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Abstract

Integer models are of particular interest for applications
where predictive models are supposed not only to be accu-
rate but also interpretable to human experts. We introduce a
novel penalty term called Facets whose primary goal is to
favour integer weights. Our theoretical results illustrate the
behaviour of the proposed penalty term: for small enough
weights, the Facets matches the L1 penalty norm, and as the
weights grow, it approaches the L2 regularizer. We provide
the proximal operator associated with the proposed penalty
term, so that the regularized empirical risk minimizer can be
computed efficiently. We also introduce the Strongly Convex
Facets, and discuss its theoretical properties. Our numerical
results show that while achieving the state-of-the-art accu-
racy, optimisation of a loss function penalized by the pro-
posed Facets penalty term leads to a model with a significant
number of integer weights.

1 Introduction
The goal of supervised learning is to estimate a model from
observations which generalises as accurately as possible to
unseen data. We are interested in interpretable models, and
we focus on linear models. Linear models whose weights are
1) sparse; 2) small; and 3) integers are even more preferable
for human experts, since these models are easier to inter-
prete.

Traditionally, a machine learning algorithm is cast as an
optimisation problem. In a classification task, one would aim
to maximize directly the accuracy of the model, however,
the corresponding loss function, the 0-1 loss, is not convex
and its minimization is intractable for real-world applica-
tions. Therefore, a widely used approach is to relax the opti-
mization problem with a surrogate loss, chosen to be convex
(or even better: strongly convex, or smooth), and to bound
the 0-1 loss from above. Such an upper bound obtained on
the surrogate loss provides some guarantees on the accuracy.

In the supervised learning scenario, learning models with
small parameters or weights, and also sparse models, is al-
ready known to be beneficial, since the compact models
overfit less. Shrinking parameters of a model is often ad-
dressed through regularization where the objective function,

Submitted.

subject to minimization, consists of two terms, namely, of a
loss term enforcing accuracy, and of a penalty term which is
responsible for sparsity and for the parameters magnitude. A
number of penalty functions have been proposed. The most
known are probably Tikhonov regularization (Hastie, Tib-
shirani, and Friedman 2009) shrinking parameters towards
zero, and Lasso regularization (Tibshirani 1996) setting a
controlled (by a hyperparameter) number of weights ex-
actly to zero. A number of penalty terms including various
norms and their combinations have been proposed in the past
decade (Hastie, Tibshirani, and Wainwright 2015).

Our aim is to introduce an efficient method to learn com-
pact integer linear models. Several prior works addressed
this question, and among them we would like to mention
the following results. (Golovin et al. 2013) aim to find a
model that is both sparse and integral, mostly for memory-
saving reasons, and they use a randomized rounding scheme
at each step of an online gradient descent to achieve the goal.
(Chevaleyre, Koriche, and Zucker 2013) challenge to esti-
mate a model with very small integers, i.e., either in {0, 1}
or in {−1, 0, 1}. Their motivation is to increase interpretabil-
ity of machine learning models, and they use either a ran-
domized or a so-called greedy rounding scheme at the end
of the optimization process. In (Chevaleyre, Koriche, and
Zucker 2013), the focus is on the hinge loss, and, therefore,
on large-margin classifiers. In the SLIM, proposed by (Us-
tun and Rudin 2016), an integer model that jointly optimizes
sparsity and accuracy by formulating and solving an Inte-
ger Linear Program is introduced and successfully tested on
several benchmarks.

The state-of-the-art methods mentioned above achieve
full integrity, however, they either rely on a serious tinker-
ing of an algorithm such as in (Golovin et al. 2013), or
a post-processing phase (Chevaleyre, Koriche, and Zucker
2013), or come with a drastic computational burden (Ustun
and Rudin 2016).

Our contribution to interpretable models learning is multi-
fold:

• We introduce a novel penalty term, called Facets, which
favours models with small integers;

• We consider theoretical properties and optimisation issues
of the Facets and Strongly Convex Facets penalty terms;



note that the introduced penalty term does not compro-
mise the convexity of the objective function;

• Finally, we illustrate that the proposed method achieves
the state-of-the-art results on real-world data.

The paper is organised as follows. Section 2 is devoted
to notations we use in the paper. We introduce the Facets
penalty term in Section 3. Section 4 is dedicated to theoret-
ical results and properties of the Facets regularization. We
discuss the optimisation issues in Section 5. In Section 6 we
demonstrate our numerical results. Concluding remarks and
perspectives close the paper.

2 Preliminaries
We are in the context of supervised learning where a training
method has access to n observations and their labels. In this
section, we introduce some notions we use throughout the
paper.

Models. A linear model is a vector w ∈ Rm. The in-
tegrity of a model is the proportion of coefficients wj , j ∈
{1, . . . ,m} that are integers. The magnitude of a model is
an upper bound of a norm of w (for an arbitrary norm).

Penalty functions. A penalty function is a convex, non-
negative function Ω : Rm → R which is added to an objec-
tive function for the following reasons:

• to avoid overfitting of an objective function `;

• to ensure parsimony of the model, e.g. to promote spar-
sity via the L1 penalty term, and/or to control coefficients
magnitude via the L2 regularization;

• in this contribution, our particular goal is to enforce in-
tegrity of a model via a penalty term.

Regularized objective. Given two convex functions ` and
Ω, and a positive real number λ, the λ-regularized objec-
tive is the function `+ λΩ. In the context of the Lagrangian
theory, this formulation can be seen as the soft formula-
tion of the hard constrained problem minw:Ω(w)≤k `(w),
with a latent correspondence between parameters λ and k.
It can also be considered as a convex surrogate objective for
the bi-objective minimization problem min(`,Ω). From this
viewpoint, λ is the price regulating the trade-off between `
and Ω. Throughout this paper, ` is fixed (e.g. the Ordinal
Least Squares loss for regression, or the log-loss for classi-
fication), and we denote w?

λΩ the unique model minimizing
the regularized objective `+ λΩ.

Level sets. Given a function φ : Rm → R, and a real
number k, we denote Bφk := {w ∈ Rm : φ(w) ≤ k} the
level set of φ for value k. Thus, BΩL1

k is the closed ball for
the L1 norm centered on the origin of radius k, and BΩL2

k
is the closed ball for the L2 norm centered on the origin of
radius k2.

Proximal operators. Given a penalty function Ω, a pos-
itive real number µ and a model w, the function Rm →
R,v 7→ µΩ(v) + 1

2‖v − w‖22 is strictly convex and there-
fore has a unique minimizer, allowing to define the proximal
operator of the function Ω:

ProxµΩ : Rm → Rm,w 7→ arg min
v∈Rm

1

2
‖v −w‖22 + µΩ(v).

(1)
When Ω is separable, i.e. Ω : w 7→

∑m
j=1 Ωj(wj), comput-

ing its proximal operator is equivalent to finding the intersec-
tion between the graphical representation of the subgradient
∂Ωj and the line y = (w−x)/µ in the 2-dimensional space.
The proximal operators of some widely-used penalty func-
tions can be found in the literature, e.g., in (Bach et al. 2012;
Bauschke and Combettes 2017), usually with a focus on
norms and sparsity-inducing functions. In particular:
• the L2 penalty term leads to shrinkage:

ProxµΩL2 : w 7→ w
1+µ ;

• the L1 penalization leads to soft thresholding:
Prox

µΩ
L1
1D

: w 7→ sign(x)(|x| − µ)+.

3 The Facets Penalty Term
In this section, we introduce the Facets regularizer and dis-
cuss its properties.

3.1 The Facets Function and its Subgradient
Without loss of generality, suppose m = 1, and we consider
a 1-dimensional problem. In order to obtain integer coeffi-
cients, we can use the integer indicator function 1Z : w 7→ 1,
if w ∈ Z, and 0 otherwise. Unfortunately, this function is far
from being convex, and its optimisation is not straightfor-
ward. We propose rather to consider the following penalty
functions.
Definition 1. Let α = (αi)i∈N be a sequence of strictly pos-
itive integers. The α-Facets penalty in the one-dimensional
case is defined as

Ωα−Facets
1D : w 7→

∞∑
i=0

αi max (0, |w| − i) .

This penalty may seem arbitrary, but it is not. In fact, we
can prove that in the 1D case, it is the only penalty satisfying
a few natural properties:
Proposition 1. (Characterization of the α-Facets penalty).
A one-dimensional penalty function Ω1D satisfies the follow-
ing properties if and only if it is a α-Facets penalty for some
sequence α of strictly positive integers.

1. Nullity. Ω1D(0) = 0.
2. Even penalty. Ω1D(w) = Ω1D(−w) for all w ∈ R.
3. Integrality. If the objective function is linear, then adding

our penalty always yields integer weights. More precisely,
define F (δ) = arg minw∈R `δ(w) + λΩ1D(w) where
`δ is the linear objective function w 7→ δw. Let D =
{δ ∈ R : card (F (δ)) = 1} be the set of all values δ ∈ R
on which the solution to the minization problem is unique.
Then, the image of D under F is Z.



Figure 1: Graphical representation of ΩFacets
1D .

Building upon these 1D penalty function, we now define
the multidimensional penalty as follows:

Ωα−Facets : w 7→
m∑
j=1

Ωα−Facets
1D (wj).

The choice of the α sequence has a large impact on the
results. Intuitively, if for some i, j ∈ N we have αi > αj ,
the Ωα−Facets penalty will favor integer i over integer j.
Thus, in order not to favour any integer, we will choose α =
(1, 1, . . .). For the sake of clarity of notation, we will omit
the symbol α in the penalties from now on.
Proposition 2 (Properties of the Facets Penalty).

1. ΩFacets
1D : w 7→

∫ |w|
0
dxedx,

2. The subgradient of ΩFacets
1D is odd. For w ∈ [0,+∞), it is

given by

∂ΩFacets
1D (w) =


{dwe}, if w ∈ (0,+∞) \ N;

[w,w + 1], if w ∈ N?;
[−1, 1], if w = 0.

(2)

The partial subgradient of ΩFacets wrt coordinate j ∈
{1, . . . ,m} is ∂ΩFacets

j (w) = ∂ΩFacets
1D (wj).

3. ΩFacets can be computed in closed form:

ΩFacets(w) =
m∑

j=1

bwjc(bwjc+ 1)

2
+ (bwjc+ 1)(wj − bwjc).

(3)

Figure 1 illustrates the function ΩFacets
1D , and Figure 2 de-

picts its subgradient ∂ΩFacets
1D .

4 Properties of the Facets-Regularized
Optimal Solution

Here we provide some properties of the model w?
λΩFacets ob-

tained by minimizing the regularized risk. We discuss its low
magnitude, high integrity, and its ability to correctly repre-
sent a learning set, and generalize beyond it. The intuition
behind the theoretical properties is provided by the level
sets of ΩFacets, depicted on Figure 3. Indeed, the regular-
ized problem minw∈Rm `(w) + λΩ(w) and the constrained
problem minw∈BΩ

k
`(w) are tightly related, with a latent cor-

respondence between the parameters λ and k. Therefore, the

Figure 2: Subgradient of ΩFacets
1D .

Figure 3: Level sets of ΩFacets.

shape of the level sets BΩ
k tells a lot about the properties of

the minimizer. Precisely, in the case of ΩFacets:

• The level sets have different shapes for different k: while
the innermost sets (small k) are squares, namely, aL1 ball,
the outer sets (bigger k) are increasingly refined approx-
imations of a circle, of a L2 ball. This behavior is a con-
sequence of the inhomogeneity of the Facets penalty, and
we propose to leverage it via scaling which we consider
further in the paper.

• The level sets are polyhedra — facets. The facets, to be
precise, the angles cause that a number of weights are in-
tegers, similarly to the L1 norm which sets a number of
parameters to zero due to the Karush–Kuhn–Tucker con-
ditions satisfied by the minimizer.

4.1 Weights Magnitude
The following result states that the models magnitude can be
arbitrarily controlled by a hyperparameter.

Claim 1. ‖w?
λΩFacets‖

λ→+∞−−−−−→ 0.

The Facets term adds a penalty that is stronger than the
L1 and the squared L2 norms of the weight vector: ∀w ∈
Rm, ΩFacets(w) ≥ ΩL1(w), with equality if and only if
‖w‖∞ ≤ 1, and ∀w ∈ Rm, ΩFacets(w) ≥ ΩL2(w), with
equality if and only if w = 0. This leads to the follow-
ing inclusions for level sets: ∀k ≥ 0,BFacets

k ⊆ BL1

k and
BFacetsk ⊆ BL2

k . Moreover, elementary calculus yields that,



for all models w ∈ Rm :

‖w‖1 + ‖w‖22
2

≤ ΩFacets(w) ≤
‖w‖1 + ‖w‖22 + m

4

2
. (4)

4.2 PAC Setting
We prove that the Facets penalty adds regularity to the learn-
ing process, so that the estimated model is guaranteed to im-
prove as the number of iterations increases.

Claim 2. The risk and margin bounds of model w?
λΩFacets are

at least as good as those of w?
λΩL1

and w?
λΩL2

.

Recall the definition of the Rademacher complexity of a
function class F :

Rn(F) = E

[
supf∈F

1

n

n∑
i=1

f(xi)εi

]
, (5)

where the εi are random variables that take values in
{−1,+1} with equal probability.

As a consequence of the results on the parameters mag-
nitude, for a given radius k ≥ 0, the Rademacher complex-
ity of linear predictors with small magnitude weight vectors
BL1

k , BL2

k , BFacets
k satisfy:

Rn(BFacets
k ) ≤ Rn(BL1

k ) ≤ X∞W
√

2 log(2m)n−1/2,
(6)

Rn(BFacets
k ) ≤ Rn(BL2

k ) ≤ X2Wn−1/2. (7)

This leads to risk and margin bounds similar to those pro-
vided in (Kakade, Sridharan, and Tewari 2009).

4.3 Integrity
Define a solution of the regularized problem wR

Ω,λ =

arg minw∈Rm `(w) + λΩ(w) (where superscript R stands
for regularized). It is strongly tied to that of the constrained
problem wC

Ω,k = arg minw∈BΩ
k
`(w) (superscript C stands

for constrained).
What the Facets offers on top of shrinkage and selec-

tion, is integrity: as depicted by Figure 3, the minimizers
in wC

ΩFacets,k are likely to be found at one of the many ver-
tices of the polyhedron BFacets

k , where some coefficients wj
are integers.

We expect the optimal parameter wR
ΩFacets,λ to achieve a

good level of integrity, with a magnitude and an accuracy
comparable to one achieved by the state-of-the-art wR

ΩL2 ,λ

of ridge regression. We consider wR further in the paper,
and denote it w for simplicity.

Scaling. Given a positive real number γ, γ-scaling is an
operator that transforms a penalty function Ω into a scaled
penalty function scaledγ(Ω) such that:

scaledγ(Ω) : w 7→ Ω
(w
γ

)
. (8)

The hyperparameter γ can be interpreted as the unit length of
the parameter scale. Accordingly, it seems relevant to revise

our notion of integrity, in order to account for the target γZ
scale:

γ − integrity : Rm → [0, 1],w 7→ |{j : wj ∈ γZ}|
m

. (9)

Note that the majority of penalty functions proposed in the
literature are absolutely homogeneous (and often norms),
so that for any positive real a, Ω(aw) = |a|Ω(w). In
such a case, λ-pricing and γ-scaling are redundant, as
λ scaledγ(Ω) ≡ λ

γΩ. Conversely, as ΩFacets is deliberately
inhomogeneous, the two hyperparameters λ and γ should
enable to select separately the size, or strength of the level
set, governed by the shrinkage effect of the penalization,
and its shape, and the number of facets. We assume that the
scaling allows us to increase accuracy and simplicity of the
model.

5 Efficient Minimization of the
Facets-Regularized Risk

In this section, we discuss the optimisation issues of the
Facets penalty term.

Regularized risk minimizers are theoretical objects that
we cannot compute directly, but rather try to approximate
through an optimization algorithm, that yields a sequence
〈wt〉t∈T of iterates. While magnitude and accuracy are con-
vex and continuous properties of the parameter w, this is
not the case for integrity. Therefore, even in the case of a
fully integral limit w?

λΩFacets ∈ Zm, it is quite possible that
the iterates have low, or even zero, integrity. Therefore, it is
of utmost importance to select carefully the algorithm per-
forming the optimization.

We consider the operator splitting approach, widely used
for non-smooth optimization and already known to favor
sparsity under sparsity-inducing regularization. We give a
brief overview of the Proximal Gradient Descent algorithm,
and we give a closed-form expression of the proximity op-
erator of the Facets penalty allowing its efficient imple-
mentation. We also introduce Strongly Convex Facets that
add elasticity, similarly to the Elastic Net penalty (Zou and
Hastie 2005), facilitating both the theoretical analysis of the
algorithm and its performance.

5.1 Proximal Gradient Descent
Proximal algorithms (sometimes called operator splitting
methods) (Moreau 1965; Parikh, Boyd, and others 2014)
were developed to minimize an objective function ` + Ω,
where ` is a smooth differentiable function with Lipschitz-
continuous gradient, while Ω is a non-differentiable func-
tion. Iterative Shrinkage-Thresholding Algorithm (ISTA),
introduced by (Daubechies, Defrise, and De Mol 2004;
Beck and Teboulle 2009), which is a Proximal Gradient De-
scent algorithm, is a two-step fixed-point scheme à la Picard.
It is based on the assumption that, even though the func-
tion Ω might be non-differentiable, the optimization prob-
lem defining its proximity operator can be solved efficiently.
At each time step t ∈ T of ISTA, given a step size τ t > 0:

1. the smooth function ` is linearized around wt so `(w) ≈
`(wt) + (w−wt) · ∇`(wt), and optimized by a forward



Figure 4: Proximity operators of penalty functions: ΩL1

1D (in
orange), ΩL2

1D (in green), and ΩFacets
1D (in blue).

gradient step:

wt+ 1
2 ← wt − τ∇`(w); (10)

2. the non-smooth Ω is augmented by a proximal regulariza-
tion term proportional to ‖w − wt‖2, in order to i) keep
the update close to the previous point, where the linear ap-
proximation of ` is reasonable; ii) to ensure that the reg-
ularization term is strictly convex and smooth; and iii) to
ensure the descent of wt towards the minimizer of `+ Ω.
The optimization of this term is done via a backward (im-
plicit) proximal step:

wt+1 ← ProxτΩ(wt+ 1
2 ). (11)

5.2 Proximal Operator of the Facets Penalty
Fortunately, the proximal operator of ΩFacets can also be ef-
ficiently computed in a closed form.
Proposition 3. For all µ ∈ [0,+∞[, for all w ∈ Rm,
ProxµΩFacets(w) = (sign(w1) · v1, . . . , sign(wm) · vm), j ∈
{1, . . . ,m}:

vj =

⌊
|wj |
µ+ 1

⌋
+

(
|wj | − (µ+ 1)

⌊
|wj |
µ+ 1

⌋
− µ

)
+

. (12)

The proof is provided in the supplementary material.
Figure 4 compares the proximity operators of ΩFacets,

ΩL1 , and ΩL2 1. The curve representing ProxµΩFacets
1D

follows
the general trend given by Prox

µΩ
L2
1D

, which is a straight

line with slope 1
1+µ , but instead of a constant slope, it dis-

plays a plateau of width µ followed by a 45 degrees slope
where ∆x = ∆y = 1, what is identical to the behavior of
Prox

µΩ
L1
1D

between 0 and 1 + µ.

5.3 Strongly Convex Facets
The Facets penalty is neither strongly, nor strictly convex,
as a result of its locally constant subgradient. This is a dis-
advantage, since it provokes a number of optimisation prob-
lems, such as absence of unique solution, procedural regu-
larity violations, slow convergence rate, etc.

1Interestingly, the same functions and diagrams appear in
(Hastie, Tibshirani, and Friedman 2009), without any reference to
proximity operators. Soft thresholding and shrinkage appear as the
modification of a regression problem penalized by ordinary least
squares, when adding respectively L1 and L2 penalization, when
the observation matrix is orthogonal.

In order to enforce the strong convexity of the penalty,
we tweak the subgradient of the Facets penalty by adding a
separable correcting term Ωcorr, so that, for w ≥ 0,

∂Ωcorr
1D (w) = (w − bwc) =

{
0, if w ∈ Z;

w + 1− dwe, otherwise.
(13)

Consequently,

Ωcorr = ΩL2 + ΩL1 − ΩFacets. (14)

Hence, for 0 < ε < 1, the Strongly Convex Facets (SCF)
function defined by

ΩSCFε := ΩFacets + εΩcorr = (1− ε)ΩFacets + ε(ΩL1 + ΩL2)
(15)

is symmetric, null at 0, and ε-strongly convex.
The proximity operator of this modified penalty can be

efficiently computed as follows:∣∣∣ProxµΩSCFε1D
(w)
∣∣∣ = bac+ min

(
1 + µ

1 + µε
(a− bac), 1

)
,

with a =

(
|w| − µ
1 + µ

)
+

(16)

The correcting term modifies the proximity operator of
the Facets penalty in the following manner: the width of
the plateaus (except the one around zero) is shortened by
a length µε, while the width of the slopes is increased by µε,
and the resulting operator is now conveniently (1+µε)−1 <
1 Lipschitz continuous2.

Strict convexity entails the uniqueness of the minimizer
of the regularized objective. In turn, this property provides
resilience to potential correlations between features. Con-
sider a situation where features j and j′ are clones, i.e. for
all data points i, xi,j = xi,j′ . In this case, obviously, the
loss function is blind to trade-offs between wj and wj′ , and,
because it is piecewise linear, so might be the Facets loss
(even though this behavior tends to be localized, as opposed
to the issues encountered by the Lasso). This behavior is not
desired, as it could result in a violation of procedural regu-
larity (Kroll et al. 2016). The principle of equal treatment of
equals imposes that the features j and j′ receive equal atten-
tion, so that the j and j′ coordinates of w?

Ω are equal, but this
is unlikely to happen if the penalty Ω is not strictly convex
(as it is the case for ΩFacets or ΩL1 ). While cloning might be
considered as an extreme situation, maybe resulting from an
adversarial behavior, the issue of having a non-unique min-
imizer might arise as soon as the observation matrix is not
full column rank, i.e. when some features are (strongly) cor-
related.

Scaling. We already mentioned the idea of scaling the
ΩFacets penalty term to obtain a meaningful additional hy-
perparameter. Fortunately, scaling interacts smoothly with

2This is indeed a particular case of a more general result, found
in e.g. (Bauschke and Combettes 2017), tying strongly convex reg-
ularization and shrinkage: a α-strongly convex function has a α-
strongly monotone subgradient, and, therefore, its proximity oper-
ator is Lipschitz continuous with constant (µα+ 1)−1 ∈]0, 1[.



proximal calculus (see e.g. (Bauschke and Combettes 2017),
proposition 24.8):

Proxµ scaledγ(Ω) = γ scaledγ(Prox µ

γ2 Ω). (17)

In the cases of ΩFacets and ΩSCFε , γ-scaling simultane-
ously divides the length of the plateau by γ, and multiplies
both the width and height of the slope by γ.

5.4 Computational Efficiency
Strong convexity leads to computational benefits.
Claim 3. When applied to the Strongly Convex Facets reg-
ularizer, the proximal gradient algorithm enjoys linear con-
vergence, i.e.

‖wt − w?λΩSCFε | ≤ (λτε+ 1)−t‖w0 − w?λΩSCFε ‖. (18)

A precise (and convoluted) demonstration can be found
in (Bauschke and Combettes 2017), example 28.12. It can
be briefly summarized as follows:
• the forward gradient step w 7→ w − τ∇`(w) is non-

expansive when∇` is 2/τ -Lipschitz continuous;
• the backward proximal step ProxλτΩEF

ε
is a (λτε + 1)−1-

contraction.
Linear convergence follows from the Banach-Picard fixed-
point theorem applied to the forward-backward operator
consisting in alternating these two steps.

This fast convergence should be compared to the much
more modest performance achieved by PGD/ISTA in the
general case, which is O(t−1) (or O(t−2) for the Nesterov-
accelerated version FISTA) (Beck and Teboulle 2009).

We discuss possible acceleration scenarios in the supple-
mentary material.

5.5 Regularization Path
Strong convexity of the penalty leads to a proper optimiza-
tion problem3. We can therefore define the regularization
path RP as the function mapping hyperparameters to the
(unique) minimizer of the regularized objective:

RPε : (λ, γ) 7→ w?
λ scaledγ(ΩSCFε ). (19)

Claim 4. The hyperparameters provide smooth control
over the selected model, as RPε is continuous over
]0,+∞[×]0,+∞[.

We provide the proof in the supplementary material.

6 Experiments: a Case Study
We are particularly interested in medical applications, and
we consider the Heart Disease data set (downloadable from
the UCI Machine Learning repository). The data set con-
tains information about 303 patients and 75 features, how-
ever, only 14 features are really used in all previous studies
on this data.

3Contrast this clean-cut situation with the convoluted discus-
sion about ‘having a single solution when the columns of the ob-
servation matrix are in general position’ surrounding the Lasso reg-
ularization.

We implemented the proposed approach in Python, and
the implementation will be publicly available as soon as the
paper is de-anonymised.

To fix the hyperparameters, we apply an extensive grid
search over (λ, γ). It is the trade off between λ and γ which
is important, let α := λ/γ, and let β := λ/γ2. We per-
form the 10-fold cross validation, and plot the mean values.
Figure 5 illustrates accuracy as a function of the shape and
strength of the Facets regularizer. The first remark is that
we achieve the state-of-the-art performance on the data set.
Figure 6 shows the integrity (in blue) and sparsity (in or-
ange) for the corresponding models. It is easy to see that op-
timal (in generalizing accuracy) models reach also the high-
est sparsity and integrity.

Figure 5: Heart Disease data. Accuracy as a function of
(λ, γ), α = λ/γ, β = λ/γ2.

Figure 6: Heart Disease data. Integrity in blue, sparsity in
orange. Note that integrity is always bigger than sparsity,
and often strictly bigger (especially if α is small).



Figure 7: Heart Disease data. Scatter plot of
w?j
γ as a function

of α. Different colors correspond to different values of j,
β ≈ 0.3.

Regularization paths. As argued above, we are not using
the hyperparameters (λ, γ), but α = λ/γ for a fixed value of
τ . The scaled values of w?

γ along the regularization path are
represented on Figure 7. It displays two striking properties:
Integrity: the many plateaus corresponding to values of

w?
j ∈ γZ testify the success of our attempt.

Continuity: the scatterplot looks a lot like a curve, with a
smooth evolution of the coefficients w?

j when α varies.
This continuous aspect testifies a good functioning of the
hyperparameters as knobs permitting to steer the opti-
mization process.

7 Discussion: Why Small Integer Weights?
Models with small integer weights have several clear advan-
tages. We mention some of them below.
• Accuracy and prevention of overfitting. The importance

to control the magnitude of the parameters is well ex-
plained in (Kakade, Sridharan, and Tewari 2009), through
the upper bound on the Rademacher complexity of the
hypothesis class. In the same vein, favoring (small) in-
tegers prevents a learning algorithm from unnecessarily
fine-grained solutions.

• Reduced memory footprint. Small integers take little
RAM. This is the motivation behind the Google’s results
described in (Golovin et al. 2013; McMahan et al. 2013).
The aim is to learn simple prediction models that can
be replicated on highly distributed systems, and that re-
quire very little unitary bandwidth to process billions of
requests.

• Procedural regularity and user empowerment. Sparse lin-
ear models with small integers can be easily used to make
quick predictions by human experts, without computers.
Such models are transparent for users, and can be effi-
ciently used in criminalistics (Rudin, Wang, and Coker
2019), and medicine (Ustun and Rudin 2016).

• Sparsity and interpretability. Favoring integrity can be
seen as an instance of structured risk minimization (Vap-

nik 1990). This intuition is made more explicit in (Be-
lahcene et al. 2019), where the positive integer weights
of a linear model are interpreted as a number of repe-
titions of premises of a ceteris paribus reasoning, simi-
larly to the coefficients mentioned by Benjamin Franklin
in his Moral Algebra. Integrity is a requirement for inter-
pretability, while magnitude is a proxy for simplicity.

• Explainable AI. There exists theoretical and practical im-
portance to be able to explain power indices, such as the
Shapley’s index, in order to interpret the importance of
a feature. To illustrate this issue, consider a linear model
with three features taking values in {0, 1}, with the cor-
responding weights w1 = w2 = 0.49, and w3 = 0.02,
and an intercept equal to −0.5. One could conclude that
features 1 and 2 are far more important than feature 3. In
a game-theoretic approach, one considers various combi-
nations of features. It then becomes clear that this model
is equivalent to the decision rule “at least two features
present”. While magnitude alone does not help (consider
dividing the weights by 100), nor integrity (consider mul-
tiplying the weights by 100), their cumulative effect could
lead to a model with weights w1 = w2 = w3 = 1, and
an intercept of −2, that faithfully reflects the respective
influence of each feature.

• Knowledge discovery. Very small integers can be directly
interpreted, such as 0/1 – presence/absence, or 1/ − 1/0
– friend/foe/neutral, and to reveal biologically relevant re-
lationships in complex ecosystems.

8 Conclusion
We proposed a novel principled method to learn a model
with integer weights via soft constraints. We introduced a
new penalty term called Facets. Our main theoretical results
provide some theoretical foundations of our approach.

The main claim of our contribution is that the novel Facets
penalization can be used to efficiently learn sparse linear
models with small integer weights.

The numerical experiments – the case study of a real-
world medical application – illustrates practical efficiency of
the proposed method. Currently we challenge to accelerate
and to increase the stability of the optimisation procedure.
Another important research direction is to apply our novel
methodology to real hospital data, and to construct real med-
ical scores which can be integrated into clinical routines.



Supplemental Material
Proposition 1 (Characterization of the α-Facets penalty). A
one-dimensional penalty function Ω1D satisfies the follow-
ing properties if and only if it is a α-Facets penalty for some
sequence α of strictly positive integers.

1. Nullity. Ω1D(0) = 0.

2. Even penalty. Ω1D(w) = Ω1D(−w) for all w ∈ R.

3. Integrality. If the objective function is linear, then adding
our penalty always yields integer weights. More precisely,
define F (δ) = arg minw∈R `δ(w) + λΩ1D(w) where
`δ is the linear objective function w 7→ δw. Let D =
{δ ∈ R : card (F (δ)) = 1} be the set of all values δ ∈ R
on which the solution to the minization problem is unique.
Then, the image of D under F is Z.

Proof. (sketch) The if part of the proof is straighforward,
the reader can check that α-Facets penalties satisfy these
conditions. Let us focus on the only-if part. For the sake of
clarity, let Ω : R→ R be our 1D penalty function, which is,
be definition, convex and non-negative.Assume Ω satisfies
the three properties stated in the proposition.

Let us first show that Ω is piece-wise linear. Assume
that Ω is twice differentiable on an open interval ]a, b[,
and Ω′′(x) > 0 for x ∈ ]a, b[. Let z ∈ ]a, b[. Then,
by Taylor’s theorem on Ω′, for any y ∈ ]a, b[ we have:
Ω′(y) = Ω′(z) + Ω′′(z)(y − z) + (y − z)o (1). Thus,
Ω′(y)− Ω′(z) = (y − z) (Ω′′(z) + o (1)). Because the o(·)
term tends to zero, there exists ŷ ∈ ]a, b[ with |ŷ − z| < 1
such that Ω′(ŷ) − Ω′(z) 6= 0. Define `ŷ(w) = −wλΩ′(ŷ)
and `z(w) = −wλΩ′(z). Let fŷ(w) = `ŷ(w) + λΩ(w) and
fz(w) = `z(w)+λΩ(w). Clearly, f ′ŷ(ŷ) = 0 and f ′z(z) = 0.
Because Ω′′(x) > 0 for x ∈ ]a, b[, ŷ = arg minw fŷ(w) and
z = arg minw fz(w), and these minimizers are unique. But
because |ŷ − z| < 1, at least one of these minimizers is not
an integer, which contradicts the integrity property. Thus, on
all open intervals, either Ω is non twice differentiable, either
Ω′′(x) = 0. This caracterizes piecewise linear functions.

Next, let us show that the discontinuities of Ω′ occur at
each integer. If Ω′ is discontinuous at x then there exists
δ such that w 7→ `δ(w) + λΩ(w) is minimized at x and
this minimizer is unique. So the set of discontinuities of Ω′

is exactly the set of unique minimizers of `δ(w) + λΩ(w).
Thus, this set of discontinuities is Z.

Finally, it is easy to show that any piecewise linear
even convex fonction Ω, null at zero, such that its set of
discontinuities is precisely Z can be written as Ω(w) =∑∞
i=0 αi max (0, |w| − i).

Proposition 3 For all µ ∈ [0,+∞[, for all w ∈ Rm,
ProxµΩFacets(w) = (sign(w1) · v1, . . . , sign(wm) · vm), j ∈
{1, . . . ,m}:

vj =

⌊
|wj |
µ+ 1

⌋
+

(
|wj | − (µ+ 1)

⌊
|wj |
µ+ 1

⌋
− µ

)
+

. (20)

Proof. First, as ΩFacets is separable, so is its proximity op-
erator, and we only need to solve a R → R optimization
problem. Second, as ΩFacets

1D is even, its proximal operator

is odd. Third, as, for any nonnegative x, ΩFacets
i (x + 1) =

ΩFacets
1D (x) + 1, we have that y = ProxµΩFacets

1D
(x) ⇐⇒

y + 1 + µ = ProxµΩFacets
1D

(x + 1), so the curve representing
ProxµΩFacets

1D
in the half-plane x ≥ 0 is invariant by translation

of vector (1 + µ, 1). Finally, it is straightforward to check
that, for x ∈ [0, 1 + µ[, ProxµΩFacets

1D
is the soft thresholding

operator x 7→ (x− µ)+.

Claim 4 The hyperparameters provide smooth con-
trol over the selected model, as RPε is continuous over
]0,+∞[×]0,+∞[.

Proof. Our argument relies on the fixed-point scheme de-
scribed by equations (10) and (11). For any positive real
numbers λ, γ, the function F : Rm × [λ,+∞[×]0, γ] →
Rm, (wt, λ, γ) 7→ wt+1 is both

• continuous in (wt, λ, γ), as the gradient step (eq. 10)
is continuous, since ` is smooth; and the proximal step
(eq. 11) is continuous because of the specific form of
ProxµΩλ,γ ;

• uniformly k-Lipschitz w.r.t. wt, independently of the val-
ues of γ and λ, with k = 1/(1 + (λε)/γ2) < 1.

Therefore, the limit w? of the fixed-point scheme depends
continuously on the parameters (λ, γ).

Acceleration of the Optimisation Procedure. An opti-
mal step size is essential to accelerate the optimisation pro-
cedure, and a number of schemes are used to find an optimal
sequence of τ t governing the proximity term:
• an optimal choice is to let τ t be the Hessian matrix of

the objective function at wt. In this case, the function has
to be twice differentiable. Although this choice leads to a
faster convergence of the proximal algorithm, it also de-
mands much more computations at each iteration.

• on the other side of the spectrum, it is possible to let τ t
be a scalar constant, with convergence guarantees for the
case where it is bigger than a Lipschitz constant of the
gradient of the objective function. Exactly this option is
implemented in the ISTA algorithm.

• τ t can be chosen scalar, but regularly updated. (Beck and
Teboulle 2009) propose an adaptive strategy consisting
in choosing τ t just big enough to ensure that the update
from wt to wt+1 is indeed a descent step. (McMahan and
Streeter 2010) also propose a learning rate which is an
update per coordinate, decreasing in magnitude.
The ISTA is not a very fast algorithm, it requires to com-

pute the full gradient of the objective function at each time
step, and its convergence towards the minimizer of the func-
tion is in t−1. Two types of acceleration techniques are
widely used:
Stochastic gradient: Instead of computing the full gradient

of the function, an unbiased estimation of it, e.g. by line
sampling, Online Gradient Descent, yielding the FTRL-
Proximal algorithm (McMahan et al. 2013; McMahan
2017), or column sampling à la Coordinate Descent can
be used.



The Nesterov’s trick: Instead of updating the parameters
directly by the proximity operator of the gradient step,
interpret this new value as a direction only, and find an
update along this direction (Nesterov 2013). This leads to
a t−2 rate of convergence. However, as integrity is not a
convex property of the parameters, it might suffer from
the interpolation step.
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