied shear stress 7
acting on that plane overcomes a resistance consisting of
two parts of different nature: a cohesion 7., which can be
interpreted as an intrinsic shear strength of the material,
and a resistance proportional to the normal pressure, oy .
This results in the Mohr-Coulomb (MC) failure criterion:

|7| = 7 + pon. (1)

Following the former work of Amontons [2], this de-
pendence upon pressure led Coulomb to call it fric-
tion, with u, the corresponding friction coefficient and
¢ = tan~!(p), the angle of internal friction. As a conse-
quence, faulting should occur along the plane that maxi-
mizes the Coulomb’s stress |7|—puo . Its orientation with
respect to the maximum principal compressive stress is
given by the MC angle

T ¢

Ovic = 1 5" (2)

This work led to the so-called Anderson theory of fault-
ing [3], which is widely used in geophysics to interpret the
orientation of conjugate faults [4] and the orientation of
faults with respect to tectonic forces [5]. In this theory,
Onic is uniquely a function of the internal friction angle ¢
and hence is independent of confinement and dilatancy.
Solid mechanics models of compressive failure gener-
ally adopt the same point of view: fault formation is
described as a localization instability in the constitutive
inelastic response of the material [6, 7]. As such, if the
material behavior follows the Mohr-Coulomb criterion,

the fault inclination observed at the macroscopic scale is
expected to follow the MC angle prediction (2).

However, important issues remain to be addressed re-
garding the applicability of this theory. Even though
the MC criterion (1) describes accurately the failure
enveloppe of quasi-brittle solids like rocks [8, 9] and
ice [10, 11], the ability of MC angle prediction (2) to
capture fault orientation is still debated [12, 13]. In
particular, experiments have reported an increase of the
fault angle with the lateral confinement, which is incom-
patible with the MC prediction [14-16]. Besides, while
Coulomb’s theory provides a simple instantaneous cri-
terion for failure, it says nothing about the process of
damage spreading that precedes it. It is now widely ac-
cepted that the compressive failure of quasi-brittle ma-
terials does not occur suddenly, but instead involves the
nucleation and growth of microcracks, which interact and
finally coalesce to form a macroscopic fault [17-19]. It
is not clear at all if this phenomenology is compatible
with the point of view that macroscopic faulting emerges
from a local instability in the material constitutive re-
spounse [3, 6, 7], nor with the assumption that fault orien-
tation in materials that do follow the MC failure criterion
is given by the MC angle.

Damage spreading under compression and the progres-
sion towards macroscopic failure is well captured by con-
tinuum damage models, wherein microcrack density at
the mesoscopic scale is represented by a damage vari-
able and is coupled to the elastic modulus of the mate-
rial [20-23] (Fig. 1). In these models, a failure criterion is
implemented at the local scale, that is, usually, the scale
of the mesh grid element. Material heterogeneity is ac-
counted for by introducing some noise in either the elastic
modulus or the local failure criterion. When the state of



stress over a given element exceeds this criterion, the level
of damage of this element increases, thereby decreasing
its elastic modulus. Long-range elastic interactions arise
from the stress redistribution initiated by the local drop
in the elastic modulus. This redistribution can induce
damage growth in neighboring elements and eventually
trigger avalanches of damaging events over longer dis-
tances. Such models have been shown to reproduce many
features of brittle compressive failure, such as the clus-
tering of rupture events and the power law distribution of
acoustic events sizes prior to the emergence of a macro-
scopic fault [20, 24-26]. They are thus relevant tools to
study the process of damage localization that leads to
failure and, in particular, the dependence of the angle of
localization of damage on the parameters involved in the
damage criteria.

Here, we use such a tool to investigate how the macro-
scopic fault emerges from the accumulation of micro-
scopic damage events and test commonly used models
that describe compressive failure as a local material in-
stability [6, 7]. In particular, we simulate compression
experiments of specimens of an elasto-damageable ma-
terial that satisfy the MC failure criterion at the meso-
scopic scale and study the inclination of the macroscopic
rupture plane as a function of the internal friction angle
under different confinement conditions. We show that
the orientation of the simulated fault is not given by the
MC angle. Instead, we find that the most unstable mode
of damage growth, which is inferred from a linear stabil-
ity analysis at the specimen scale, provides a good esti-
mation of the fault orientation for weakly heterogeneous
materials. Our findings shed light on the significance of
elastic interactions and damage coalescence on the fault
formation during compressive failure of quasi-brittle ma-
terials. It also suggests that the modeling strategy that
consists in damage localization from the homogenized
material response may be insufficient, but that this diffi-
culty may be overcome by addressing the stability of the
damage growth process at the macroscopic scale using
the elastic interaction kernel introduced in this study.

Following Refs. [22, 24] and others, the model is based
on an isotropic linear-elastic constitutive law where the
elastic modulus,

E(d) = (1 —d)E°, (3)

is a decreasing function of the scalar internal variable,
d € [0, 1], which describes the level of damage in a mate-
rial element, with E° the Young’s modulus of the undam-
aged specimen. For sake of simplicity, Poisson’s ratio, v,
is assumed constant and does not vary with d. Mate-
rial heterogeneities are introduced via the local critical
strength by assigning different cohesions, 7., to the con-
stitutive material elements.

In the numerical simulations, a two-dimensional rect-
angular specimen of an elasto-damageable material with
dimensions L x L/2 is compressed with a stress ¥; by

Oay(z,L) =0,2>0
uy(z, L) = —Ucomp, T > 0

0.6

u(0,0) =0 (0,L/2) *
Uy (2,0) = 04y (2,0) =0, >0 (a)

FIG. 1.

Compressive test simulation:
boundary conditions are superimposed to a snapshot of the
field of the level of damage, d, simulated after peak load (tim-

(a) The prescribed

ing indicated by the red vertical line in (b)). The material
properties in this simulation are ¢ = 30° and v = 0.3 and
the disorder parameters, n = 0.05 and a = 1. No lateral
confinement is applied. The orientation of the fault, fioc, is
determined by a projection histogram method [16]. (b) The
corresponding stress-strain (black) and damage rate (grey)
curves are given by the solid lines. The dotted lines show
the same quantities for a simulation using identical loading
and material properties and a stronger disorder (n = 0.5 and
a =1). (b, inset) Macroscopic maximum and minimum prin-
cipal stresses, X1, X2, (colored dots) estimated at the onset
of damage localization (i.e. at peak load) in a set of 5 simu-
lations using the same material properties as in (a) and (b)
and different confining ratios (biaxial compression for R > 0
and biaxial compression-tension for R < 0). The black solid
lines represent the MC criterion for 7. = 1. Open circles are
used for the disorder parameters 7 = 0.05 and a = 1 and filled
circles for the parameters 7 = 0.5 and a = 1.



prescribing a constant velocity, tcomp, on its upper short
edge with the opposite edge fixed in the direction of the
forcing (Fig. 1la). Plane stresses are assumed. A confin-
ing stress Yo can be applied on the lateral sides; in this
case, the confinement ratio R = ¥5/%; is kept constant.
We denote o the external stress tensor prescribed to the
sample. At each time step, the damage level of the ma-
terial elements for which the stress is over-critical with
respect to the local MC criterion is increased such that
overcritical stresses are projected back onto the MC en-
veloppe [16]. Both the prescribed velocity on the up-
per edge of the specimen and the lateral confinement
are small enough to ensure a quasi-static driving and
small deformations. The simulations therefore rely on
the numerical resolution of the following force balance
and Hooke’s law:

V-o(r)=0, (4)

E FEv
- 1+y€(7“)+ T trerhL (5)

o(r)

where o (1) and €(r) are the planar stress and strain ten-
sors in the specimen.

Equations (4) and (5) are solved using variational
methods on a 2-dimensional amorphous grid made of
more than 33000 triangular elements [16]. A typical
stress-strain response is shown in Fig. 1(b) for no con-
finement, ¢ = 30° and v = 0.3. Consistent with the fail-
ure in compression of quasi-brittle materials monitored
via acoustic emissions [26, 27] as well as with previous
progressive damage simulations of this process [22], the
simulated damage indicates some precursory activity. It
is initially distributed homogeneously over the domain
(not shown) and localizes progressively as the loading is
increased. Fault formation is identified by the sudden
rise of the damage rate and corresponds to peak load.

As done in laboratory experiments on rocks [13, 15]
and ice [10], we measured the failure enveloppe by testing
specimens under different confinement ratios (see inset of
Fig. 1(b)). We observe that the failure enveloppe of the
specimen given by the principal stresses (X1, ¥2) at peak
load reproduces the MC criterion enforced at the mate-
rial level. Therefore, in agreement with observations [11],
1 appears to be a scale-independent property in our nu-
merical model.

The damage field after peak load exhibits a localiza-
tion band characteristic of compressive failure (Fig. 1(a)).
A projection histogram method is used to determine its
orientation [16], hereinafter referred to as the localiza-
tion angle, 0),.. We observe that the value of 6. is
robust and independent of both the mesh size and the
aspect ratio of the specimen [16]. A first set of compres-
sion test simulations representing a minimum disorder
scenario is initialized with a field of cohesion that is uni-
form for all except one element chosen at random. For
this inclusion, 7, is initially 5% weaker and is reset to

the uniform value of its neighbors after its first damage
event. Fig. 2(a) shows the mean localization angle as a
function of the internal friction angle ¢ and Fig. 2(b,c),
the same results for different Poisson’s and confinement
ratios, respectively. Neither the value nor the variation
of O, with ¢ agree with the MC prediction. In particu-
lar, the simulated fault orientation varies with Poisson’s
ratio as well as with confinement, a dependence that is
not accounted for in the MC theory, but that has been
observed in laboratory experiments on rocks [13-15].

To understand how macroscopic failure arises in the
model, we perform a linear stability analysis of the ho-
mogeneously damaged solution. In our simulations, the
damage field follows the evolution law
@(r,t) = Flo®,d(r,1)] (6)
ot
where the damage driving force F' is non-local: its value
for a material element depends on the damage level ev-
erywhere in the specimen. The linear stability analysis
amounts to linearizing this evolution equation around an
homogeneous damage field. Assuming an infinite spec-
imen, the problem is translation invariant and the lin-
earization can be written as a convolution product of the
damage field with the elastic kernel W40 go [28]:

Flo® d(r,t)] ~ Flo®,d°] + ¥po go x d(r,t), (7)

where dd(r,t) = d(r,t) —d° < 1. The kernel ¥ is
reminiscent of the Eshelby solution for the mechanical
field around a soft inclusion embedded in an infinite 2D
elastic medium, which also decays as 1/r? [29]. It pro-
vides the redistribution of driving force F' following a
localized (4-distributed) damage growth and as such, de-
scribes the elastic interactions between material elements
during damage spreading. In Fourier space, it does not
depend on the magnitude of the wavevector g, but only
on its polar angle, w [16]:

~ 1 i
U(w) = A |sin(w)? — %n(é) X [5 - sin(w)Q] (8)
with A = 25 S0 and § = %4t The evo-

lution of the damage field perturbations is inferred from
Egs. (6, 7). Considering harmonic modes dd(r) o cos(q -
7), their growth rate is given by ¥(w). Since the kernel is
maximal and positive for sin(w*)? = [1 + sin(¢) + 24]/4,
one concludes that (i) a homogeneous damage field is
unstable and (ii) all the wavevectors with the orientation
w* diverge at the same rate as U is independent of the
magnitude of the wavevector. Hence, any linear com-
bination of these modes also diverges at the same rate,
corresponding to a localization band that is perpendicu-
lar to g, leading to an inclination 0y, = 7/2 + w* or

1+ sin(¢) + 25)

9)

01,5 = arccos ( >
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FIG. 2. (a) Mean localization angle 6, as a function of the internal friction angle ¢ for an ensemble of 25 simulations with
minimal disorder using identical boundary and loading conditions. No confinement is applied and v = 0.3. The black dashed
line shows the MC prediction, Onic, the dotted line, the angle of the most unstable mode, 01s and the dashed-dotted line, the
angle of maximal stress redistribution, Omax. The error bars represent +1 standard deviation from the mean. Mean localization
angle for (b) different values of Poisson’s ratio without confinement and (c) different values of confinement ratio for v = 0.3.

with respect to the direction of maximum principal com-
pressive stress. For the sake of simplicity, only the solu-
tion lying in [0,7/2] is kept here, but both inclinations
are actually possible in agreement with the orientation of
the secondary faults observed in Fig. 1(a).

We compare the predicted inclination, 81,5, with the lo-
calization angle, 0}, from the simulations. We find that
the prediction is in excellent agreement with the results
of the minimal disorder numerical simulations (Fig. 2(a))
and reproduces the observed dependence on Poisson’s ra-
tio (Fig. 2(b)). The increase of ), with confinement
(Fig. 2(c)) is also well captured, in qualitative agreement
with experimental observations [15, 16].

Alternatively, the fault orientation may be compared
to the direction along which stress redistribution is max-
imal after a damage event [30]. This angle, Opnax =
arccos(y/[3 + sin(¢) + 26]/8), which maximizes the an-
gular part of the elastic kernel in real space [16], is signif-
icantly different from the orientation of the most unstable
mode, f1,5. Recent compression experiments on granular
materials [31, 32] have suggested that €. may corre-
spond to the preferred orientation of the precursory dam-
age cascades prior to failure while 61,5 provides the final
macroscopic fault inclination. As shown in Fig. 2(a), 015
clearly provides a better agreement with the simulations
than 6.« in the case of a single evanescent heterogeneity.

Real and, especially, natural materials are heteroge-
neous and comprise many randomly distributed impuri-
ties that can serve as local stress concentrators, initiating
microcracking and leading to an extended regime of dif-
fuse damage growth prior to localization [17, 19, 33, 34].
To determine if and how this regime affects the final ori-
entation of the macroscopic fault, we introduce disorder
in the critical strength by drawing randomly the cohe-
sion, 7., of a proportion a of the material elements in the
range 7. [l — 1,1+ 7], with the cohesion of the remain-
ing proportion 1 — a of the elements set to the average

cohesion, 7.. We consider cases of weak (n = 0.05, Fig.
3(a)) and strong (n = 0.5, Fig. 3(b)) disorder. In both
cases, the value of @ is varied between 10, correspond-
ing to a few (~ 3) inclusions in a homogeneous matrix,
and a = 1, for which all elements have a different criti-
cal strength. Consistent with the minimum disorder case
investigated above, the agreement with the orientation
obtained from the linear stability analysis, 05, is best
for @ = 10* (Fig. 3(a, b)). The deviation from g
increases with both the density a of inclusions and the
strength 7 of the disorder, indicating that disorder sig-
nificantly affects the fault orientation 6j,.. In all cases
however, 6,. remains well above 0y¢, and a clear depen-
dence on Poisson’s ratio and on confinement is still ob-
served (see Fig. 3(c, d)). These departures from the MC
theory are in qualitative agreement with the experimen-
tal observations reporting the localization angle and its
dependence on confinement [10, 13-16]. As a direct con-
sequence, our findings question the estimation of internal
friction or of applied stresses from faults orientation in
natural settings [3-5]. To go further in the comparison
of experimental observations with the newly developed
theory, triaxial loading as well as a possible dependence
of Poisson’s ratio on damage should be introduced.

To conclude, the discrepancy between the fault angle
and the Mohr-Coulomb prediction indicates that com-
pressive failure, even when it is not preceded by an ex-
tended regime of stable damage growth, results from the
collective spreading of damage within the specimen. As
such, the fault angle observed in our simulations is suc-
cessfully captured from a stability analysis performed at
the macroscopic scale. The role of elasticity, which is re-
sponsible for the redistribution of the stress after a dam-
age event and for interactions between microcracks, re-
flects in the dependence of the localization angle on the
Poisson’s ratio. The fact that the MC criterion, derived
from the stability of a single material element, fails to
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FIG. 3. Localization angle measured from the compression
simulations as a function of the internal friction angle ¢ for (a)
weak disorder (n = 0.05) and (b) strong disorder (n = 0.5) and
different values of a. No confinement is applied and v = 0.3.
Mean 6ioc for a = 1 and n = 0.5 (strong disorder) and (c)
different values of v without confinement and (d) different
confinement ratios for v = 0.3. The maximum confinement
ratio, Rmax [16], is 58% for ¢ = 15°, 33% for ¢ = 30°, 17%
for ¢ = 45° and 7% for ¢ = 60°. The black dashed line shows
Onc, the dotted lines, Ors, and the dashed-dotted line, Omax.

predict the fault angle suggests commonly used model-
ing approaches to compressive failure [6, 7] that do not
account for the long-range elastic interactions between
damage events may not predict accurately the localiza-
tion threshold, the resulting band inclination and their
relation with the material and loading parameters.
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