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Abstract

Where readers move their eyes, while proceeding forward along lines of text, has long been

assumed to be determined in a top-down word-based manner. According to this classical

view, readers of alphabetic languages would invariably program their saccades towards the

center of peripheral target words, as selected based on the (expected) needs of ongoing

(word-identification) processing, and the variability in within-word landing positions would

exclusively result from systematic and random errors. Here we put this predominant hypoth-

esis to a strong test by estimating the respective influences of language-related variables

(word frequency and word predictability) and lower-level visuo-motor factors (word length

and saccadic launch-site distance to the beginning of words) on both word-skipping likeli-

hood and within-word landing positions. Our eye-movement data were collected while forty

participants read 316 pairs of sentences, that differed only by one word, the prime; this was

either semantically related or unrelated to a following test word of variable frequency and

length. We found that low-level visuo-motor variables largely predominated in determining

which word would be fixated next, and where in a word the eye would land. In comparison,

language-related variables only had tiny influences. Yet, linguistic variables affected both

the likelihood of word skipping and within-word initial landing positions, all depending on the

words’ length and how far on average the eye landed from the word boundaries, but pending

the word could benefit from peripheral preview. These findings provide a strong case

against the predominant word-based account of eye-movement guidance during reading,

by showing that saccades are primarily driven by low-level visuo-motor processes, regard-

less of word boundaries, while being overall subject to subtle, one-off, language-based mod-

ulations. Our results also suggest that overall distributions of saccades’ landing positions,

instead of truncated within-word landing-site distributions, should be used for a better under-

standing of eye-movement guidance during reading.
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Introduction

Reading is a complex perceptual and cognitive task, that not only involves the identification of

individual words and their integration in the sentences’ syntactic and semantic context, but

also requires the execution of saccadic eye movements along the lines of text. Necessitated by

the strong decrease of visual acuity with retinal eccentricity, saccades play a crucial role in that

they determine which letters and words benefit from detailed viewing on successive eye fixa-

tions. Yet, whether they are in turn cognitively guided towards the center of target words (or

target word-objects), as selected based on the (expected) needs of ongoing word-identification

processing, still remains an open question. This is a long-standing assumption, that accounts

for a number of well-established eye-movement phenomena (e.g. [1–4]). Nevertheless, given

the slowness of language-related processes and top-down guidance, the possibility remains

that saccades primarily reflect low-level visual and oculomotor processes, that make no

recourse to selection of a saccade-target word(-object) [5–8]. Here we further challenged the

top-down word-based view by re-examining the respective influences of visual and linguistic

variables on where the eyes move during reading, and testing in particular one of its strong

predictions: that linguistic factors should exclusively influence the likelihood a word is fixated

(vs. skipped), and not where in a word the eyes land, rather than overall modulating saccade

amplitudes regardless of word boundaries.

The hypothesis that eye movements during reading are guided in a top-down, word-based,

manner was originally proposed towards the mid-seventies (e.g. [9]), and it has since then

been a predominant assumption, being expressed in different variants, ranging from strategy-

based guidance to language-based guidance (e.g. [10–13]). It remains today a central assump-

tion, that is implemented in the great majority of models of eye-movement control during the

reading of alphabetic languages ([1–4], see also [14–16], but see [17–18]), and to some extent

also during Chinese reading ([19–20], but see [21]). Although word-based models differ in sev-

eral important ways, most rely on the same three basic principles, as originally proposed by

McConkie and colleagues [22]: (1) On every eye fixation, a word(-object) is designated as the

next-saccade target; (2) The functional target location is the center of the word, to optimize

subsequent visual-information uptake and word identification ([23]; for a review see [24]),

although this may shift towards the beginning of words, when the level of uncertainty associ-

ated with the currently fixated word (N) is high, as proposed in SERIF [3], or when word seg-

mentation cannot be achieved, as may occur during the reading of unspaced Chinese text

materials [20]; (3) Where the eyes effectively land results from a compromise between this

(word-center) targeting strategy and both systematic saccadic range error (SRE [25–26], but

see [27–28]), a bias to move the eyes a constant, optimal, distance forward (see also [29]), and

random error.

Word-based models also share the assumption that selection of the saccade target word

depends on the (estimated) efficiency of letter-extraction and/or word-identification pro-

cesses, weighted by visual acuity. Where these models differ is mainly in the processing stages

that enable this selection. In E-Z Reader, words are identified sequentially based on successive

attention shifts [2]. The target word is by default the next word (N+1) on the line, and a sac-

cade to that word starts being programmed as soon as the fixated word (N) has reached a pre-

liminary stage of word processing (i.e., word-familiarity check). However, when Word N is

identified, attention shifts towards Word N+1, enabling in turn its processing in peripheral

vision; if the word-familiarity check associated with this word is complete before the saccade

program enters a non-labile stage, Word N+2 becomes the saccade target, and Word N+1 is

skipped. In SWIFT and GLENMORE, words are processed in parallel within the perceptual

span [1, 4]. The target corresponds to the word whose processing-based "saliency" is the
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highest by the time a random saccade timer, or the level of fixation activity, possibly combined

with language-related inhibition, enables the programming of a saccade. The selected word

thus depends on the amount of lexical processing achieved on foveal and peripheral words by

the time a saccade is ready to go. However, for early-triggered saccades, as additionally pro-

posed in GLENMORE, it is purely determined based on letter visibility; the word-object with

the highest letter-based saliency becomes the target of the next saccade. Finally, in SERIF, the

saccade target is a blob; it is determined in a probabilistic manner, based on the chances of

identifying the words within the right/forward perceptual span, as inferred from the words’

length and eccentricity, as well as their frequency in the language [3].

Regardless of the processing stages involved, these models all make the same general predic-

tions. As they all rely on the general hypothesis that saccades invariably aim for the center of

selected target words (but see [3, 20]), with systematic and random errors being the only

source of variability, they predict that a word’s linguistic properties should nearly exclusively

influence the likelihood the word is skipped, but not where in the word the eyes initially land.

Due to SRE, within-word landing-position distributions should progressively shift towards the

very-end of words as saccades are launched from closer to the words’ beginning, in line with

the well-established launch-site effect ([22, 30]; for Chinese reading see [20, 31]). However,

they should not be affected by the easiness of peripheral word processing, except maybe as a

result of word-skipping failure, thus in the very rare instances when a word, intended to be

skipped, would end up being fixated due to systematic and/or random errors. Still, as mislo-

cated fixations would mainly lay towards the very-end of words [32, 33], only the tail of land-

ing-site distributions could possibly diverge between easy and difficult words.

The central hypothesis in word-based models, that readers’ eye movements reflect word

(-object)-based saccade-targeting mechanisms combined with SRE, however remains debatable.

First, as suggested by alternative, visual-(perceptual-)span models, a continuous (non-word-

based), rather than a discrete (word-based), adjustment of saccades to the needs of ongoing

visual and lexical word-identification processes could also yield seemingly word-based eye-

movement behavior (e.g., the skipping of shorter and easier words), as well as a launch-site

effect ([17, 34, 35], see also [36]; for Chinese reading see [21]). More critically, as suggested by

several empirical findings, and in contradiction with word-based, as well as non-word-based

visual-/perceptual-span, models, both language-related processes and top-down selection of a

saccade goal may be too much time consuming to be the main eye-driving force [5–8]. More-

over, a low-level visuo-motor account for the launch-site effect may be more appropriate than

either SRE or processing-based explanations ([28, 37–39], see also [27]). Vitu’s [5–6, 40] bot-

tom-up, non-word-based, Center-of-Gravity (CoG) theory of eye-movement guidance during

reading relies on these two assumptions, and as we will see, this yields radically different predic-

tions in comparison with word-based models. According to this view, where the eyes move

when proceeding forward along the lines of text, would primarily reflect low-level spatial-inte-

gration mechanisms involved in saccade programming (for reviews see [5, 41]). By averaging

over spatially proximal, bottom-up, luminance-contrast signals, within and across word bound-

aries, these mechanisms would take the eyes towards a fovea-weighted center of gravity of the

peripheral configuration formed by letters ahead of fixation, regardless of their identity and the

word they belong to. Thus, as saccades are launched from closer to the words’ beginning, and

even more so as the words are shorter, the eyes would land further on the line of text, and hence

closer to the words’ end or even beyond it, neither as a result of SRE nor ongoing processing,

but simply because of non-word-based spatial-integration processes. In this framework, ongo-

ing visual and lexical peripheral word-identification processes would also intervene. However,

given the poor resolution in peripheral vision combined with the slowness of language-related

processes [42, 43], they would only mildly modulate default saccade amplitude, and only in
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particular instances, i.e., when the words’ visual and linguistic properties combine to favor an

early access to the word’s representation, and/or when fixations are prolonged.

The bottom-up, non-word-based, CoG theory, thus predicts that a word’s linguistic proper-

ties could potentially, though only mildly, influence not only the likelihood the word is

skipped, but also where in the word the eyes initially land. However, while in theory language-

related variations in word-skipping rate and within-word landing positions should both

become greater as the words are shorter and less eccentric (and more letters from the words

fall within the perceptual span), they should in fact be observed for words of different lengths

and/or for different saccadic launch-site distances respectively. This is illustrated in Fig 1,

where we represented a hypothetical overall slight shift of landing-site distributions towards

the end of easy words, in comparison with difficult words, for different word lengths and sac-

cadic launch-site distances to the beginning of words; the implemented shift was slightly

greater for shorter (left panels) and less eccentric words (upper panels) to reflect the fact that

these words more greatly benefit from peripheral preview. This figure suggests that significant

effects of word difficulty could potentially be observed on within-word landing positions, but

less likely on word-skipping rate, when the distributions happen to peak near the center of

words, thus when the launch-site distance is sufficiently large and/or words are long enough

for the processing-related shift in landing-site distributions to take place within the word

boundaries (see left lower panel and all three right panels). Since these are not all optimal con-

ditions for peripheral word processing, these effects would yet remain rather small, and poten-

tially difficult to observe. In contrast, when the distributions peak near the end of words or

even beyond it, as in the case of shorter and less eccentric words (which are also more easily

processed), the shift would most often occur outside the word boundaries, and likely result in

a significant effect of word difficulty on the likelihood of word skipping, but not on within-

word landing positions (see left upper and middle panels). Thus, in this specific case, the non-

word-based hypothesis would meet the predictions of word-based models, but for different

reasons. Note though that language-related effects should remain much smaller than the effects

of word length and saccadic launch-site distance, that would essentially result from earlier spa-

tial-integration mechanisms [5, 6]. Top-down, word-based (and non-word-based), models,

and E-Z Reader and SWIFT [1–2] in particular, which (unlike GLENMORE [4]) do not

assume different time courses for visual and lexical processes respectively, may yield a different

prediction, at least with no proof to the contrary.

At present, there is no unambiguous evidence for either word-based or non-word-based

predictions. In line with both views, previous studies on the reading of alphabetic, as well as

un-spaced non-alphabetic, languages revealed that words are more likely to be skipped when

they are shorter (e.g. [9, 20]), and/or nearer to the saccade’s starting location (or launch site

[44, 45]), as well as when they benefit from peripheral preview [46–49], they are more frequent

in the language ([20, 50–56], but see [48, 57]), and/or they can be more easily predicted from

the sentence’s context ([20, 48, 50, 55, 58–65]; for reviews see [11, 44, 66–68]). Moreover, as

predicted by word-based and non-word-based accounts, word skipping rate was found to be

more greatly affected by word frequency and word predictability, when saccades were

launched from closer to the words’ beginning [69–70], or the words could benefit from periph-

eral preview [21]. It still remains uncertain how top-down models, and E-Z Reader and

SWIFT in particular, would cope with the likely greater variations in word-skipping rate with

word length, compared to word frequency or word predictability, as reported in two meta-

analyses ([44, 66], see also [54, 71], but see [72]), and as further suggested by comparison of

normal reading and the reading of meaningless, z-transformed, texts ([73–75], see also [76]).

More critically, although many studies on the reading of alphabetic languages failed to

show variations in within-word landing positions with peripheral-preview manipulations [28,
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77, 78], or the frequency and the predictability of words [56, 61, 62, 69, 70, 79–84], some stud-

ies did reveal small though significant effects of word frequency [55, 56, 85], and/or word

predictability [86, 87]. Moreover, a great deal of experiments showed tiny, though consistent,

effects of orthographic ([82, 83, 88–94], but see [52, 70, 95]) and morphological word proper-

ties ([56, 85, 96–103], but see [83, 91, 104–105]) on within-word landing positions. Impor-

tantly, these effects, as well as word-frequency effects, were reported mainly in long words

(> = 7 letters on average), and they held across the entire range of landing positions at least in

studies reporting landing-position distributions [56, 82, 83, 88, 91, 93, 101], thus in line with

predictions from the non-word-based hypothesis. In a similar manner, Lavigne, Vitu and

Fig 1. Illustration of the predictions made by the bottom-up, non-word-based, CoG hypothesis. Under this

assumption, saccade amplitudes should be overall modulated by word-processing difficulties regardless of word

boundaries, but to greater extents for shorter and less eccentric words, that more greatly benefit from peripheral

preview. Are represented the hypothetical frequency distributions of saccades’ landing positions on the line of text for

easy (plain lines) vs. difficult (dotted lines) peripheral words (N+1), separately for short and long words (left and right

panels), and close, intermediate, and far saccadic launch-site distances to the beginning of the words (from upper to

lower panels). Light-grey rectangle areas represent the horizontal extent of the words. Landing positions falling within

those areas correspond to within-word landing positions, while landing positions to the right of these areas result in

word skipping.

https://doi.org/10.1371/journal.pone.0219666.g001
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d’Ydewalle [86] observed an overall slight shift of within-word landing-position distributions

towards the end of predictable words, in comparison with non-predictable words, that held

only for high-frequency target words of 6–8 letters, in intermediate launch-site conditions

(> = -7 letters from the words’ beginning). Still, Rayner and colleagues [69] found only a hint

of an effect of word predictability towards the very-end of 5- and 6-letter words in close

launch-site conditions (> = -4 letters from the beginning of words), but a significant effect on

the likelihood of word skipping. This could well be evidence for (assuming their words were

too short) or against non-word-based guidance.

Likewise, several studies on the reading of Chinese text material revealed small though sig-

nificant effects of peripheral preview and/or word frequency on within-word landing positions

[21, 31, 48–49, 106], while others showed non-significant effects for words of comparable

length (2 characters) [48, 107]. Importantly though, Liu and colleagues [21] observed that

peripheral-preview and word-frequency effects not only held over the entire range of within-

word landing positions [108], but also generalized to saccades’ landing positions on the line,

thus within and across words’ boundaries (what we refer to as overall landing positions [39]),

as well as forward saccade amplitude. While their findings more convincingly argue for non-

word-based guidance, the question remains whether this would be specific to the reading of

un-spaced non-alphabetic languages.

The problem with most previous studies is that they were not optimally designed to provide

a strong test of the above, word-based and non-word-based, predictions. The number of items

per frequency and/or predictability classes was often relatively low, and hence made it difficult

to further split the data by word length (when this was manipulated) and launch site. More-

over, the discretization of the independent variables, for the needs of the analyses (ANOVAS

in the great majority of studies; but see [21, 53, 54, 56, 63, 85]), was probably not optimal to

capture likely subtle and complex trends. The present study overcame these limitations by re-

investigating the relative influence of word frequency, word predictability, word length and

saccadic launch-site distance on both within-word initial landing sites and word-skipping rate,

using (generalized) linear-mixed-effect modeling applied to a large corpus of eye-movement

data. This corpus, referred from now on to as the “French-sentence corpus”, was collected

while 40 adult participants each read a total of 316 sentences. As in Lavigne et al.’s [86] original

study, word predictability was manipulated by using pairs of sentences, that were strictly iden-

tical, except for the prime word that was either semantically related or unrelated to a subse-

quent test word, making a total of 632 sentences. The semantic relatedness between prime and

test words was estimated based on the association strength between the two words, as mea-

sured in free production norms; the predictability of the test words in the sentences was fur-

ther assessed using a cloze task. Across sentences, the test word was of variable frequency and

length.

Both word-based and non-word-based hypotheses predicted that the likelihood of skipping

the test words would vary with their frequency and predictability, though more greatly for

shorter and less eccentric words, and hence when visual, lexical and semantic peripheral-word

information would get together for a faster access to the word’s representation. However,

while word-based models predicted that within-word initial landing positions should not be

significantly affected by the words’ frequency and predictability, the non-word-based, view

predicted frequency and predictability effects, but mainly for longer words, and/or intermedi-

ate launch-site distances (see Fig 1). Moreover, only the bottom-up non-word-based assump-

tion did unambiguously predict that language-related variations in both word-skipping rate

and within-word landing positions would remain much smaller than the effects of word length

and saccadic launch-site distance.

Linguistic processes modulate where the eyes move regardless of word boundaries

PLOS ONE | https://doi.org/10.1371/journal.pone.0219666 July 22, 2019 6 / 47

https://doi.org/10.1371/journal.pone.0219666


Materials and methods

Participants

Forty students (between 20 and 30 years old) from Aix-Marseille University were paid 15€ to

participate in the experiment. All were native speakers of French and had normal and uncor-

rected vision. None was aware of the goal of the experiment. Participants gave their written

informed consent prior to their participation in the experiment, that was conducted in accor-

dance with the ethical standards laid down in the Declaration of Helsinki. This research was

approved by the committee responsible for overseeing research conducted in human subjects

at Aix-Marseille University (Comité d’éthique de l’université d’Aix-Marseille; Pierre-Jean

Weiller, President).

Materials

A total of 316 pairs of sentences, containing 31–69 characters (mean: 50.40, SD: 7.31) and

6–14 words (mean: 9.21, SD: 1.43), were constructed. Each contained both a prime and a test

word, with the prime word appearing first, at the second position in the sentences, and the test

word appearing on average 2.8 words later, though never being last, or preceded or followed

by punctuation. The two sentences of a given pair were matched except for the prime word

which was either semantically related or unrelated to the test word. In each pair, related and

unrelated primes were matched in length up to a two-letter difference.

Related prime and test words were selected from available free word-production norms in

French [109, 110]; for these, participants were asked to produce the first (test) word (e.g., ‘vol-

cano’) that came to their mind when reading a given (prime) word (e.g., ‘lava’). The computed

association strength between the two words corresponded to the proportion of participants

producing the test word given the prime. For the 316 related word pairs that were selected for

the sentences, the test word was related to the prime with a strength greater than 0.01

(M = 0.36, SD = 0.20; range from 0.01 to 0.91). For the 316 corresponding control sentences,

using the same test words but a different prime, the association strength between prime and

test words was 0.

To control for the predictability of the test words in the sentences’ context, and hence not

only relative to the prime, a preliminary study was conducted using a cloze task. In this study,

a total of 92 participants (all French-native speakers) were asked to indicate which word first

came to their mind when reading the beginning of each of the 632 sentences (up to the word

before the test word). This allowed us to calculate the proportion of participants producing the

test word in each sentence. In sentences containing related word pairs, and hence predictable

sentences, the test word was given by 22–100% of the participants (M = 0.66, SD = 0.23), while

it was given by 0–4% of the participants (M = 0,005, SD = 0.013) in corresponding unrelated-

word-pair (or unpredictable) sentences (see examples a and b).

a. La lave s’échappe du volcan en éruption (predictability = 0.83)

Lava is escaping from a volcano in eruption

b. La fumée s’échappe du volcan en éruption (predictability = 0.00)

Smoke is escaping from a volcano in eruption

All selected test words were between 2 and 13 letters long (M = 6.05 letters, SD = 1.97 let-

ters), and had a frequency between 0 and 1,289 occurrences per million (M = 59.31,

SD = 129.88, according to the variable “Freqlvr” in lexique.org [111]). More details on the dis-

tribution of word lengths, word frequencies, and word predictabilities across test words is
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given in Table 1. In comparison, the range of word frequencies across all words in the sen-

tences was much larger (0.07–38930 occurrences per million; M: 6128.00; SD: 9676.45); these

words were 1–13 letters long (M: 4.58; SD: 2.61).

For the Latin-square design (see below), the 632 sentences were divided into two sub-lists,

each containing a total of 316 sentences; half of these sentences were predictable, and the other

half were unpredictable, but only one exemplar (predictable or unpredictable) of a sentence

pair was present in a given sub-list.

Design

Length, frequency and predictability of the test word were manipulated, using a repeated-mea-

sure design. Saccades’ launch-site distance to the space in front of the test words was defined a

posteriori. In the analyses, all four variables were defined as continuous predictors (see Data

selection and analyses). Each participant saw only one of the two sub-lists of 316 sentences (see

Materials), meaning that he/she saw all test words, but only once, either in the predictable or

in the unpredictable condition. However, all 632 sentences were seen across all participants

(Latin-square design). For the experiment, each of the two sub-lists was split into six blocks

balanced in predictability, frequency and length. The first two blocks contained 60 sentences.

The third, fourth, fifth and sixth blocks contained 54, 50, 49 and 43 sentences, respectively. In

each block, the order of the sentences was randomized.

Procedure

Upon arrival, the participant was seated comfortably in front of a computer screen, with his/

her head movements being minimized with a bite-bar and a frontal head rest. Then, a 15-point

calibration phase took place, with the dot appearing successively at 15 positions on the screen

(along the two diagonals and above and below the horizontal midline, where the sentence

would be further displayed). The participant was asked to first fixate the dot in the upper left

Table 1. Properties of the test words.

WORD FREQUENCY WORD PREDICTABILITY

Non-Predictable Sentences Predictable Sentences

WORD

LENGTH N Min Max M SD Min Max M SD Min Max M SD

2 1 127.23 127.23 127.23 / 0.00 0.00 0.00 / 1.00 1.00 1.00 /

3 20 1.76 315.74 91.58 93.93 0.00 0.04 0.01 0.01 0.26 1.00 0.66 0.24

4 53 0.00 861.49 88.52 164.82 0.00 0.04 0.01 0.01 0.22 1.00 0.62 0.23

5 69 0.14 1289.39 85.07 209.45 0.00 0.04 0.01 0.01 0.22 1.00 0.72 0.23

6 52 0.20 328.78 47.83 63.29 0.00 0.04 0.00 0.01 0.22 1.00 0.68 0.24

7 48 1.22 343.72 52.98 74.82 0.00 0.04 0.00 0.01 0.22 1.00 0.63 0.23

8 41 0.54 73.38 17.18 21.94 0.00 0.04 0.00 0.01 0.22 0.91 0.64 0.20

9 18 0.34 73.38 20.57 22.72 0.00 0.04 0.00 0.01 0.22 1.00 0.69 0.23

10 6 0.74 37.36 13.75 15.52 0.00 0.00 0.00 0.00 0.27 0.96 0.63 0.29

11 5 0.54 15.95 5.11 6.21 0.00 0.04 0.01 0.02 0.30 0.96 0.63 0.26

13 3 0.68 5.68 3.20 2.50 0.00 0.00 0.00 0.00 0.43 0.57 0.51 0.07

From left to right, for each test word length: the number of words, the minimum (Min), maximum (Max), mean (M) and standard deviation (SD) of the words’

frequency (in occurrences per million), and the minimum (Min), maximum (Max), mean (M) and standard deviation (SD) of the words’ predictability (expressed as a

proportion) in non-predictable and predictable sentences respectively.

https://doi.org/10.1371/journal.pone.0219666.t001
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corner of the screen, as accurately as possible. When he/she estimated that his/her eyes cor-

rectly fixated the dot, he/she pressed a button, which made the point disappear and reappear at

the next screen location. The calibration phase was repeated until the correlation between the

position of the dot and the estimated eye location was greater than 0.99. A block of trials was

then launched.

At the beginning of each trial in a block, the participant was asked to fixate in between two

vertically aligned bars presented in the left part of the screen, and centered on the horizontal

midline, where a sentence would next be displayed. When a fixation was detected within a cir-

cular region of 0.5˚ radius around the bars, the sentence appeared. This remained on screen

until the participant indicated through key press that he/she was done with the reading of the

sentence. In 20% of the cases, that were distributed randomly within a block, a yes/no compre-

hension question was then displayed; this was related to the sentence the participant had just

read. Participants pressed the right button for a "yes" response, and the left button for a “no”

response. After a delay of 2000 ms, the next trial began.

Participants were given a block of 30 practice trials followed by a total of six blocks of test

trials. Participants were allowed to take a pause whenever they wanted in between the blocks.

Each session lasted approximately 1 hour and 30 min.

Apparatus

Eye movements were recorded using a 5th generation Dual-Purkinje-Image (DPI) Eye-

Tracker (Ward Technical Consulting), sampling the right eye position every millisecond with

a spatial accuracy of 10 min of arc [112]. The eye tracker was connected through a National-

Instruments (USB 6221 multifunction card) converter to an Intel Xeon dual-core computer

running Windows XP. The computer was connected to two screens (one for the experimenter

and one for the participant). Custom software was developed with the NI LabVIEW1 2009

Integrated Development Environment to acquire and analyze the eye-movement signal online;

this software also controlled the presentation of the stimuli, contingent on the position of the

eye. The eye-position signal was re-analyzed offline, using the offline saccade/fixation detec-

tion algorithm developed by Engbert and Kliegl [113] and implemented in the R software

[114] by Laubrock and Kliegl (eyetrackR package; in prep.). Sentences were displayed in white

on a black background. They were written in lower cases, except for the first letter of the first

word in the sentences as well as the first letter of proper nouns, using the fixed-width Courier-
New font in PsychoPy. Sentences were saved as separate bitmaps, that were displayed on a

gamma-corrected 21” CRT monitor with 85-Hz refresh rate and a screen resolution set to

1280 x 960 pixels. At a distance of 118 cm from the participants’ eyes, each character subtended

about 0.25 degrees of visual angle. The room was dark except for a dim indirect light source.

Vision was binocular.

Data selection and analyses

In the first, main, set of analyses, we measured the likelihood of skipping the test word, as well

as the initial eye fixation location in the test word, when this was fixated. We then extended

these analyses to all words in the sentences that responded to a number of selection criteria. In

both sets of analyses, the fixation of interest was the very first fixation on the space, or beyond

the space, in front of a given word (the test word in the main set of analyses). This fixation was

selected when (1) it was not preceded or followed by a blink or any signal irregularity, (2) it

was within 1˚ above or below the screen midline where the sentence was displayed, and it was

preceded by a fixation also within these vertical margins, (3) it was not the last fixation on the

line, and the immediately prior fixation was not the first fixation on the line, (4) it was
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preceded by a forward saccade, and (5) it corresponded to the very-first fixation on a word. In

analyses related to the test word, it was further ensured that the prime word had received at

least one fixation before fixation on the test word or past it (i.e., when the test word was

skipped during the first eye pass). In analyses that were not restricted to the test word, addi-

tional selections were applied to keep only the words that were neither the first nor the last in a

sentence, and that were not preceded or followed by punctuation; compound words were also

filtered out.

Within-word landing positions were analyzed by fitting linear mixed-effect models (LMM)

to the data, using the lmer function from the lme4 package (Version 1.1–7 [115]) in R (Version

R-3.1.3 [114]). Binary, word-skipping, data were fitted with Generalized LMM (GLMM),

using the glmer function. The models were implemented after visualizing the data and check-

ing for the linearity of the relationships between the dependent variables and each of the pre-

dictors, as well as between the predictors. When linearity was not justified due to a few

extreme predictor values being associated with a low n (e.g., log word frequency < = 0 in

word-skipping analyses), these were filtered out to avoid making the model too complex by

adding polynomial components, and running the risk in turn that the model would not con-

verge or would give unrealistic estimates. Furthermore, to avoid modeling floor/ceiling effects,

further selections were applied to the data. In word-skipping analyses, the words that were

either very short or very long and too far out in the periphery were filtered out, as these were

associated respectively with one- and zero-skipping probabilities in many participants. In

within-word landing position analyses, extreme launch-site values were removed because

these were associated mostly with landing positions outside the word boundaries, and hence

within-word landing positions that no longer varied with launch-site distance.

To determine the (G)LMM that best fitted our data, a top-down approach was used, that

consisted of first determining the optimal random structure, using the most complex fixed

structure, and then searching for the optimal fixed structure, given the optimal random struc-

ture [116]. The starting fixed structure included a linear component for each predictor (word

length, launch-site distance, word frequency, and also word predictability in test-word analy-

ses), and all interactions, though never four-way interactions; the latter are indeed difficult to

interpret and actually often prevented GLMM convergence. The optimal random structure

was determined after comparing the goodness of fit of a range of models varying in random

structures, using Akaike’s information criterion (AIC); the model with the smallest AIC was

selected. The range of tested random structures comprised a random intercept by participant

and/or sentence pair (and/or word number in list, in analyses that were not restricted to the

test word), with or without by-participant random effects of each (possible combination) of

the predictors, and with or without the correlation between random effects; random effects by

sentence pair and/or word number were not included for simplicity (for a similar approach

and further justifications see [117]). The optimal fixed structure was determined after drop-

ping successively the predictors, from the higher to the lower-order terms (3-way interactions

first, and then 2-way interactions, and then simple effects), that did not significantly improve

the fit of the model; note that when the removal of a given predictor only marginally signifi-

cantly improved the fit, the predictor was kept. Importantly, when a given interaction needed

to be kept, corresponding lower-order terms (interactions and simple effects) were also kept

regardless of whether or not removing them would improve the fit of the model (for a similar

approach see [56]). This made fixed-effects tables easier to read, and to compare with theoreti-

cal predictions: as simple effects provide an estimate of the dependent variable when all predic-

tors are at their reference value, they contribute to describe the observed interaction(s).

However, since removing vs. keeping lower-order terms is a matter of debate, minimalist opti-

mal (G)LMM were also determined by applying the dropping procedure to all predictors,
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regardless of whether, or not, higher-order terms were kept. When the optimal fixed structure

of minimalist optimal (G)LMM differed from the fixed structure of optimal (G)LMM, the

fixed effects of the former were reported in Supporting Information. Note though that the

fixed-effects’ estimates were quite comparable between minimalist optimal models and opti-

mal models (see Tables 2–8 for comparison); the only notable difference was for the models

presented in Table 3 and S3 Table, as mentioned in the main text. For both optimal and mini-

malist-optimal models, fixed and random structures were described in the tables’ captions. To

represent graphically the estimated fixed effects from optimal (G)LMM, partial effects were

computed, using the ggpredict function from the ggeffects (Version 0.8.0) package in R (Ver-

sion R-3.5.3).

All predictors were defined as continuous variables; they were centered on their mean.

Word frequency was expressed in log units, as classically done (e.g. [118]). For word

Table 2. Fixed effects of optimal GLMM (Model 1) for the probability of skipping the test words.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.59408 0.08931 -17.84903 < 0.00001

FREQ -0.01720 0.02532 -0.67921 0.49701

LENGTH -0.36063 0.02753 -13.10137 < 0.00001

FREQ:LENGTH -0.03300 0.01342 -2.45885 0.01394

The fixed structure included the effects of word length (“LENGTH”; 3–11 letters) and word frequency (“FREQ”; 0.20–5.93 log units), as well as their interaction; the

random structure included a random intercept by participant and sentence pair, as well as a random effect of word length by participant (see S1 Table). The model’s

estimates and standard errors are expressed in logit units; they can be back transformed into probabilities, using the inverse logit formula. The intercept estimate (logit:

-1.59408) indicates that the probability of word skipping was of about 0.17 when all variables were at their reference, mean, value (Word Length: 5.96 letters; Word

Frequency: 3.03 log units; Predictability: -0.98 logit units). Colon stands for interaction. See S2 Table for the corresponding minimalist optimal GLMM.

https://doi.org/10.1371/journal.pone.0219666.t002

Table 3. Fixed effects of optimal GLMM (Model 2) for the probability of skipping the test words.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.19934 0.14841 -8.08123 < 0.00001

FREQ -0.00302 0.04398 -0.06872 0.94521

PRED -0.00839 0.02461 -0.34099 0.73311

LENGTH -0.46003 0.05747 -8.00517 < 0.00001

LAUNCH 0.61519 0.04106 14.98372 < 0.00001

FREQ:LENGTH -0.04980 0.03213 -1.54996 0.12115

FREQ:LAUNCH 0.00729 0.01811 0.40250 0.68732

PRED:LENGTH -0.02576 0.01987 -1.29634 0.19486

PRED:LAUNCH 0.01514 0.01428 1.06002 0.28914

LENGTH:LAUNCH -0.00224 0.01905 -0.11767 0.90633

PRED:LENGTH:LAUNCH 0.01968 0.01150 1.71096 0.08709

FREQ:LENGTH:LAUNCH 0.02751 0.01339 2.05526 0.03985

The fixed structure included the effects of word length (“LENGTH”; 4–8 letters), word frequency (“FREQ”; 0.20–5.93 log units), word predictability (“PRED”; between

-2.60 and 2.60 logit units), and saccadic launch-site distance (“LAUNCH”; between -6.00 and -0.002 letters from the space in front of the test words), the three-way

interactions between word frequency, word length and launch-site distance and between word predictability, word length and launch-site distance, as well as

corresponding two-way interactions; the random structure included a random intercept by participant and by sentence pair, as well as by-participant random effects of

word length and launch-site distance, but without the correlation between random effects (see S1 Table). The model’s estimates and standard errors are expressed in

logit units. The intercept estimate (logit: -1.19934) indicates that test words were skipped in about 23% of the cases, when all variables were at their reference, mean,

value (Word Length: 5.82 letters; Launch Site: -2.93 letters; Word Frequency: 3.06 log units; Word Predictability: -0.96 logit units). Colon stands for interaction. See S3

Table for the corresponding minimalist optimal GLMM.

https://doi.org/10.1371/journal.pone.0219666.t003
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predictability, expressed as a proportion, we used, following Kliegl et al. [118], the logit trans-

form; logits were defined as 0.5�ln(predictability/(1-predictability)), but after replacing pre-

dictabilities of zero and 1 with 1/(2�92) and (2�92–1)/(2�92) respectively, where 92 represents

the number of participants in the cloze task (see Materials). For saccadic launch-site distance,

it is classically expressed in letters relative to the center of words, at least in analyses of within-

word landing positions [22]. However, since our analyses were aimed at testing the general

prediction that frequency and predictability combine with letter visibility in determining

where the eye moves, defining launch-site distance relative to the space in front of the words

was more appropriate. Indeed, for a given launch-site distance relative to the beginning of a

word, but not relative to the center of the word, the number of letters falling within the percep-

tual span is the same irrespective of the word’s length. For illustration purposes only (but not

for LMM analyses), word frequency (in log units), word predictability (in logit units), and

launch-site distance (in letters) were categorized into two, three or four bins depending on the

needs of the analyses; this was done after splitting the distribution of the corresponding

Table 4. Fixed effects of optimal GLMM (Model 1’) for the probability of word skipping.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.16568 0.10549 -1.57054 0.11629

FREQ 0.03371 0.01432 2.35335 0.01861

LENGTH -0.56967 0.02626 -21.69550 < 0.00001

FREQ:LENGTH -0.02326 0.00473 -4.92211 < 0.00001

This analysis was conducted across all words in the sentences that responded to our selection criteria (see Materials and Methods). The fixed structure included the

effects of word length (“LENGTH”; 3–11 letters) and word frequency (“FREQ”; between 0.01 and 9.59 log units), as well as the interaction; the random structure

included a random intercept by participant, sentence pair, and word, as well as by-participant random effects of word length and word frequency, but without their

correlation (see S1 Table). The model’s estimates and standard errors are expressed in logit units. The intercept estimate (logit: -0.16568) indicates that the words were

skipped in about 46% of the cases when all variables were at their reference, mean, value (Word Length: 5.02 letters; Word Frequency: 5.56 log units). Colon stands for

interaction. The corresponding minimalist optimal GLMM was identical.

https://doi.org/10.1371/journal.pone.0219666.t004

Table 5. Fixed effects of optimal GLMM (Model 2’) for the probability of word skipping.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.69956 0.13511 -5.17778 < 0.00001

FREQ 0.06766 0.01676 4.03729 0.00005

LENGTH -0.69301 0.04295 -16.13351 < 0.00001

LAUNCH 0.61995 0.04408 14.06404 < 0.00001

FREQ:LENGTH -0.06234 0.01041 -5.98644 < 0.00001

FREQ:LAUNCH -0.00768 0.01026 -0.74814 0.45438

LENGTH:LAUNCH 0.01414 0.01788 0.79096 0.42897

FREQ:LENGTH:LAUNCH 0.01349 0.00608 2.21757 0.02658

This analysis was conducted across all words in the sentences that responded to our selection criteria (see Materials and Methods). The fixed structure included the

effects of word length (“LENGTH”; 4–8 letters), word frequency (“FREQ”; between 0.01 and 9.02 log units), and saccadic launch-site distance (“LAUNCH”; between

-6.00 and -0.002 letters from the space in front of the test words), as well as all interactions; the random structure included a random intercept by participant, sentence

pair, and word, as well as by-participant random effects of word length and saccadic launch-site distance (see S1 Table). The model’s estimates and standard errors are

expressed in logit units. The intercept estimate (logit: -0.69956) indicates that the words were skipped in about 33% of the cases, when all variables were at their

reference, mean, value (Word Length: 5.60 letters; Launch Site: -2.40 letters; Word Frequency: 4.33 log units). Colon stands for interaction. See S4 Table for the

corresponding minimalist optimal GLMM.

https://doi.org/10.1371/journal.pone.0219666.t005
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variable in 2–4 equal parts respectively. Note that for word frequency, binning was made sepa-

rately for different word lengths, given the correlation between word frequency and word

length (target words: -0.20565; all words in the sentence: -0.56557, respectively).

Table 6. Fixed effects of optimal LMM for initial landing positions in the test words.

Estimate Std. Error t value

(Intercept) -0.56344 0.11509 -4.89566

FREQ 0.02252 0.01820 1.23699

PRED 0.01517 0.01128 1.34415

LENGTH -0.20296 0.02242 -9.05257

LAUNCH 0.43429 0.02497 17.39223

FREQ:LENGTH 0.02822 0.00931 3.03042

FREQ:LAUNCH 0.00907 0.00575 1.57741

PRED:LENGTH 0.01479 0.00635 2.32793

LENGTH:LAUNCH 0.04709 0.00517 9.10263

FREQ:LENGTH:LAUNCH 0.00517 0.00298 1.73603

Initial eye landing positions were expressed in letters relative to the center of the test words. The fixed structure

included the effects of word length (“LENGTH”; 3–11 letters), word frequency (“FREQ”; between -1.97 and 7.16 log

units), word predictability (“PRED”; between -2.60 and 2.60 logit units), and saccadic launch-site distance

(“LAUNCH”; between -8.00 and -0.002 letters from the space in front of the test words), as well as the two-way

interaction between word predictability and word length, the three-way interaction between word frequency, word

length and launch site and all corresponding two-way interactions; the random structure included a random

intercept by participant and sentence pair, as well as by-participant random effects of word length, word

predictability and saccadic launch-site distance (see S1 Table). The intercept estimate gives the initial landing

position when all variables were at their reference, mean, value (Word Length: 6.20 letters; Launch Site: -4.39 letters;

Word Frequency: 2.91 log units; Word Predictability: -0.97 logit units). Colon stands for interaction. See S5 Table for

the corresponding minimalist optimal GLMM.

https://doi.org/10.1371/journal.pone.0219666.t006

Table 7. Fixed effects of optimal LMM for within-word initial landing positions.

Estimate Std. Error t value

(Intercept) -0.62161 0.08112 -7.66287

FREQ 0.01986 0.01013 1.96007

LENGTH -0.22438 0.01647 -13.62216

LAUNCH 0.35929 0.01672 21.48509

FREQ:LENGTH 0.01695 0.00246 6.88573

FREQ:LAUNCH -0.00191 0.00210 -0.90968

LENGTH:LAUNCH 0.04516 0.00260 17.35898

FREQ:LENGTH:LAUNCH 0.00414 0.00076 5.41330

This analysis was conducted across all words in the sentences that responded to our selection criteria (see Materials

and Methods). Within-word initial landing positions were expressed in letters relative to the center of words. The

fixed structure included effects of word length (“LENGTH”; 3–11 letters), word frequency (“FREQ”; between -2.66

and 9.59 log units), and saccadic launch-site distance (“LAUNCH”; between -9.99 and -0.001 letters from the space in

front of the words), as well as all interactions; the random structure included a random intercept by participant,

sentence pair, and word, as well as by-participant random effects of word frequency, word length and saccadic

launch-site distance (see S1 Table). The intercept estimate gives the initial landing position when all variables were at

their reference, mean, value (Word Length: 5.94 letters; Launch Site: -4.86 letters; Word Frequency: 4.11 log units).

Colon stands for interaction. See S7 Table for the corresponding minimalist optimal GLMM.

https://doi.org/10.1371/journal.pone.0219666.t007
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The exact number of degrees of freedom for the t-values of fixed effects in LMMs remains

undetermined. However, given the large number of observations, participants, and items

entering our analyses, t-distributions converged to a normal distribution. Therefore, we con-

sidered as significant, the effects whose absolute t-value was greater than 2, which corresponds

to a significance level of 5% in two-tailed tests [119, 120].

Results

For comparison with previous reading studies, we first analyzed the global characteristics of

our participants’ eye movements while they were reading the sentences. As typically reported,

we found that participants moved their eyes mainly forward, making regressions in about

14.94% of the cases on average [67]. The median length of their saccades was on average of

about 8.35 and -4.49 letters, depending on whether they took their eyes forward or backward,

while the median duration of their fixations was on average of about 241 ms. Participants

skipped about 52.15% of the words on average during a first eye pass, and they refixated words

(or made more than one consecutive fixation on a word) in about 11.38% of the cases on

average.

We next tested alternative predictions from word-based and non-word-based accounts of

eye guidance during reading. To this end, we analyzed the metrical properties of forward eye-

movement behavior in the vicinity of the words (either the test words only or all words in the

sentences that responded to our selection criteria–see Materials and Methods), using the likeli-

hood of word skipping and (within-word) initial landing positions as dependent variables.

These were analyzed as a function of saccadic launch-site distance to the space in front of the

words, word length and word frequency, as well as word predictability in analyses restricted to

the test words.

Probability of skipping the test words

In Fig 2, the mean probability of skipping the test words was represented as a function of the

words’ length, separately for two categories of word frequency and word predictability. This

Table 8. Fixed effects of optimal LMM for overall landing positions.

Estimate Std. Error t value

(Intercept) 1.73141 0.22040 7.85565

FREQ 0.10661 0.01754 6.07823

LENGTH -0.43359 0.02456 -17.65153

LAUNCH 0.94341 0.02312 40.80692

FREQ:LENGTH -0.02027 0.00517 -3.91887

Were considered for analysis, the landing positions of all saccades regardless of word boundaries; these were

expressed in letters relative to the center of Word N+1, that is the word immediately to the right of the word (N)

from which the saccade was launched. Word N+1 was not necessarily a test word (see Text). The fixed structure

included effects of word (N+1) length (“LENGTH”; 3–11 letters), word (N+1) frequency (“FREQ”; between -2.66 and

9.59 log units), and saccadic launch-site distance (“LAUNCH”; between -9.99 and -0.001 letters from the space in

front of Word N+1), as well as the interaction between word frequency and word length; the random structure

included a random intercept by participant, sentence pair, and word, as well as by-participant random effects of word

frequency, word length and saccadic launch-site distance (see S1 Table). The intercept estimate gives saccades’

landing position when all variables were at their reference, mean, value (Word Length: 5.06 letters; Launch Site: -3.27

letters; Word Frequency: 5.44 log units). Colon stands for interaction. The corresponding minimalist optimal LMM

was identical.

https://doi.org/10.1371/journal.pone.0219666.t008
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indicates that the likelihood of word skipping largely decreased with increasing word length

but showed very little variation with language-related variables, being only slightly lower for

low- compared to high-frequency words of 3–4 and 6 letters, and for low- compared to high-

predictability words of 4 letters.

When data were further split by saccades’ launch-site distance to the space in front of the

test words, the effects of linguistic variables tended to be clearer and more consistent, despite

the lower n. This is shown in Fig 3A and 3B for the case of 4- and 6-letter words. Word-skip-

ping rate was slightly lower for rare compared to more frequent words, as well as for low- com-

pared to high-predictability words of 4 letters at least, though mainly in close launch-site

conditions (> -8 letters). Moreover, there was a trend for the effect of word frequency to be

slightly greater in high- compared to low-predictability words (Fig 3C and 3D). Yet, word-

skipping rate remained more largely affected by word length and saccadic launch-site distance:

as saccades were launched from further away from the beginning of the test words, the likeli-

hood of word skipping decreased drastically, and even more so as words became longer.

Due to floor and ceiling effects, the respective and combined influences of the four indepen-

dent variables on word-skipping likelihood could only be estimated over a subset of word

lengths and saccadic launch-site distances. Therefore, to estimate the relationship between

word skipping rate and word length, and its possible variations with word frequency and word

predictability, nearly over the entire range of word lengths, a first GLMM (Model 1) was

implemented, with only word length (3–11 letters), word frequency, word predictability, and

their interactions, as predictors, thus across all observed saccadic launch-site distances. A sec-

ond GLMM (Model 2), that included word length, saccadic launch-site distance, word fre-

quency and word predictability, as well as all 3-way interactions, as predictors, was then fitted

to a smaller subset of the data (word lengths between 4 and 8 letters and saccadic launch-site

distances less than or equal to 6 letters from the space in front of the test words).

Fig 2. Test-word skipping rate by length, frequency and predictability. Mean probability of skipping the test words as a function of the words’ length (in

letters), separately for two categories of test-word frequencies (A) and predictabilities (B), as determined after grouping test-word frequencies and predictabilities

into two bins respectively (see Materials and Methods).

https://doi.org/10.1371/journal.pone.0219666.g002
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The fixed effects of Model 1 are presented in Table 2. The intercept estimate (logit:

-1.59408), indicates that the test words were skipped in about 17% of the cases when all vari-

ables were at their reference (mean) value, and hence when the words were about 6 letters

long. Shorter, 3-letter, test words were skipped about twice as often (37%), and longer,

Fig 3. Test-word skipping rate by launch site, frequency and predictability. Mean probability of skipping 4- and 6-letter test words as a function of the saccades’

launch-site distance to the space in front of the words (binned in two-letter intervals), separately for two categories of test-word frequencies (across word

predictabilities; A) and two categories of test-word predictabilities (across word frequencies; B), and for high- vs. low-frequency test words of low- and high-

predictability (C and D respectively). The two categories of word frequencies and word predictabilities were determined after grouping test-word frequencies and

predictabilities into two bins respectively (see Materials and Methods).

https://doi.org/10.1371/journal.pone.0219666.g003
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11-letter, test words were skipped much more rarely (3%), as suggested by the significant nega-

tive slope estimate for the effect of word length (logit: -0.36063). There was no main effect of

word frequency (logit: -0.01720, p = 0.50) or word predictability (this predictor and corre-

sponding interactions were dropped from the fixed structure as they did not significantly

improve the fit of the model). However, the significant negative slope estimate for the interac-

tion between word frequency and word length (logit: -0.03300) suggested an increase in the

effect of word length with increasing word frequency, implying that shorter words (i.e., less

than about 6 letters, the reference, mean, value for word length) were skipped more often, and

longer words were skipped less often, as they became more frequent.

As further illustrated in Fig 4A, where the model’s predictions were represented for the two

most extreme word-frequency values across all selected test words (0.20 vs. 5.93 log units),

these variations in skipping rate with word frequency still remained very small in comparison

with the effect of word length. The difference in word-skipping rate between the lowest and

the highest word frequencies was of a maximum of about 11% in the shortest, 3-letter, test

words, and this was yet an overestimation of the actual effect of word frequency, given the

smaller range of word frequencies for most word lengths, as well as the variability in word fre-

quencies. Indeed, when the model’s estimated word-skipping rate was contrasted for high- vs.

low-frequency words on average (or the mean frequency of the test words, when categorized

in two frequency bins), as in Fig 4B, the predicted effect was even tinier (see also Fig 2A).

None of the other effects or interactions were significant.

As shown in Table 3, where Model 2’s fixed effects were reported, similar though clearer

trends were observed when saccades’ launch-site distance relative to the space in front of the

test words was taken into account. There was again a significant negative slope estimate for the

effect of word length (logit: -0.46003), indicating that word-skipping rate decreased with

increasing word length. In addition, there was a significant positive slope estimate for the effect

of launch-site distance (logit: 0.61519), indicating that the test words were less frequently

skipped as saccades were launched from further away from the words’ beginning. Both effects

were huge as word-skipping rate dropped by as much as 42% for a 6-letter increase in word

length, and 60% for a 6-letter decrease in launch-site distance. Importantly, while there were

again no significant effects of word frequency (logit: -0.00302, p = 0.94) and word predictabil-

ity (logit: -0.00839, p = 0.73), the interaction between word frequency, word length, and

launch-site distance was significant (logit: 0.02751), while the interaction between word

predictability, word length and launch-site distance was marginally significant (logit: 0.01968,

p = 0.09); note that the latter interaction was no longer significant in the minimalist optimal

GLMM, that is when lower-order terms that did not significantly improve the fit of the model

were removed (see S3 Table). As illustrated in Fig 4C and 4D, the estimated likelihood of skip-

ping short, 4-letter, words slightly varied between the two most extreme word-frequency val-

ues across all test words, and to a lesser extent between the two most extreme word-

predictability values, though essentially for large saccadic launch-site distances. In contrast,

the difference in skipping rate between the highest and the lowest frequencies/predictabilities

for longer, 6-letter, words was smaller, and it decreased with increasing launch-site distance.

Still, even in 4-letter test words, the estimated frequency and predictability effects remained

much smaller compared to the effect of launch-site distance (12% and 5% respectively com-

pared to 72%).

In sum, the likelihood of skipping the test words was influenced by the words’ length and

eccentricity, as well as the words’ linguistic properties. Yet, the effects of word length and sac-

cadic launch-site distance predominated. They were not only greater in size compared to the

effects of word frequency and word predictability, but they held nearly over the entire range of

word frequencies and predictabilities. In contrast, word-frequency and word-predictability
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effects intervened only when the words were very short, and/or very close to the saccades’

launch site, thus when conditions were met for the words to benefit from peripheral preview.

In other words, language-based word-skipping behavior seemed to emerge only when there

Fig 4. Estimated effects of visuo-motor and linguistic variables on test-word skipping rate. Partial effects (with 95% confidence intervals) computed from the

parameters of GLMM Model 1 (A-B; Table 2) and GLMM Model 2 (C-D; Table 3), representing the estimated probability of skipping the test words as a function of

word length (in letters; A-B), and for 4- and 6-letter test words as a function of saccadic launch-site distance (in letters relative to the space in front of the test words;

C-D). In A,C, the models’ predictions were contrasted for the two most extreme (i.e., the lowest vs. the highest) word-frequency values across all selected test words

regardless of their length and their predictability (0.20 and 5.93 log units respectively), and in D, they were contrasted for the two most extreme (i.e., the lowest vs.

the highest) word-predictability values across all test words (-2.6 vs. 2.6 logit units). In B, Model 1’s predictions were represented for the mean frequency value of

high vs. low-frequency words, as defined after grouping word frequencies into two bins (see Materials and Methods; 2.01 vs. 4.10 log units).

https://doi.org/10.1371/journal.pone.0219666.g004
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was strong-enough evidence for the identity of the test word. The possibility remains that the

small contribution of language-related variables was due to the specific (linguistic) properties

of our test words, and their restricted range of frequencies. To ensure this was not the case, the

same analyses were conducted again, but using this time all words in the sentences that could

be possibly analyzed given our selection criteria.

Skipping rate across all words in the sentences

The above analyses were restricted to the test words for the simple reason that test words were

best controlled and differed not only in terms of their frequency in the language, but also their

predictability from the sentence’s context. However, the properties of the test words, and/or

their relatively low n (see Table 1), could be responsible for our observation of a rather limited

influence of language-related variables on word-skipping rate. Here, we thus replicated the

above test-word skipping analyses, but using all words in the sentences, except for the words

that did not respond to the above-defined selection criteria (see Materials and Methods). Note

though that word predictability was not available for words other than the test words; it was

therefore not considered in the present analyses.

As shown in Fig 5, word length and saccadic launch-site distance again predominated in

determining the likelihood of word skipping. First, there was a gradual decrease in word-skip-

ping rate with increasing word length, that largely remained unaffected by word frequency;

only tiny differences between high- and low-frequency words emerged, and mainly for short,

3- and 4-letter, words (Fig 5A). Moreover, when data were further split by saccadic launch-site

distance, separately for different word lengths, an effect of word frequency emerged, in addi-

tion to the drastic reduction in word-skipping rate with increasing launch-site distance, but

mainly in short words (e.g., 4 letters; see Fig 5B). In longer, 6-letter, words, the effect was

already strongly reduced, being visible only in very-near launch-site cases.

To further test these trends, two GLMMs were fitted to the data, as for the test words. The

first, Model 1’, tested the contribution of word length and word frequency, as well as their

interaction, nearly over the entire range of word lengths (3–11 letters). As shown in Table 4,

where the model’s fixed effects are reported, the likelihood of word skipping significantly

decreased with increasing word length (logit: -0.56967). It also varied with word frequency

(logit: 0.03371), being greater for higher-frequency words, though gradually less as the words

were longer, as suggested by the significant interaction between word frequency and word

length (logit: -0.02326). In fact, as illustrated in Fig 6A, where the model’s predicted relation-

ship between word-skipping rate and word length was represented separately for the two most

extreme word-frequency values across all selected words, the word-frequency effect held only

for very short words. Moreover, as in the above test-word analyses, this effect was much

smaller compared to the effect of word length: Word-skipping rate dropped by about 70% for

an 8-letter reduction in word length (3–11 letters), while it varied by about 16% at the very

most (i.e., for 3-letter words) between the highest and the lowest word frequencies.

Model 2’ included saccadic launch-site distance, and its interaction with word length and/

or word frequency, as additional predictors, but for a subset of the data given floor and ceiling

effects (word lengths between 4 and 8 letters and launch-site distances less than or equal to 6

letters). As summarized in Table 5, there were again significant effects of word length (logit:

-0.69301) and launch-site distance (logit:0.61995), indicating that the likelihood of word skip-

ping strongly decreased as words became longer and saccades were launched from further

away. In addition, there was a main effect of word frequency (logit: 0.06766), such that more

frequent words were skipped more often. Still, this effect was again greater for shorter words,

as suggested by the significant interaction between frequency and length (logit: -0.06234).

Linguistic processes modulate where the eyes move regardless of word boundaries

PLOS ONE | https://doi.org/10.1371/journal.pone.0219666 July 22, 2019 19 / 47

https://doi.org/10.1371/journal.pone.0219666


Moreover, the three-way interaction between word frequency, word length and launch-site

distance was significant (logit: 0.01349). This is illustrated in Fig 6B, where the model’s pre-

dicted relationship between word-skipping probability and saccadic launch-site distance was

represented for the two most extreme word-frequency values across all selected words, sepa-

rately for 4- and 6-letter words. As for the test words, there was an effect of word frequency in

Fig 5. Word-skipping rate by length, launch site and frequency. Mean probability of word skipping, across all words in the

sentences that responded to our selection criteria, as a function of word length (in letters; A), and for 4- and 6-letter words as a

function of saccadic launch-site distance (in letters relative to the space in front of the words; B), separately for two categories of

word frequencies, as determined after grouping word frequencies into two bins (see Materials and Methods).

https://doi.org/10.1371/journal.pone.0219666.g005
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short 4-letter words, that held over the entire range of tested saccadic launch-site distances

(> = -6 letters), but barely no frequency effect in longer, 6-letter, words, except maybe for

very-small launch-site distances. This effect, even in 4-letter words where it was the largest,

Fig 6. Estimated effect of visuo-motor and linguistic variables on word-skipping rate. Partial effects (with 95% confidence

intervals) computed from the parameters of GLMM Model 1’ (A; Table 4) and GLMM Model 2’ (B; Table 5), representing the

probability of word skipping across all words in the sentences as a function of word length (A) and for 4- and 6-letter words as a

function of saccadic launch-site distance (in letters relative to the space in front of the words; B), separately for the two most

extreme (i.e., the lowest vs. the highest) word-frequency values across all words selected for analysis (0.01 and 9.59 log units

respectively).

https://doi.org/10.1371/journal.pone.0219666.g006

Linguistic processes modulate where the eyes move regardless of word boundaries

PLOS ONE | https://doi.org/10.1371/journal.pone.0219666 July 22, 2019 21 / 47

https://doi.org/10.1371/journal.pone.0219666.g006
https://doi.org/10.1371/journal.pone.0219666


again remained much smaller than the effect of launch-site distance: for a 6-letter increase in

launch-site distance, word-skipping rate decreased by about 71%, while it varied by a maxi-

mum of about 34% between the highest and the lowest word frequencies. Recall though that

this was still an overestimation: given the variability in word frequencies, the actual effect of

word frequency was even smaller (see Fig 5B).

Thus, when all words in the sentences were considered for analysis, the pattern of findings

matched that observed in test words. The likelihood of word skipping was again primarily

influenced by word length and saccadic launch-site distance. Word frequency also contrib-

uted, but to a much smaller extent compared to visuo-motor variables, and mostly when the

words could benefit from peripheral view, that is when they were very short or very-near to

the saccade’s launch-site. These findings, consistent with both word-based and non-word-

based accounts of eye-movement guidance, may still represent a challenge for models like E-Z

Reader [2] and SWIFT [1] (see Discussion).

Initial landing positions in the test words

Showing that word-skipping behavior is primarily a function of visuo-motor variables may

represent a challenge for word-based models, and E-Z Reader [2] and SWIFT [1] in particular,

as this clearly shows that eye-movement guidance from one word to the next cannot exclu-

sively rely on ongoing word-identification processes. However, it does not necessarily chal-

lenge the hypothesis that saccades are guided in a top-down manner towards the center of

selected target word-objects. Analyses of within-word landing positions were aimed at directly

testing this assumption. These investigated whether the same variables that were found to

influence word-skipping rate would also influence where in a word the eye lands, as would be

predicted exclusively by a non-word-based account of eye-movement guidance.

In Fig 7A and 7B, the distributions of initial landing positions in the test words were repre-

sented for a subset of word lengths and saccadic launch-site distances, separately for high- vs.

low-frequency and high-vs. low-predictability test words, respectively, but across participants.

High- and low-frequency categories, as well as high- and low-predictability categories, were

defined after grouping words into four bins; they corresponded to the first and the fourth bin

respectively (see Materials and Methods). These distributions first revealed a clear launch-site

effect, in accordance with McConkie et al.’s [22] original findings: As saccades’ launch site laid

further to the left of the test words (from upper to lower panels), landing-site distributions

shifted accordingly, thus moving from the very-end towards the very-beginning of short

words (left two panels), and from a position to the right of the words’ center to the words’

beginning in the case of long words (right two panels). Also in line with previous findings,

landing-site distributions showed very little variations with the frequency or the predictability

of the test words. Still, for long, 7- and 8-letter, test words, landing-site distributions tended to

peak slightly closer to the words’ end with increasing frequency (Fig 7A), and to some extent

also with increasing predictability (Fig 7B), though mainly in close launch-site cases (> -6 and

-4 letters respectively), thus when the test words could benefit from peripheral preview. This is

in accordance with the non-word-based view (see also Fig 1), and opposite to the prediction

made by word-based models, that language-related effects on within-word landing positions

should only occur towards the tails of the distributions. For shorter, 3- and 4-letter, test words,

the major part of the distributions associated with high-frequency words tended to lay under-

neath that for low-frequency words, at least in close launch-site conditions, thus suggesting

also a rightward shift. However, the shift likely took place beyond the word boundaries (not

plotted here), thus yielding, in the case of short test words, word-frequency and word-
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predictability effects on the likelihood of word skipping, as shown above, but not on within-

word initial landing sites.

LMM of initial landing positions in the test words shed further light on these trends. The

model’s fixed effects, summarized in Table 6, first revealed that the eye initially fixated a posi-

tion slightly to the left of the words’ center (intercept estimate: -0.56344) when all variables

were at their reference, mean, value, and words were about 6 letters long. As further indicated

by the negative slope estimate for the effect of word length (-0.20296), this leftward bias

increased as the test words became longer (see also [121]). Furthermore, saccades landed closer

to the beginning of the test words as they were launched from further away; the slope estimate

Fig 7. Distributions of initial landing positions in the test words. Across-participants probability density functions (bandwidth: 1 letter or 0.25˚; Gaussian

Kernel) of initial landing positions in short and long test words (3–4 letters and 7–8 letters in left and right panels respectively), for different saccadic launch-site

distances (in letters relative to the space in front of the test words), binned in two-letter intervals (from upper to lower panels: [0,-2[, [-2,-4[, [-4,-6[, [-6,-8[,

referred to as -1,-3,-5 and -7 respectively), and separately for the two most extreme categories of word frequencies (A) and of word predictabilities (B), when these

were grouped respectively into four bins (see Materials and Methods). Light-grey rectangle areas represent the horizontal extent of the words.

https://doi.org/10.1371/journal.pone.0219666.g007
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for the effect of launch site (0.43429) indicated that for every 1-letter increment of the launch-

site distance from the space in front of the test words, landing positions shifted on average by

slightly less than half a letter towards the words’ beginning. The launch-site effect mildly

increased as the test words became longer, as suggested by the significant interaction between

launch site and word length (estimate: 0.04709), thus in contrast with McConkie et al.’s [22]

original report of an invariant (0.49) linear relationship between word-center-based launch

site and landing site. However, this was not due to launch site being here expressed relative to

the space in front of the words. Indeed, LMM with launch-site distance expressed relative to

the center of words, and for words of either 3–11 letters or 4–8 letters as in McConkie et al.’s

study, also yielded significant interactions between launch site and word length (estimates:

0.05867 and 0.06472 respectively; see S6 Table). Note though that the effect of word length was

no longer significant, as in their study (estimate: -0.00153, t = -0.07228 for 3- to 11-letter

words; estimate: 0.01233; t = 0.47741 for 4- to 8-letter words).

More critical for a test of word-based models, was whether linguistic factors would signifi-

cantly influence within-word landing positions. As shown in Table 6, neither the frequency

nor the predictability of the test words had a significant effect (estimate: 0.02252, t = 1.23699,

and estimate: 0.01517, t = 1.34415). Still, there were significant interactions between word fre-

quency and word length (estimate: 0.02822), and word predictability and word length (esti-

mate: 0.01479). As illustrated in Fig 8A and 8B, where the model’s predictions were

represented, using the two most extreme word-frequency and word-predictability values

across all test words, saccades landed further into more frequent, and to a lesser extent more

predictable, test words, but progressively more as word length increased, and actually only

when the words were longer than about 6–7 letters. The marginally significant interaction

between word frequency, word length and saccadic launch-site distance (estimate: 0.00517,

t = 1.73603), suggested in addition that the tendency for saccades to land further into more fre-

quent words, tended to become greater with decreasing launch-site distance, and even more so

as word length increased (see Fig 8C). Yet, however consistent the effects of word frequency

and word predictability were, they remained much smaller than the effects of launch-site dis-

tance and word length, and they were actually smaller than represented in Fig 8A and 8C,

given in particular the much smaller range of word frequencies with increasing word length.

In sum, initial eye landing positions in the test words were primarily a function of the

words’ length and eccentricity. However, they also varied with the words’ frequency and

predictability, though only when the words were long enough for the frequency-related shift in

landing-site distributions to take place within the word boundaries (see Figs 1, 7A and 7B),

and also essentially when saccades’ launch-site distance was small enough so that the words

could benefit from peripheral preview. These effects yet remained smaller than the effects of

word length and launch site, as reported above for the likelihood of word skipping. This sug-

gests, in contradiction with word-based models, that language-related variables nearly equally

influence the likelihood of word skipping and within-word initial landing positions, and that

one or the other occurs depending on the word’s length.

Within-word initial landing positions across all words in the sentences

In the above, test-word, analyses, we reported tiny effects of linguistic variables on initial land-

ing positions in longer and less eccentric words. To ensure that this pattern was not due to the

specific (linguistic) properties of the test words, and that it could be observed at a larger scale

and with a greater number of observations, we conducted again the same analyses, but using

this time all words in the sentences that responded to the above-selection criteria (see Materials

and Methods).
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In Fig 9, the distributions of initial landing positions in short and long words (3–4 letters

and 7–8 letters respectively), were plotted separately for different saccadic launch-site distances

to the space in front of the words, and for two categories of word frequencies (low vs. high; see

Figure Legend). These again showed, in line with the well-established launch-site effect, that

Fig 8. Estimated initial landing positions in the test words. Partial effects (with 95% confidence intervals) computed from LMM parameters (Table 6),

representing initial landing positions in the test words as a function of word length (in letters; A-B), and for 4-,6-,8-, and 10-letter test words as a function of

saccadic launch-site distance (in letters relative to the space in front of the test words; C), separately for the two most extreme word-frequency values across all test

words (-1.97 vs. 7.16 log units; A,C), and the two most extreme word-predictability values across all test words (-2.60 vs. 2.60 logit units; B).

https://doi.org/10.1371/journal.pone.0219666.g008
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landing-site distributions shifted towards the words’ end as saccades were launched from

closer to the words’ beginning [22]. Most importantly, in near and intermediate launch-site

cases (> -7 letters), that favored peripheral preview, there was an overall tendency for the dis-

tributions to peak slightly further into high- compared to low-frequency words of 7 and 8 let-

ters, thus when the distributions peaked near the center of words. In shorter (3- and 4-letter)

words, to the contrary, there was no clear word-frequency related shift in landing-position dis-

tributions, at least within the word boundaries. Thus, the pattern reported above for the test

words replicated here.

Fig 9. Within-word landing-position distributions. Across-participants probability density functions (bandwidth: 1

letter or 0.25˚; Gaussian Kernel) of initial landing positions in short and long words (3–4 letters and 7–8 letters in left

and right panels respectively), and for different saccadic launch-site distances binned in one-letter intervals (from

upper to lower panels: -1,-3,-5, and -7 letters respectively relative to the space in front of the words), separately for the

two most extreme categories of word frequencies grouped into four bins (see Materials and Methods). Light-grey

rectangle areas represent the horizontal extent of the words.

https://doi.org/10.1371/journal.pone.0219666.g009
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The fixed effects of the corresponding LMM are presented in Table 7. The emerging pattern

was consistent with that observed for initial landing positions in the test words. Saccades ini-

tially landed at a position slightly to the left of the words’ center when all variables were at their

reference (mean) value, and words were about 6 letters long (intercept estimate: -0.62161).

However, they landed closer to the end of shorter and less eccentric words, as suggested by the

negative and positive slope estimates for the effects of word length and saccadic launch-site

distance (-0.22438 and 0.35929 respectively). The interaction between launch-site distance and

word length was significant (estimate: 0.04516), indicating that the launch-site effect became

slightly greater with increasing word length. This was again unrelated to launch-site distance

being expressed relative to the space in front of the words; when within-word landing positions

were re-analyzed as a function of word length and word-center-based launch-site distance, the

interaction remained significant, while the effect of word length was now only marginally sig-

nificant (see S8 Table).

Most importantly, although there was now a marginally significant effect of word frequency

on within-word initial landing positions (estimate: 0.01986; t = 1.96007), both the interaction

between word frequency and word length and the interaction between word frequency, word

length and launch-site distance were again significant (estimate: 0.01695 and 0.00414 respec-

tively). The positive slope estimates indicated a tendency for saccades to land slightly closer to

the words’ end as their frequency increased, with this tendency becoming greater in longer

words, and even more so as saccades were launched from closer to the words’ beginning. This

is illustrated in Fig 10A and 10B, where the model’s predictions for the effects of word length

and launch-site distance were represented for the two most extreme word-frequency values

across all selected words. From this figure, it is again quite clear that the effect of word fre-

quency remained relatively small in comparison with the effects of word length and launch

site. This was only about half of the effect of launch-site distance in the most optimal condi-

tions (longest word and smallest launch-site distance), and actually much less since the range

of word frequencies for a given word length was less than the range of word frequencies across

all words. Still, the fact that there was an effect of word frequency at least in long words does

suggest that within-word landing positions, just as word-skipping likelihood, are slightly mod-

ulated by language-related variables.

In sum, despite word length and launch site were strong predictors of initial landing posi-

tions in words, word frequency did also slightly, though significantly, contribute. Importantly,

its impact was greater when landing positions were on average away from the word bound-

aries, as in the case of long words, and when the saccades were launched from close enough to

the words’ beginning so that the words could benefit from peripheral preview. This is clearly

in contradiction with predictions from word-based models, but in line with the assumption

that saccades are overall slightly modulated by linguistic processing, regardless of word

boundaries.

Overall landing positions (regardless of word boundaries)

In the above analyses, we found that word frequency, and to some extent word predictability,

not only influenced the likelihood of word skipping, but also within-word landing positions, at

least for some word lengths and/or saccadic launch-site distances. Critically, while word fre-

quency had a greater impact on the likelihood of skipping shorter words, it influenced almost

exclusively saccades’ initial landing positions in long words. These findings, in contradiction

with the predictions from word-based models, provided a first set of evidence for the hypothe-

sis that ongoing peripheral word-identification processes overall modulate where the eye

moves, regardless of word boundaries.
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The non-word-based view makes yet another, more direct, prediction. It predicts that sac-

cades should land further on the line of text when the word immediately to the right of fixation

(N+1) is easier to process, and even more so in optimal peripheral preview conditions, that is

when the word is shorter and less eccentric. To test this prediction, we thus re-analyzed the

Fig 10. Estimated within-word landing positions. Partial effects (with 95% confidence intervals) computed from LMM parameters (Table 7), representing

within-word initial landing positions for all words in the sentences as a function of word length (in letters; A), and for 4-, 6-, 8-, and 10-letter words as a function

of launch-site distance (in letters relative to the space in front of the words; B), separately for the two most extreme word-frequency values across all selected

words regardless of their length (-2.66 and 9.59 log units respectively; B).

https://doi.org/10.1371/journal.pone.0219666.g010
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data, but measuring this time the landing positions of all saccades launched from a given word

(N), regardless of the word they landed on, as a function of the properties of Word N+1 and

saccades’ launch site distance to the space in front of Word N+1. These overall landing-posi-

tion analyses, unlike the above analyses, did not imply word-based truncation of landing-site

distributions (see also [39, 122, 123]). Saccades between 0 and n words in length were assumed

to belong, at least by default, to the same population, thus allowing a more objective/neutral

test of word-based vs. non-word based hypotheses, while avoiding limitations due to floor/ceil-

ing effects as in the above word-skipping rate and within-word landing-position analyses.

These overall saccadic landing-position analyses were conducted across all words in the

sentences. Indeed, given the wider range of possible landing positions, in comparison with

within-word landing positions, the n was too low for these analyses to be conducted over the

test words only. The same selections as for within-word landing-position analyses were

applied, except that the fixation of interest was part of the first eye pass on a word, and hence

not necessarily the first fixation on a word: this corresponded either to a refixation of Word N

or the first fixation on one of the following words (Word N+1, N+2 . . .). The critical word, N

+1, was between 3 and 11 letters, not the first or last word on the line, not preceded or followed

by punctuation, and not a compound word. In addition, the fixation of interest was within a

window of -10 to 20 letters around the center of Word N+1.

Assuming non-word-based eye-movement guidance, we expected that overall landing-site

distributions would shift further towards the end of the line for high- compared to low-fre-

quency N+1 Words, though more largely as the words were shorter and less eccentric. In con-

trast, word-based models, predicted at least bimodal distributions, centered respectively on

Words N+1 and N+2, with a smaller peak associated with high- compared to low-frequency N

+1 Words, but no word-frequency related shift in landing positions. As further detailed below,

the data were inconsistent with these latter predictions, arguing instead for non-word-based

eye-movement guidance.

In Fig 11, overall landing-site distributions across all words in the sentences were plotted

for two categories of word frequencies (low vs. high; see Figure Legend), separately for short

(3- and 4-letter) and long (7- and 8-letter) words and for different saccadic launch-site dis-

tances (in 2-letter bins). The distributions were for the great majority unimodal. There was

only a tendency for the right tail of landing-site distributions to be elongated in the case of lon-

ger and less eccentric words (upper right panels), as well as a tendency for somewhat bimodal

distributions at the largest launch sites (lower panels), although it is hard to tell whether the lat-

ter was due to a lack of data or within-word refixations forming a separate population. In any

case, there was clearly no evidence for the distributions to exhibit two distinct modes, with one

centered on Word N+1, and the other centered on Word N+2. Actually, most saccades landed

beyond the end of very short (3- and 4-letter) N+1 words, and within the boundaries of long

(7- and 8-letter) N+1 words, with the exact landing position relative to the beginning of N+1

words being primarily a function of the saccades’ launch-site distance to the space in front of

the words as well as the words’ length. As saccadic launch-site distance increased, the distribu-

tions shifted leftward, peaking closer to the end/center of short words, and the very-beginning

of long words (or in front of it). Moreover, as word length increased, the distributions peaked

slightly closer to the words’ beginning. Most importantly, there was a slight, though quite con-

sistent, rightward shift in landing-site distributions with increasing word frequency; this indi-

cated that saccades tended to land slightly further as N+1 words were more frequent, though

to greater extents when the words were shorter (and in particular 4 letters long) and not too

far out in the periphery (< 7 letters). As a result, word frequency nearly exclusively influenced

the likelihood of word skipping in the case of short words, while mainly affecting within-word

landing positions in the case of long words, in line with the above analyses.
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An LMM was fitted to overall saccadic landing positions, as measured from the beginning

of N+1 Words, using the same cut-off selections for word length and launch-site distance as in

within-word landing position analyses. As shown in Table 8, where the model’s fixed effects

were reported, saccades landed 1.7 letters away from the beginning of N+1 Words, when all

variables were at their reference, mean, value, and words were about 5 letters long. The positive

Fig 11. Overall landing-position distributions. Across-participants probability density functions (bandwidth: 1 letter

or 0.25˚; Gaussian Kernel) of all saccades’ landing positions regardless of word boundaries (or overall landing

positions), expressed in letters relative to the beginning of Word N+1 (i.e., the word immediately to the right of the

word (N) from which the saccade was launched), with positive values corresponding to landing positions on this word

or beyond it, and negative values corresponding to landing positions in front of the word, and hence refixations of

Word N. Distributions were plotted, using all words in the sentences that responded to our selection criteria (see Text),

separately for short and long N+1 words (3–4 and 7–8 letters in left and right panels respectively), different saccadic

launch-site distances (in letters relative to the space in front of Word N+1), binned in two-letter intervals (from upper

to lower panels: [0,-2[, [-2,-4[, [-4,-6[, [-6,-8[, referred to as -1,-3,-5 and -7 respectively), and for high vs. low-frequency

N+1 words (i.e., the words that fell respectively within the two most extreme categories of word frequencies when

grouped into three bins; see Materials and Methods). Light-grey rectangle areas represent the horizontal extent of the

words.

https://doi.org/10.1371/journal.pone.0219666.g011
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slope estimate for the effect of launch-site distance (0.94341), indicated that landing positions

shifted by only a bit less than one letter for every one-letter increment of the launch-site dis-

tance, thus suggesting that the launch-site effect more than doubled its size when all saccades’

landing positions, instead of only within-word landing positions, were considered for analysis

(see Table 7 for comparison). Note that this was not a result of saccades’ landing positions

being measured relative to the beginning of N+1 Words. When data were re-analyzed using

word-center-based launch sites and landing sites, a similar slope was obtained (estimate:

0.93986; S9 Table). This first result confirms that the launch-site effect extends well beyond the

word boundaries, while showing that its slope varies with how data are analyzed ([21, 39], see

also [30]). In the discussion below, we will see that this is also inconsistent with predictions

from word-based models.

The model’s fixed effects additionally revealed a significant effect of word length, suggesting

that saccades landed closer to the beginning of longer N+1 Words (estimate: -0.43359). More

critically, there was a significant effect of word frequency (estimate: 0.10661), as well as a sig-

nificant interaction between word frequency and word length (estimate: -0.02027). This indi-

cated that saccades landed further away with increasing word frequency, and even more so as

words were shorter and hence more greatly benefited from peripheral preview. As shown in

Fig 12, where the model’s predictions were represented for the two most extreme word-fre-

quency values across all selected words, there was a clear word-frequency effect for short, 3-

and 4-letter, words. Given that these words were most often skipped, this indicates that even

word-skipping saccades landed at different locations on the line depending on the words’

Fig 12. Estimated overall landing positions. Partial effects (with 95% confidence intervals) computed from LMM

parameters (Table 8), representing saccades’ overall landing positions for all words in the sentences as a function of

word length (in letters), separately for the two most extreme word-frequency values across all selected words (-2.66 and

9.59 log units respectively).

https://doi.org/10.1371/journal.pone.0219666.g012
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frequency. The additional fact that the word-frequency effect extended to longer words, that

were most often fixated, confirmed the above-reported effect for within-word landing positions.

Thus, contrary to the predictions made by word-based models, but in line with the non-

word-based view, linguistic variables did influence where the eye moved on the line of text,

regardless of word boundaries. Their effects were smaller in longer words, that less largely

benefited from peripheral preview, and much smaller compared to the effects of saccadic

launch-site distance and word length, therefore suggesting that linguistic variables modulated

only occasionally the length of default forward saccades, as determined based on low-level

visuo-motor mechanisms.

Discussion

To test the general hypothesis that eye movements during reading are purposely guided from

one word to another word based on the (expected) needs of ongoing word-identification pro-

cessing, we re-examined the long-studied influence of language-related variables on forward

eye-movement behavior, but using linear-mixed-effect modeling applied to a large and well-

controlled sentence-reading data set. We found that the words’ frequency of occurrence in the

language, and their predictability from the sentence context (in the case of test words), only

mildly influenced where the eye moved next, in comparison with the words’ length and the

saccades’ launch-site distance to the beginning of words. Nevertheless, frequency and predict-

ability affected not only the likelihood of word skipping, but also within-word landing posi-

tions, all depending on the words’ length and eccentricity. Words that were shorter (3–5 letters

long), and also closer to the saccade’s launch site, were more often skipped, and even more so

as their frequency, and/or their predictability increased. However, as word length increased,

the likelihood of word skipping became both smaller and less strongly affected by word fre-

quency/predictability, while within-word landing positions, closer to the words’ center, started

showing variations with frequency and predictability. As suggested in further analyses, these

effects came from an overall slight shift of saccades’ landing positions towards the end of the

line of text, with increasing easiness of Word N+1. In the next sections, we explain how these

novel findings contradict the predominant top-down word-based account of eye-movement

guidance during reading. We then argue, in line with Vitu’s [5, 6] bottom-up, non-word-

based, CoG hypothesis, that saccades drive the eye forward along the lines of text regardless of

word boundaries, primarily as a result of low-level, non-word-based, spatial-integration mech-

anisms, and only exceptionally based on ongoing language-related processes.

Evidence against top-down word-based eye-movement guidance

The general hypothesis in top-down word-based models, that the metrical properties of sac-

cadic eye movements during reading result from a compromise between a saccade-targeting

strategy towards the center of peripherally selected target word(-object)s and SRE ([1–4, 19],

see also [14–16, 20]), relies on two main arguments. The first relates to the many empirical

findings showing that the words that are skipped are more easily processed in peripheral

vision: they are not only shorter [9, 20] and less eccentric [44, 45], but they are also visible (in

opposition to being masked in peripheral vision [46–49]), highly frequent [50–56], and/or

highly predictable [20, 48, 50, 55, 58–65]. The second argument relates to the well-established

fact that within-word landing positions systematically vary with saccades’ launch-site distance

to the center of words [20, 22, 30, 31], but often fail to show clear and significant variations

with the words’ linguistic properties (for reviews see [6, 21, 56, 67]).

In line with these findings, and hence word-based models, our results first confirmed that

the likelihood of word skipping varies with word length and saccadic launch-site distance, as
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well as the frequency, and to a lesser extent the predictability, of words. However, the fact that

frequency and predictability effects, which occurred mainly in shorter and less eccentric

words, remained much smaller than the effects of word length and saccadic launch-site dis-

tance (see also [44, 54, 66, 71], but see [72]) may represent a challenge for top-down, word-

based (and non-word-based), models, and E-Z Reader and SWIFT [1, 2] in particular. Both

models can predict a reduction in word-skipping rate with increasing word length (and eccen-

tricity). Still, given the models’ underlying assumption that selection of a saccade-target word

relies on ongoing word-identification processing weighted by letter eccentricity, it remains

undetermined whether the models’ predicted effect of word length is lexical or visual in nature,

and hence whether it would be much greater than the effect of lexical variables. As word length

is negatively correlated with word frequency, this could, at least partly, be an effect of word fre-

quency (and vice-versa) [124]. The proof is that SWIFT not only requires switching off lexical

processing, but also a re-adjustment of the letter-visibility function (and additional assump-

tions) to predict a quasi-similar length effect during the reading of meaningless (z-trans-

formed) text material ([73]; for E-Z reader applied to z-reading see [125]). GLENMORE

makes a distinction between visual and lexical processes: It assumes that early-triggered sac-

cades are guided in a blob-based manner, simply based on ongoing non-lexical visual process-

ing (i.e., visual-acuity function [4, 126]), and that later-triggered saccades reflect lexical, word-

based guidance. This model should therefore more easily account for our observation that

word length more greatly affected the likelihood of word skipping than linguistic variables.

Whether GLENMORE would provide a sensible account for the reduction in skipping rate

with increasing letter-string length and saccadic launch-site distance during the reading of

meaningless z-transformed texts [73–76], however remains debatable. Since z-letter strings

have no linguistic content and are 100% predictable, they should always be skipped, regardless

of their length, unless word-skipping behavior reflects hard-wired pre-determined visuo-

motor scanning routines that cannot be turned-off in the absence of linguistic content and/or

in low uncertainty conditions [11, 12].

Our landing-position findings however provided further and unambiguous arguments

against word-(object-)based accounts of eye-movement guidance during reading. Our first

observation that within-word landing positions were part of a larger, a-priori unimodal, distri-

bution of saccades’ landing positions, that largely extended outside the word boundaries (see

also [39]) is already in contradiction with the prediction made by word-based models, that

there should be as many modes as possible target words (minimally the next word, N+1, and

the word following it, N+2). Our additional finding that these distributions shifted by about

0.9 letter towards the beginning of Word N+1 (or even in front of it) with every one-letter

increment of the saccades’ launch-site distance to Word N+1 (for similar findings during Chi-

nese reading see [21, 53]) simply is inconsistent with the general hypothesis that saccades’

landing positions result from a compromise between a word-center saccade-targeting strategy

and SRE. This hypothesis was proposed precisely because it was thought that there is a rela-

tively invariant linear relationship between launch site and landing site, with a typical slope of

0.5, which is just halfway between a slope of 0 that would indicate that the eyes always land at

the center of words, and a slope of 1 that would reflect a tendency to make constant eye steps

forward [22]. Using the same rationale, the here-observed slope of 0.9 would mean that sac-

cades in our study were mostly driven by SRE, and hence mostly prone to move the eye a con-

stant distance forward. However, this was unlikely the case because saccades’ landing positions

were also strongly influenced by the length of peripheral words. Note in addition, that several

previous studies showed that the slope of the linear relationship between saccades’ launch sites

and within-word landing sites is not invariant, but rather depends on the peripheral visual

configuration [39, 127, 128]. Accordingly, but in contradiction with McConkie et al.’s [22]
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original findings, we found that the effect of launch-site distance on (within-word) landing

positions became stronger with increasing word length.

Another strong argument against word-based guidance came from our finding that within-

word landing positions, and even more so overall landing positions, were not exclusively influ-

enced by saccadic launch-site distance and word length, but also depended on the words’ lin-

guistic properties. Just like word-skipping rate slightly increased with increasing word

frequency and to some extent also word predictability, within-word landing positions mildly

shifted towards the end of more frequent and more predictable words. The fact that these lan-

guage-related effects on within-word landing positions intervened mainly in long words, while

the same effects on word-skipping likelihood occurred mainly in short words, is not surprising

when considering that analyses of within-word landing positions rely on truncated landing-

site distributions. Since saccades’ overall landing-position distributions peaked towards the

center of long words, but near the very-end of short words or even beyond it, they could yield

effects of linguistic factors on within-word landing positions mostly in long words (see Figs 1

and 11). The fact yet that less information can be gathered from long words, in comparison

with short words, in the periphery, combined with the slowness of language-related processes

[42, 43], explains why these effects remained tiny. It also accounts for the fact that many previ-

ous studies failed to observe effects of word frequency or word predictability on initial fixation

locations in words during the reading of alphabetic languages [56, 61, 62, 69, 70, 79–84]. Varia-

tions in within-word landing positions with the words’ orthographic and/or morphological

properties were however largely reported ([56, 82, 83, 85, 88–94, 96–103], but see [52, 70, 95,

104–105]). Most importantly, word-frequency and word-predictability effects were also found

in a couple of studies and most often in conditions similar to ours, that is mainly in long test

words (> = 7 letters on average [55, 56, 85–86]; but for an effect in shorter words see [87]), just

as the effects of orthography and morphology (see in particular [56]). Moreover, these effects

were much smaller than the effects of word length and saccadic launch-site distance, as in our

study. Thus, the fact that Rayner et al.’s [69] data revealed only a tiny, though non-significant,

effect of word predictability on within-word landing positions at close-launch sites, was likely

due to their words being too short (5–6 letters): as the distributions peaked very near to the

end of words (at least in their Experiment 2), the effect mainly took place beyond the word

boundaries, being significant only for the likelihood of word skipping.

Interestingly, Liu and colleagues [21, 64] reported very similar findings to ours for the read-

ing of Chinese sentences. They showed that word frequency, word predictability, and periph-

eral preview significantly modulated saccades’ overall landing positions on the line of text,

though much less than saccadic launch-site distance. Still, the former, language-related, effects

sometimes yielded effects on within-word landing positions [21, 108], but some other times

resulted in variations in word-skipping rate [53, 64]. This was likely because their words,

though only two-characters long, were of about the same angular extent (2˚) as the smallest

words that yielded significant language-related variations in within-word landing positions in

our study (8 letters or 2˚), and in previous studies (1.98˚-4.5˚). Indeed, Yen et al. [48] reported

a marginally significant effect of word frequency on the likelihood of word skipping, but no

effect on within-word landing positions, for 2-character words that subtended only about

1.64˚. In contrast, Zhou et al. [106] found an effect of word frequency on within-word landing

positions, but no effect on word-skipping likelihood, for words extending about 2.4˚ (see also

[31]). Note that these authors additionally showed an effect of word-boundary ambiguity on

within-word landing positions (see also [129], but see [130]), which they interpreted as evi-

dence for flexible saccade-target selection in Chinese reading (i.e., towards the center or the

beginning of words, depending on the success of word segmentation). However, since word

segmentation inevitably plays a role in word identification, their effect, nearly as small as
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(previously reported) word-frequency effects, could well be another instance by which ongoing

word-identification processes modulate default saccade amplitude.

Finally, our additional finding that word frequency influenced saccades’ landing positions

on the line of text even in the case of short and near words, that were most often skipped, fur-

ther strengthens our non-word-based interpretation of previous word-based results. Assuming

that ongoing peripheral word-identification processes only have all-or-none influences on

selection of a saccade target word simply cannot lead to the prediction that both skipping and

non-skipping saccades would land further away from the beginning of Word N+1 as this

becomes easier to process. These findings also suggest that word-based analyses of saccadic

behavior can be misleading [39].

Thus, in contradiction with the predominant word-based account of eye-movement guid-

ance, saccades during the reading of alphabetic, as well as un-spaced non-alphabetic, lan-

guages, do not seem to rely on segmentation of the text into saccade-target word(-object)s,

and where they actually land very unlikely reflects a compromise between a (word-center) tar-

geting strategy and SRE. Rather, where on the line of text (and with respect to word bound-

aries) the eyes move next would primarily be a function of the peripheral visual configuration

on a given eye fixation, as determined by the words’ length and eccentricity. Language-related

processes would also intervene, but they would overall modulate saccades’ landing positions

regardless of word boundaries, rather than exclusively influencing the likelihood the next

word(s) is(are) skipped. Moreover, this would happen essentially when all conditions (word

length and eccentricity) are met for an optimal peripheral preview of the word(s), and even

more so when the word’s linguistic properties (frequency or predictability) combine to further

reduce uncertainty.

An alternative, bottom-up, non-word-based account of eye-movement

guidance

Several models of eye-movement control during reading have already been proposed, that do

not involve word-based saccade-targeting processes. The great majority relies on the idea, orig-

inally proposed in McConkie’s [36] perceptual-span theory, that readers move their eyes

towards the next location on the line, that optimizes the processing of new visual information,

given the amount of information acquired from the prior eye fixation (for a review see [67]).

Though rapidly abandoned to the profit of top-down word-based eye-movement guidance

(for reviews see [6, 11, 68]), this theory was recently revisited to account for Chinese reading

[21, 53], as well as reading with a macular scotoma ([17, 34, 35], see also [131]). According to

the former, Dynamic Saccade Adjustment (DSA) model, the length of forward saccades would

be adjusted continuously based on the amount of peripheral preview, as determined by prior

fixation duration, and both the frequency and the visibility of the next word in peripheral

vision. On the other hand, according to Mr. Chips, an ideal observer model of reading with a

macular scotoma, saccades would be guided towards the next location on the line that mini-

mizes uncertainty on the currently processed word, given both visual acuity and crowding,

combined with lexical inferences.

Mr. Chips, and likely also DSA, can simulate sighted readers’ seemingly word-based eye-

movement behavior (e.g., the greater likelihood of skipping shorter and easier words). More-

over, both models can account for the launch-site effect, and without making recourse to the

greatly debated SRE hypothesis ([27, 28, 39], see also [127, 128, 132–134]); assuming this

results from ongoing visual and lexical word-identification processes within the visual/percep-

tual span, they even (potentially) predict that this effect extends beyond the word boundaries.

Still, the models’ processing-based account of the launch-site effect can hardly be reconciled
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with the fact that previous attempts at showing an influence of the availability of peripheral

preview on within-word landing positions either failed [28, 77, 78], or yielded effects that were

four to five times smaller than the effect of launch site [22]. In addition, as further developed

below, the models’ underlying assumption, as in word-based models, that there is enough time

during an eye fixation during reading for visual and language-based top-down selection of a

saccade goal is debatable. Thus, the perceptual-(visual-)span account, though non-word-

based, does not appear to us as the best possible explanation for eye-movement guidance dur-

ing reading.

Yang and McConkie [7, 8] were the first to experimentally address the timing issue. Using

gaze-contingent display-change manipulations, they showed that inter-word spacing, and

even more so word-information content, become available to the saccadic system only late

during a fixation (i.e., not before about 175–200 ms and 225–250 ms from fixation onset

respectively). On that basis, they proposed the assumption that eye movements during reading

are by default purely driven by strategy-based activation, a SRE-like bias to move the eye a con-

stant distance forward (see also [135–136]), and only later visually and linguistically controlled.

The authors’ Competition/Interaction (C/I) model relies on this assumption. Although this

model is conceptually different from word-based models, it turns out to be as problematic,

notably because it makes quite similar predictions for the landing positions of forward sac-

cades. First, given the range of fixation durations during reading, and the fact that 90% of

them are longer than 150 ms, this model paradoxically predicts a major role of visual input, at

the expense of strategy-based activation [18]. Since visually based guidance is a function of let-

ter-based activation, as weighted by letter eccentricity, letter-distance to the center of words,

and word length, this means that saccades would be essentially driven in a word-based man-

ner. Thus, while the model predicts, in line with previous findings, that the eyes should land

closer to the words’ beginning as word length and launch-site distance increase [22], it also

predicts that the landing-position distributions of forward saccades should be multimodal,

with each mode aligned with a possible target word (see Fig 3 in Yang [18]). However, as we

have seen above, this is not the case. In addition, given the predominance of visually based

guidance, the slope of the linear relationship between saccades’ launch site and landing sites

should be no greater than 0.5, and likely less (see above), thus in contradiction with the here-

observed slope of about 0.9. On the other hand, the model’s additional assumption that ongo-

ing language processing contributes only through saccadic inhibition cannot lead to predict an

overall shift in saccades’ landing-position distributions towards, or even beyond, the end of

easier words, as we observed (see also [108]). When a processing difficulty is encountered, the

region in the motor map coding for the planned saccade would be inhibited. This should in

turn both reduce the propensity to move the eye forward and inflate the likelihood of short-

amplitude forward saccades (or within-word refixations), but it should have no effect on the

landing positions of large-amplitude forward saccades. Thus, although we cannot reject all

assumptions made in the C/I model, this does not seem to propose a sensible and accurate

account for where on the line of text the eyes land.

The alternative, center-of-gravity theory, that was originally proposed by Vitu [5, 6, 40,

137], may provide a more appropriate framework to account for the present findings, and pos-

sibly also eye-movement guidance in other, non-alphabetic, languages. Unlike word-based

models, this incorporates neither selection of a saccade target word(-object), nor segmentation

of the text into perceptual word units, to predict where the eyes land when moving forward.

On any given eye fixation during reading, each letter on the line of text would be assigned a

given level of activity, depending only on its distinctiveness from the background, and hence

also its eccentricity, but regardless of the word it belongs to. Where the eyes move next would

then directly derive from spatial-integration mechanisms, the same mechanisms that were
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shown to determine the metrical properties of saccades in simple saccade-targeting tasks [41].

These mechanisms take place in the Superior Colliculus (SC), a midbrain structure that trans-

forms visual input into the spatial code for a saccade [138]. The SC receives afferents from

many cortical areas, but also directly from the retina [139]. As spatial coding is distributed

over populations of neurons with large and overlapping receptive/movement fields, saccades

move the eyes to the location in space that corresponds to the center of gravity of the entire

active population [140]. Given the magnification factor, or overrepresentation of space closer

to the fovea ([141–142], see also [143]), the eyes therefore land by default towards a fovea-

weighted center of gravity of the global peripheral configuration, meaning away from their

target when this is displayed simultaneously, with other, proximal (distractor) stimuli

([133]; for a review see [5]). In a similar manner, saccades during reading would move the

eye towards a fovea-weighted center of gravity of the global visual configuration formed by let-

ters to the right of fixation, regardless of letter identity and word boundaries [5, 137]. The

resulting overall distributions of saccades’ landing positions should therefore be unimodal,

and peak either within or beyond the boundaries of the next word on the line (N+1), depend-

ing on the word’s length and eccentricity, as we observed. Saccades launched from close to the

beginning of Word N+1 would tend to land beyond the end of the word when it is short, and

near the end of the word when it is long, being pulled forward by material ahead of Word N

+1. Moreover, as saccades are launched from further away, their landing position would pro-

gressively shift towards the word’s beginning, thus reproducing the well-known launch-site

effect [22].

The center-of-gravity (or global) effect is a quasi-irrepressible oculomotor response, that

vanishes only when saccade latency is greatly prolonged [144], and even more so as the visual

array is visually more complex ([132, 145]; for a review see [5]). Top-down, language-based,

guidance is therefore not impossible, but given its slowness compared to bottom-up, lumi-

nance-contrast, guidance (through the direct retino-tectal pathway [139]), it could only inter-

vene punctually to modulate saccades’ landing positions. This would be the case when fixation

durations are prolonged, and/or when visual and linguistic variables combine to favor an early

access to the word’s representation. Thus, as we observed, the eyes would land slightly further

on the line of text as the frequency and/or the predictability of Word N+1 increases, though

more greatly when the word is both short and close enough to fall within the limits of the per-

ceptual span for letter identity (< 6 letters [67]). Still, depending on the word’s length and

eccentricity, this would either increase the likelihood the word is skipped or take the eyes fur-

ther towards the end of the word, as we reported.

MASC, a model of Attention in the SC, accounts for eye-movement guidance in a range of

perceptual tasks, simply based on saccade-programming principles in the SC, though taking

into account many more SC constraints than originally envisaged in Vitu’s CoG theory [146].

As evidenced in a companion paper, its behavior while viewing sentences from the FSC, very

much resembled reader’s eye-movement patterns, even despite this being deprived of lan-

guage-related knowledge and top-down control [147]. Yet, MASC showed some differences

with readers, in line with the here-observed tiny linguistic influences, thus comforting our

conclusion that eye-movement guidance during reading is primarily a result of low-level, non-

word-based, visuo-motor processes, and only subject to one-off language-based modulations.

This model, as the present paper, still only dealt with where, but not when, the eyes move dur-

ing reading. Whether on ongoing word-identification processes beat visuo-motor factors in

determining fixation durations, as predicted by top-down models, and in line with several

empirical findings, though not all (for reviews see [6, 67]), is another issue that will be

addressed in future work.
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Conclusion

In contradiction with the long-standing assumption that saccadic eye-movements during

reading are guided in a word-based manner, we have shown that the frequency, and to some

extent the predictability, of words affect both the likelihood of word skipping, and where in

the words the eyes land, thus overall influencing saccades’ landing positions regardless of word

boundaries. Still, these effects were small, and much smaller compared to the effects of word

length and saccadic launch-site distance, which remained the best predictors of readers’ eye

movement patterns. Altogether these findings argue for the hypothesis that saccade metrics

during reading are primarily determined based on low-level visuo-motor mechanisms that

require neither word segmentation nor selection of a saccade-target word(-object) in the

periphery. Top-down, language-based, modulations of eye-movement behavior would inter-

vene only in specific instances, notably when the visual and lexical properties of the peripheral

word(s) combine to allow a fast access to the words’ representation.
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