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Abstract: Ca2+ release-activated Ca2+ channels, composed of Orai1 and STIM1 (stromal interaction
molecule 1) proteins, are the main Ca2+ entry mechanism in lymphocytes. Their role in cell migration
and metastasis is demonstrated in solid cancers but it remains elusive in malignant hemopathies.
Diffuse large B cell lymphoma (DLBCL) is characterized by the dissemination of neoplastic B cells
throughout the organism which is under the control of chemokines such as Stromal Derived Factor 1
(SDF-1) and its receptor CXCR4. CXCR4 activation triggers a complex intracellular signaling including
an increase in intracellular Ca2+ concentration whose role is still unclear. Using pharmacological
and genetic approaches, we revealed that STIM1 and Orai1 were responsible for Ca2+ influx induced
by SDF-1. Furthermore, we provide in vitro and in vivo evidence that they are necessary for basal
or SDF-1-induced DLBCL cell migration which is independent of Ca2+ entry. We identify that they
act as effectors coupling RhoA and ROCK dependent signaling pathway to MLC2 phosphorylation
and actin polymerization. Finally, we revealed an alteration of Orai1 and STIM1 expression in
extra-nodal DLBCL. Thus, we discovered a novel Ca2+-independent but Orai1 and STIM1-dependent
signaling pathway involved in basal and CXCR4 dependent cell migration, which could be relevant
for DLBCL physiopathology.

Keywords: Orai1; STIM1; calcium; migration; lymphocyte; lymphoma

1. Introduction

Diffuse large B cell lymphoma (DLBCL) is the most common and one of the most aggressive
types of non-Hodgkin lymphoma among adults. While nodal DLBCL typically develops in lymphatic
organs, 30–40% of DLBCL arise at extra-nodal sites [1]. Differences in clinical presentation, molecular
pathogenesis, and predisposing factors, indicate that extra-nodal DLBCLs are distinct entities [2]. One
characteristic feature of nodal DLBCL is the dissemination of malignant B cells towards the organism
but very little is known regarding the factors involved in their migration and trafficking [3]. The
ability of B-cell lymphomas to spread to multiple organs reflects the migratory capacity of their normal
counterparts. Indeed, B cells circulate continuously throughout the body via the blood and lymphatic
systems. This trafficking is not random, but is under the control of chemokines such as Stromal Derived
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Factor 1 (SDF-1 or CXCL12) and its receptor CXCR4 [4]. Indeed, SDF-1-CXCR4 signaling plays a
critical role in a variety of processes underlying proper B cell development including retention of
precursor B cells in the bone marrow [5], homing of mature B cells in secondary lymphoid organs [6],
trafficking and homing of plasma cell to bone marrow [7]. Moreover, it is now clearly established that
SDF-1 is involved in DLBCL cell dissemination [8]. The binding of SDF-1 to CXCR4 initiates numerous
intracellular signal transduction pathways which could be tissue-dependent and thus may differ
between cell types, resulting in a variety of cellular responses such as chemotaxis, cell survival and
proliferation, and gene transcription [9]. More precisely, upon activation, intracellular heterotrimeric G
protein coupled to CXCR4 is dissociated into βγ dimer and αi monomer which subsequently activate
the PLC/MAPK, PI3K/FAK and Rac/RhoA/Cdc42 pathways leading to the cell migration [10].
Furthermore, in hematopoietic progenitor cells and, more recently, in human endothelial progenitor
cells, SDF-1 was shown to induce an increase in intracellular calcium concentration [Ca2+]i necessary
for cell migration [11,12] but whether this mechanism also occurs in B lymphoma cells is still unknown.

Until now, cell migration is considered as a Ca2+ dependent process given that several key molecular
components and signaling events of the cellular migration are Ca2+ sensitive. Consequently, a fine
distribution of intracellular Ca2+ gradient is needed to control directional migration and to orchestrate
this intracellular distribution, Ca2+ channels are major regulators of this process [13]. In non-excitable
cells, calcium entry is mainly due to store operated calcium entry (SOCE). By definition, SOCE is activated
by endoplasmic reticulum (ER) Ca2+ store release. Two classes of proteins are mainly responsible for
SOCE activity: STIMs (Stromal interaction molecule 1 and 2), ER Ca2+ sensors that detect ER Ca2+ store
depletion, and Orais (Orai1, 2 and 3), the pore-forming subunits of plasma membrane Ca2+ channels. The
Ca2+ release-activated Ca2+ (CRAC) channel, the archetype of store operated channel (SOC), is constituted
of Orai1 and STIM1 and is the main Ca2+ channel responsible for Ca2+ entry in lymphocytes [14–16]. Both
Orai1 and STIM1 have been described to be involved in the mediation of actomyosin assembly and the
focal adhesions for migration of cancer cells [17–19]. However, all these studies have been performed
on adherent cancer cells migrating in a mesenchymal manner while lymphocytes display a peculiar
amoeboid type of migration [20] involving different molecular processes [3].

In the present study, we examined the role of Orai1 and STIM1 on basal and SDF-1-induced
cell migration in DLCBL. We revealed that STIM1 and Orai1 mediate SOCE in response to SDF-1.
However, we provided evidence, both in vitro and in vivo, that Orai1 and STIM1 are necessary for
DLBCL migration but independently of Ca2+ entry across the plasma membrane. Our results suggest
that STIM1 and Orai1 are required for RhoA/ROCK activation and MLC phosphorylation. Together,
these data highlight a new role of STIM1 and Orai1 in lymphocyte migration.

2. Results

2.1. SDF-1 Induces Ca2+ Responses Involving Orai1/STIM1-Dependent Ca2+ Entry

The addition of SDF-1 triggered a cytosolic Ca2+ increase in SU-DHL-4 and HLY-1 cell lines,
consisting of peaks and/or a sustained plateau phase (Figure 1(Aa,b) and Figure S1(Aa,b)). To
determine the origin of these Ca2+ responses, cells were recorded in Ca2+-free medium (Figure 1(Ac)
and Figure S1(Ac)). Ca2+ responses were maintained, but the areas under the curves were statistically
smaller in both cell types (Figure 1(Ad) and Figure S1(Ad)), suggesting that these responses resulted
from both intracellular Ca2+ store mobilization and extracellular Ca2+ influx. To determine whether
CRAC channels participated in Ca2+ influx triggered by SDF-1, pharmacological and RNAi approaches
were used. To evaluate and validate the efficacy of the CRAC channel blockers and shRNAs targeting
Orai1 and STIM1 on SOCE, we used the most common means to activate SOCE by inducing ER
Ca2+ depletion using the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor
thapsigargin [21]. Treatment of DLBCL cell lines with thapsigargin in Ca2+-free medium led to a
transient response corresponding to Ca2+ release from ER-Ca2+ stores (Figure S2). Addition of 2 mM
Ca2+ to the recording medium revealed a second response due to Ca2+ entry through SOCE. Thus, we
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revealed that BTP2 and GSK7975A, two CRAC channel blockers, inhibited more than 80% of SOCE
in both cell lines (Figure S2A) confirming their high efficacy to block SOCE. In the same way, we
validate the efficiency of shRNA Orai1 and STIM1 which significantly reduced SOCE-induced by
thapsigargin as well as Orai1 and STIM1 protein expression, respectively (Figure S2C). To note that
the kinetic of the initial rise of the residual SOCE was not altered, as commonly observed [22,23], in
down-expressing Orai1 and STIM1 SU-DHL-4 cells suggesting that beside Orai1, another SOC like
TRPC1, could contribute to SOCE in these cells.

When cells were pretreated with BTP2 or GSK7975A, they exhibited significantly lower SDF-1-induced
Ca2+ responses (Figure 1(Ae–g) and Figure S1(Ae–g)). Similarly, Ca2+ responses induced by SDF-1 were
significantly attenuated in Orai1 or STIM1 knockdown cells compared to cells expressing a non-targeting
shRNA (shNT) (Figure 1B and Figure S1B). These results suggest that SDF-1 provoked an increase in
[Ca2+]i, involving the mobilization of intracellular Ca2+ stores and the activation of an extracellular Ca2+

influx originating from Orai1/STIM1 CRAC channels. To determine whether the CXCR4/SDF-1 axis was
responsible for the [Ca2+]i increase, cells were pretreated with AMD3100, a CXCR4 inhibitor. We observed
that Ca2+ response to SDF-1 was significantly impaired in AMD3100-treated cells (Figure S3A), suggesting
that SDF-1-induced Ca2+ response is mainly mediated by CXCR4 in both cell lines.
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Figure 1. Stromal Derived Factor 1 (SDF-1) provokes an intracellular Ca2+ response in the HLY-1 diffuse
large B cell lymphoma (DLBCL) cell line involving intracellular Ca2+ pool mobilization and Orai1/STIM1
extracellular Ca2+ influx. Ca2+ responses to SDF-1 (100 ng/mL) were measured using Fluo2-LR-AM
Ca2+ dye and recorded by videomicroscopy (Zeiss LSM 510) using ×25 objective. Black arrows indicate
SDF-1 addition. Each trace represents the response of one cell and data are representative of at least three
independent experiments. Typical response of unique cell (peak or peak follow by sustained plateau
phase) are present as example (Ab). Data were processed using GraphPad prism. (A) Pharmacological
characterization of SDF-1-induced Ca2+ increase. Cells were recorded in extracellular saline solution
(HBSS) containing 2 mM Ca2+ (2 Ca, (Aa)) or in Ca2+-free HBSS (0 Ca, (Ac)). Cells were pre-incubated with
BTP2 (Ae) or GSK7975A (Af) at 10 µM for 30 min and recorded in 2 mM Ca2+ HBSS containing inhibitors.
(Ad,Ag) Histograms represent areas under curves (AUC) calculated, under various recording conditions,
between the application time of SDF-1 and t = 2050 s, and normalized compared to control (2 Ca or shNT).
Data are expressed as mean ± SEM, * p < 0.05. (B) Effect of Orai1 or STIM1 expression knock-down on
SDF-1-induced Ca2+ response. The stable modified HLY-1 cell line established after lentiviral transduction
with plasmid containing non targeting shRNA (shNT), shRNA against Orai1 or STIM1 were recorded in
extracellular saline solution (HBSS) containing 2 mM Ca2+.
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2.2. Calcium Independent Involvement of Orai1 and STIM1 in DLBCL Migration

It is well known that SDF-1 is a potent chemoattractant for DLBCL cells. However, the role
of Ca2+ in the pro-migratory effect of SDF-1 remains unclear. We performed pharmacological and
RNA interference analyses to address this question. First, using transwell assays, we evaluated
the chemotactic effect of SDF-1 in SU-DHL-4 and HLY-1 cell lines. As expected, we observed that
SDF-1-induced migration in both cell lines was completely abolished in the presence of AMD3100
(Figure S3B). These results suggest that SDF-1 stimulate DLBCL migration via an action mechanism
involving CXCR4. We then investigated the role of Ca2+ in SDF-1 pro-migratory effect. Surprisingly,
pre-treatment of cells with extracellular (EGTA) or intracellular (BAPTA-AM, Figure S2B) Ca2+

chelator, or CRAC inhibitors (BTP2, GSK7975A) had no effect on basal and SDF-1-induced migration
in either cell line (Figure 2A). However, we show that the down-regulation of STIM1 and Orai1
expression significantly altered the basal and SDF-1-induced migration of SU-DHL-4 and HLY-1 cells.
Indeed, the basal and SDF-1-induced migration was drastically or partly inhibited in shSTIM1 and
shOrai1-expressing SU-DHL-4 cells, respectively (Figure 2B). To a lesser extent, similar effects were
obtained in HLY-1 cells under-expressing Orai1 and STIM1 (Figure 2B). Weaker effects observed in
HLY-1 than in SU-DHL-4 cells may be due to a lower efficacy of shRNA in HLY-1 than in SU-DHL-4
cells (Figure S2C). Finally, we checked that the knockdown of Orai1 and STIM1 had no effect on
basal total and membrane CXCR4 expression (Figure S3C,D). These results show that DLBCL cell
migration required Orai1 and STIM1 but not Ca2+ signaling, suggesting a new Ca2+-independent role
of Orai1/STIM1 in malignant B lymphocytes.
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Figure 2. Orai1 and STIM1 regulate basal and SDF-1-induced DLBCL cell migration in a Ca2+

independent manner in vitro. Cell migration was assessed in 96-transwell chemotaxis chambers
assay. Histograms represent mean ± SEM from at least 3 independent experiments, * p < 0.05. (A)
Ca2+ is not necessary for DLBCL cell migration. To test the effect of the pharmacological agents on
chemotaxis induced by SDF-1 (100 ng/mL), cells were pre-treated during 20 min in the presence or
not of the agents before to be loaded to upper transwell chambers and pharmacological agents were
maintained in medium during the experiment. BAPTA-AM, intracellular Ca2+ chelator, 5 µM; EGTA,



Cancers 2018, 10, 402 5 of 17

extracellular Ca2+ chelator, 1 mM; BTP2 and GSK7975A, CRAC inhibitors, 10 µM. (B) Orai1 and STIM1
are required for DLBCL migration. Basal and SDF-1 (100 ng/mL)-induced migration were measured (as
described above) in stable modified HLY-1 and SU-DHL-4 cells established after lentiviral transduction
with plasmid containing non targeting shRNA (shNT), shRNA against Orai1 or STIM1.

2.3. STIM1 Knock-Down Impaired DLBCL Dissemination In Vivo

To test the role of CRAC channels in DLBCL dissemination, mice were intra-hepatically
xenografted [24] with HLY-1 cells expressing shNT or shSTIM1. We chose these experimental conditions
due to the fact that (1) only the HLY-1 cell line has the ability to induce an intra-hepatic tumor and
spread into organs and (2) shSTIM1 was the most efficient to inhibit cell migration in vitro compared
to shOrai1. Four weeks after engraftment, mice were sacrificed and necropsy was performed. Liver,
spleen, and kidneys were systematically removed and invasion of these organs by human tumor cells
was evaluated by immunostaining for the human cell marker HLA-ABC. Firstly, we checked that the
under-expression of STIM1 was maintained in vivo by performing immunofluorescence on the liver
tumor (Figure S4A). We then analyzed, by immunohistochemistry (IHC), the labelling of HLA-ABC
in injected livers. As shown in Figure 3A, regardless of the type of cells injected, the percentage of
HLA-ABC+ tumor cells in the liver at the end of the experiment was similar. This suggests that there is
no difference in the ability of cell engraftment and proliferation based on the expression of shSTIM1 or
shNT, as confirmed by quantification of Ki67 labelling in injected livers (Figure S4B) and corroborating
in vitro data revealing no difference in cell growth between shNT and shSTIM1 expressing cells (Figure
S4C). In comparison to control cells, STIM1 knockdown tumor cells had reduced capacity to colonize
organs such as spleen and kidneys (Figure 3A). The evaluation of the percentage of HLA-ABC+ cells
by flow cytometry showed that spleen and kidneys were invaded by two-fold more tumor cells in mice
xenografted with HLY-1 shNT cells than shSTIM1 cells (Figure S4C). To confirm the Ca2+-independent
role of STIM1 in DLBCL cell dissemination in vivo, mice were intra-hepatically xenografted with
HLY-1 cells and treated three times per week with BTP2 or vehicle for four weeks [25]. Analyses of
tumors by IHC or flow cytometry clearly revealed that there was no difference between mice treated
with BTP2 or not (Figure 3B and Figure S4D). Taken together, these observations suggest that STIM1 is
likely involved in DLBCL dissemination and that it acts through a Ca2+-independent mechanism.
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Figure 3. STIM1, but not Ca2+, regulate DLBCL dissemination in vivo. (A) Effect of STIM1
under-expression on HLY-1 cell dissemination. (B) Effect of intraperitoneal injection of BTP2 (12 µg/kg)
or vehicle, three times per week on HLY-1 cell dissemination. Images were captured with a Nikon
Eclipse Ci microscope equipped with a Plan Fluor 10× 0.3 NA objective. Scale bars = 150 µm.
Histograms represent the quantification of positive surface for HLA-ABC staining. All tissues
were delimited and to evaluate the percentage of positive surface for HLA-ABC staining on tissue,
thresholding on positive and negative staining was done using Mercator software. Data are represented
as mean ± SEM (n = 10), * p < 0.05.
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2.4. Molecular Mechanisms Mediating Orai1/STIM1 Dependent DLBCL Migration

SDF-1 has been shown to initiate cell chemotaxis by activation of various transduction pathways
which are dependent on cell types [9] and microenvironment [26]. To determine which transduction
pathway was involved in the Ca2+-independent effect of Orai1 and STIM1 on basal and SDF-1-induced
DLBCL cell migration, we tested the effect of inhibitors targeting the main kinases previously described
as involved in cell migration [9]. A specific abrogation of basal and SDF-1-induced cell migration
was observed in SU-DHL-4 and HLY-1 cells in the presence of the ROCK inhibitor (Y-27632) while
the other inhibitors (FAK inhibitor, PD98059 a MEK inhibitor, Wortmannin a PI3K inhibitor and AKT
inhibitor), had no effect (Figure 4A). As ROCK is activated by RhoA, we therefore evaluated the
activation of RhoA in cells under-expressing STIM1 or Orai1 using a pull-down assay. Our results
show that RhoA activation by SDF-1 was impaired in cells under-expressing STIM1 or Orai1 suggesting
a major role of the RhoA/ROCK pathway in SDF-1-induced B lymphocyte migration (Figure 4B).
Finally, using immunofluorescence and phalloïdin stainings, we clearly show that SDF-1 induced
the phosphorylation of MLC2 and actin rearrangement in SU-DHL-4 cells after 1 h of treatment, but
this effect was completely inhibited in cells expressing shOrai1 or shSTIM1 (Figure 4C). These results
indicate that Orai1 and STIM1 act on DLBCL cell migration as effectors coupling the SDF-1 receptor to
RhoA/ROCK/MLC2 pathway.
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Figure 4. Orai1 and STIM1 control DLBCL cell migration through RhoA activation, ROCK, and
MLC phosphorylation. (A) SDF-1-induced SU-DHL-4 and HLY-1 cell migration is ROCK activation
dependent. Cells incubated or not with SDF-1 (100 ng/mL) were pre-treated during 20 min in the
presence or not of various inhibitors (FAK inhibitor 1 µM, PD98059 a MEK inhibitor 10 µM, Wortmannin
a PI3K inhibitor 10 nM, AKT inhibitor 250 nM, Y27632 a ROCK inhibitor 1 µM). Data are represented as
mean ± SEM of 3 independent experiments, * p < 0.05. (B) SDF-1-induced RhoA activation is impaired
by shOrai1 and shSTIM1 in SU-DHL-4 cells. Left: Cells were treated for 30 min with SDF-1 (200 ng/mL)
and RhoA activation was evaluated by pull-down assay and western blot. Right: Quantification of
western blot performed after pull-down assays (n = 3) (C) Orai1 and STIM1 act as regulators of the
MLC phosphorylation. Immunofluorescence of SU-DHL-4 cells under-expressing, or not, Orai1 or
STIM1 seeded on glass coverslips, fibronectin coated, were stimulated, or not, with SDF-1 (200 ng/mL)
for 1 h. Ser19phosphoMLC2 was immunostained with mouse anti-phosphoMLC2 mAb revealed
using secondary Alexa488-coupled donkey anti-mouse Ab (in green), F-actin was revealed with
Phalloïdin-AlexaFluor 594 (in red) and nuclei were stained using Hoechst 33258 (in blue). Cells in
square are zoomed and shown below. Images were acquired using a Zeiss LSM 510 meta confocal
microscope (Zeiss, Göttingen, Germany) with an ApoPLAN 63× objective. Scale bar = 20 µm.
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2.5. STIM1 and Orai1 Expression in Diffuse Large B Cell Lymphomas

To study the clinical relevance of Orai1 and STIM1 in DLBCL dissemination, their expression was
examined in 26 normal lymph nodes and 87 tumor tissues from nodal (n = 43) and extra-nodal (n = 44)
DLBCL surgical samples. Thus, commercial TMA were co-immunostained for Orai1 or STIM1 and
CD19/CD20 (Figure 5A), and fluorescence was analyzed using laser scanning cytometry technology [20].
To quantify Orai1 and STIM1 expression, we scored the samples by the distribution and intensity of
immunofluorescent staining for Orai1 or STIM1 in B cells (CD19 and/or CD20 positive cells). In normal
tissue, 77% of cases (20/26) exhibited high score for STIM1 expression and 23% (6/26) showed low
score. Similar results were obtained in nodal DLBCL. However, in extra-nodal DLBCL, the repartition
significantly differed from normal lymph node with 50% of cases (15/30) showing a low grade of STIM1
expression (p < 0.05 compared to the intensity grades for STIM1 in normal tissue) (Figure 5B). Similarly, we
observed that high grades of Orai1 expression are in the majority in normal lymph nodes and nodal DLBCL
(16/25 = 65% in normal tissue vs. 22/48 = 55% in nodal DLBCL). In contrast, the majority of extra-nodal
DLBCL cases exhibited low grade intensity of Orai1 expression (27/44 = 61% of low grade in extra-nodal
DLBCL vs. 9/25 = 36% in normal tissue, p < 0.05) (Figure 5B). These results show that the expression of
Orai1 and STIM1 is lower in extra-nodal DLBCL compared to normal tissue and nodal DLBCL.
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Figure 5. Orai1 and STIM1 expression is altered in extra-nodal DLBCL. (A) Representative
immunofluorescent staining of STIM1 and Orai1 in normal lymph node and extra-nodal DLBCL
under-expressing STIM1 or Orai1. Images were acquired using Leica DMI8 microscope equipped
with a 40× oil immersion objective. TMA including samples from normal lymph node (n = 26), nodal
(n = 43) and extra-nodal (n = 44) DLBCL was co-immunostained using Orai1 or STIM1 antibodies
revealed by donkey anti-rabbit Alexa-488 (in green) and mouse anti-human CD20 and anti-human
CD19 revealed by goat anti-mouse Alexa 532 (in red). Nuclei were stained with DAPI (in blue). Scale
bar = 50 µm. (B) Quantification of STIM1 or Orai1 alteration in DLBCL samples. After acquisition of
spot fluorescence on Icys laser scanning cytometer, a segmentation analysis base on phantoms was
done to determine the percentage of CD20/CD19 positive cells expressing protein of interest for each
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spot. The stacked column charts illustrate the intensity grade for STIM1 or Orai1 expression in surgical
specimens. * p < 0.05 by Chi-square test.

3. Discussion

In the present work, we highlight a novel, Ca2+-independent role of Orai1 and STIM1 in basal and
SDF-1-induced DLBCL cell migration. We confirm that SDF-1 induces an intracellular Ca2+ increase
and demonstrate that Orai1 and STIM1 are responsible for the extracellular Ca2+ influx induced by
SDF-1. Moreover, we clearly demonstrate, both in vitro and in vivo, that basal or SDF-1-induced B-cell
migration is dependent on STIM1 and Orai1 expression independent of intracellular Ca2+ increase.
We identify that STIM1 and Orai1 act as effectors coupling RhoA/ROCK to MLC phosphorylation
leading to actin polymerization. Finally, clinical sample analyses showed a decrease in Orai1 and
STIM1 expression in a significant proportion of extra-nodal DLBCL which could have an impact on
their clinical presentation and evolution.

During their life, normal and tumor B lymphocytes circulate around the body via the lymphatic
system and blood. Their migration is mainly regulated by chemokines such as SDF-1. The various
transduction pathways activated by the SDF-1/CXCR4 axis have been extensively studied in adherent
normal and cancer cells. They include activation of heteromeric G-proteins which mainly induce PI3K,
PLC, and Rho/Rac/Cdc42 as downstream effectors resulting in a variety of cellular responses [9].
Consequent to the PLC activation, SDF-1 triggers an intracellular Ca2+ concentration increase involving
IP3-dependent Ca2+ pool mobilization and extracellular Ca2+ influx [12,27]. We confirm these
observations in DLBCL cell lines and reveal, using pharmacological and expression knockdown
approaches, that Orai1/STIM1 channels are major molecular actors of SDF-1-induced extracellular
Ca2+ influx. By evoking Ca2+ signals and other signaling pathways, SDF-1 may influence many
cellular processes including chemotaxis. However, our results demonstrate that extra (EGTA)- or
intracellular (BAPTA-AM) Ca2+ chelator inhibiting Ca2+ release and Ca2+ entry signal in response
to TG or SDF-1, as well as specific Orai1/STIM1 Ca2+ channel inhibitors, had no effect on basal or
SDF-1-induced migration in tumor B cells which strongly suggest that intracellular Ca2+ increase is
not required for B cell migration. The role of Ca2+ in mesenchymal cell migration has been widely
demonstrated [28], while in amoeboid migration, used by lymphocytes, it is more controversial. Indeed,
in T lymphocytes, intracellular Ca2+ increase was reported to inhibit T-cell motility and might act as a
“stop signal” [29,30]. More specifically, in B lymphocytes, it has been shown that migratory response to
chemokines such as SDF-1 could be Ca2+-independent according to the B cell maturation stage [31,32].
So, SDF-1-induced Ca2+ responses in tumor B cells are likely involved in other processes such as cell
survival or transcription gene expression. More intriguing is the fact that the under-expression of Orai1
and STIM1 resulted in a drastic decrease of DLBCL migration. These results have been corroborated
by in vivo experiments using a mouse model of DLBCL dissemination from an intrahepatic xenograft
to various organs [24] which showed that the inhibition of the Ca2+ channel activity of Orai1/STIM1
by BTP2 was inefficient to impair B cell dissemination in contrast to STIM1 under-expression.

Similar non-conductive roles for channel proteins have been described previously. More
specifically, it has been shown that Orai1 and Orai3 proteins were more important than calcium
influx to control cell proliferation in various solid cancer cell lines [33], and there is mounting
evidence for Ca2+ independent effect of TRP channels on gene expression, DNA damage, cytoskeletal
dynamics, and migration [34,35]. Our results are also consistent with previous studies showing that
thrombin-mediated disruption of endothelial barrier required STIM1 but was independent of Ca2+

entry across the plasma membrane [22,36]. As these studies revealed that STIM1 acted independently
from Orai1 in endothelial cells, we noted that despite a lower effect of shSTIM1 than shOrai1 on SOCE,
the downregulation of STIM1 seems more efficient to inhibit cell migration than that of Orai1. This
leads to the hypothesis that, according to the process studied, STIM1 might act as a driver molecule
involved in various Ca2+-independent processes while Orai1 could be a passenger molecule. Further
experiments will be necessary to highlight this point.
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Previously, the RhoA/ROCK/MLC transduction pathway has been identified as a mechanism for
the STIM1-mediated contribution to thrombin-induced disruption of endothelial barrier. Interestingly,
our data reveal a similar pathway to link the Ca2+-independent effect of Orai1 and STIM1 to
SDF-1-induced migration in DLBCL cell lines. Indeed, we clearly demonstrate that inhibition of
ROCK, a key downstream effector of RhoA, drastically blocks basal and stimulated DLBCL cell
migration. Although the precise involvement of the RhoA/ROCK pathway in lymphocyte biology has
not been fully elucidated, the best described role of this pathway seems to be the control of cytoskeletal
reorganization [37]. We clearly demonstrate that Orai1 and STIM1 participated in this pathway since
their knockdown prevented the phosphorylation of MLC2 and consequently the polymerization
of actin involved in the lymphocyte migration [38]. Altogether, these observations reveal a new,
Ca2+-independent, role of Orai1 and STIM1 in DLBCL cell migration. More importantly, our results
strengthen the data obtained by the Trebak’s group [22,36] and highlight the putative existence of a
novel RhoA/ROCK/MLC transduction pathway, involving Orai1 and/or STIM1 as Ca2+-independent
effectors, which could be activated in various cellular contexts requiring cytoskeletal reorganization.

Although Orai1 and STIM1 are the major components of CRAC channels, many other auxiliary
proteins have been described to interact and regulate Orai1/STIM1 functions [39,40]. Thus, we assume
that the Ca2+ independent effect of Orai1/STIM1 on DLBCL cell migration could be mediated by
protein–protein interactions, as previously described between TRPM8 channel and the small GTPase
Rap1 causing endothelial cell migration inhibition [35]. More specifically, as previously demonstrated
by Chen et al. in solid cancer cells [18], we could hypothesize that after stimulation, the microtubule
plus-end binding protein EB1 binds STIM1, linking it with microtubules and finally activating
RhoA/ROCK-dependent cell migration [41]. Nevertheless, further experiments are needed to elucidate
the exact molecular mechanism by which Orai1 and STIM1 interfere with DLBCL cell migration.

Alterations of Orai1 and even more STIM1 in solid cancers have been exhaustively studied [19]
but, to our knowledge, no data are available concerning the expression of these proteins in hematologic
malignancies. Our clinical samples study indicates that Orai1 and STIM1 are under-expressed in half
of the extra-nodal DLBCL while no significant modification was observed in lymph node DLBCL
compared to normal lymph node. Although surprising, these results could account for specific
properties of extra-nodal DLBCL which exhibit an initial confinement to a single anatomical site and
less propensity to disseminate [42]. Interestingly, a recent study has shown that, in contrast to solid
cancers, intra-lymphatic spread of extra-nodal DLBCL lymphoma cells was a rare event [43] which
might explain the lesser propensity of these tumors to disseminate. Thus, the down-expression of
STIM1 or Orai1 could impair cell migration and/or intralymphatic spread, promoting homing of
tumor B cells to extra-nodal sites. Further experiments should be necessary to confirm this hypothesis.

4. Materials and Methods

4.1. Reagents and Antibodies

Fibronectin, EGTA, and BAPTA-AM were purchased from Sigma-Aldrich (L’Isle d’Abeau, France).
BTP2 was from Interchim (Montluçon, France). GSK7975A was supplied by Aobious (Gloucester, MA,
USA). SDF-1 was from Peprotech (Neuilly sur seine, France). Indo-1-AM and Alexa fluor 594 Phalloidin
were from Life Technologies (Courtaboeuf, France). Puromycin, AMD 3100, and Y27632 were supplied
by Tocris (Bio-Techne, Lille, France). Fluo-2-AM-LR was from Teflabs and Rho Activation Assay
Biochem Kit was supplied by Cytoskeleton (Euromedex, Mundolsheim, France). Mouse anti-human
CD19 were supplied by Diagomics (Blagnac, France), mouse anti-human CD20 and monoclonal mouse
anti-human Ki67 clone MIB-1 were from Agilent Technologies (Les Ulis, France). Alexa532-conjugated
goat anti-mouse and Alexa 488-conjugated donkey anti-rabbit polyclonal antibodies came from Life
Technologies (Saint-Aubin, France). The mouse anti-human HLA-ABC–PECy7 clone G46-2.6 and rat
anti mouse CD16/CD32 were from BD biosciences (Le Pont de Claix, France). PE/Cy5 anti-human
CXCR4 (clone 12G5) and PE/Cy5 mouse IgG2α, κ isotype control were supplied by BioLegend
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(Ozyme). Western blots were performed using anti-human Orai1 or STIM1 (Alomone labs, Jerusalem,
Israël), anti-CXCR4 (Santa Cruz Biotechnology, Heidelberg, Germany) rabbit polyclonal antibodies,
mouse anti-human βactin (Sigma Aldrich, L’Isle d’Abeau, France), and anti-phosphoMLC2 (Cell
Signaling Technology, Ozyme, Saint Quentin en Yvelines, France) monoclonal antibodies.

4.2. Cell Lines

SU-DHL-4 cell line was obtained from the Deutsche Sammlung von Mikrooganismen und
Zellkulturen GmbH cell collection (Braunschweig, Germany). HLY-1 cell line was generously provided
by Dr. Fabienne Meggetto, Toulouse, France. Cells were cultured in RPMI-1640 media supplemented
with 10% FBS under humid atmosphere containing 5% CO2. Stable modified cell lines SU-DHL-4 and
HLY-1, were established after transduction with lentivirus carrying the PLKO1.5 plasmid containing
shRNA against STIM1 (Sigma TRCN0000149588) or Orai1 (Sigma TRCN0000165044) as previously
described [25]. The pXS68 non targeting shRNA (shNT) was used as lentiviral transduction control.
The transduced cells were selected by treating them with Puromycin (1 µg/mL for SU-DHL-4 and
2.5 µg/mL for HLY-1).

4.3. Calcium Imaging

Single-cell [Ca2+]i imaging was performed, using Fluo2-AM-leak resistant (LR) calcium dye. Cells
were loaded with 10 µM Fluo2-AM-LR in the presence of 0.02% pluronic F127 at room temperature in
HBSS for 25 min. The cells were rinsed with HBSS and incubated in the absence of Fluo2-AM-LR for
15 min to allow complete de-esterification of the dye. Fluorescence time-lapse images were captured
at 515 nm using a confocal microscope Zeiss LSM 510 (Göttingen, Germany) equipped with a Plan
Neofluar 25× 0.8 NA oil objective. The recording lasted 2050 s and SDF-1 was added at t = 200 s.
Images were recorded at constant 10 s intervals under the control of LSM 510 software (Zeiss). Regions
of interest corresponding to recorded cells were drawn to analyze fluorescence signal. Data were
processed using Prism 6 (GraphPad).

In some experiments, cells were placed in a Ca2+-free medium consisting of the HBSS in which
CaCl2 was omitted and 100 µM EGTA was added in order to chelate residual Ca2+ ions. This medium
was added to the cells just before recording to avoid leak of the intracellular calcium stores. Each
experimental condition was repeated independently at least three times. Area under curve was
calculated from 200 s to 2050 s of the recording.

4.4. Transwell Assay

Transmigration of DLBCL cell lines was assessed in 96-transwell chemotaxis chambers with a
pore size of 5 µm (Corning). Cells (5 × 105) were rinsed and suspended in serum-free media before
being loaded in the upper chamber of the transwell culture insert. The bottom chamber was filled
with culture medium with or without SDF-1 (100 ng/mL). To test the effect of the pharmacological
agents on chemotaxis induced by SDF-1, cells were pre-treated during 20 min in the presence, or
not, of the agents before being loaded to upper transwell chambers. After 10 hours of incubation for
SU-DHL-4 and 16 hours for HLY-1 cells, the upper chambers were removed and cells that had migrated
were counted after adding an internal microsphere counting standard (Precision count beads, Ozyme)
by flow cytometry using a FACSCalibur cytometer equipped with an HTS module and Cell Quest
software (BD Biosciences). Results are presented as migration index which was calculated by dividing
the number of migrated cells in the studied condition by the number of migrated cells in the absence
of chemoattractant (control).

4.5. In Vivo Experiments

Animal experiments were performed in A2 animal facility (Bordeaux University), in accordance
with national institutional guidelines and with the agreement of the local Ethic Committee on
Animal Experiments CEEA50 of Bordeaux (2903-2016051011358065). To assess the cell spreading
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into organs, intrahepatic xenografts were performed as previously described [24]. Briefly, 5 × 105

HLY1 cells expressing shNT or shSTIM1 were intrahepatically xenografted in 8 to 15 weeks old
NSG immunodeficient mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) under 2.5% isoflurane anesthesia
(Belamont, Piramal Healthcare, Northumberland, UK). For pharmacological treatments, HLY-1 parental
cells were intrahepatically xenografted and mice were treated by intraperitoneal injection of vehicle
or SOCE inhibitor BTP2 (12 µg/kg) three times per week [25]. A global surveillance of animal health
was performed two to three times per week. Four weeks after engraftment, mice were sacrificed.
Liver, spleen, and kidneys were removed and cut in half. One half was fixed in 4% formaldehyde for
immunohistochemistry and the other half was kept for flow cytometry analysis. Ten mice were grafted
for each cell line.

4.6. RhoA Activation Assay

RhoA activity was measured using cytoskeleton RhoA activation assay kit according to the
manufacturer’s recommendations. Briefly, cells were lysed in 700 µL of lysis buffer. Lysates (800 µg)
were cleared at 15,000× g and the supernatants were rotated for 1 h with 50 µg of Rhotekin-RBD Beads.
Samples were then washed three times and immunoblotted with RhoA monoclonal antibodies. Whole
cell lysates were also immunoblotted for RhoA as loading controls.

4.7. Immunohistochemistry

To analyse liver engraftment and human lymphoma dissemination in organs harvested,
H&E staining and human leucocyte antigen (HLA-ABC) IHC were performed on formalin-fixed
paraffin-embedded mice organ sections (3 µm thick). HLA-ABC expression was revealed using mouse
anti-human HLA-ABC clone G46-2.6 antibody (1:3000) and ultraview universal DAB detection kit
(Ventana, Roche, Basel, Switzerland). Slides were scanned using panoramic scan (3Dhistech, Sysmex,
Villepinte, France) and then analyzed using Mercator software (Exploranova, La Rochelle, France).
Briefly, tissue was delimited and thresholds for positive and negative staining were determined
to evaluate the percentage of positive area for HLA-ABC staining on tissue. Images of H&E and
HLA-ABC staining were acquired using a Nikon Eclipse Ci microscope equipped with a Plan Fluors
10× 0.3 NA objective.

4.8. Flow Cytometry Analysis

HLA-ABC was detected in single cell suspensions from enzymatic and mechanical dissociated
organs, using PE-Cy7 antibody (BD Biosciences) and analyzed by BD FACS CantoII flow cytometer
and FlowJo software (Tree Star Inc., Ashland, OR, USA).

4.9. Tissue Microarrays

Tissue Microarrays (TMA) were purchased from US Biomax (Rockville, MD, USA). TMA were
composed of 26 spots of normal lymph node and 87 spots of DLBCL tumoral tissue divided into 43
spots of nodal and 44 spots of extranodal DLBCL. Co-immunostainings were performed using Orai1
antibody (HPA016583, Sigma) or STIM1 antibody (HPA012123, Sigma) and mouse anti-human CD20
and anti-human CD19 revealed by Alexa 488-conjugated donkey anti-rabbit and Alexa532-conjugated
goat anti-mouse polyclonal antibodies, respectively. Nuclei were stained with DAPI. After acquisition
on Icys laser scanning cytometer (Thorlabs, Maison Lafitte, France), a segmentation analysis base on
phantoms was done to determine the percentage of CD20/CD19 positive cells expressing protein
of interest for each spot as described previously [44]. To quantify Orai1 and STIM1 expression, we
graded the samples as follows: the high or low grade indicates that the mean percentage of B cells
(CD20 and/or CD19 positive) expressing Orai1 or STIM1 is higher or lower than the mean observed in
normal lymph node, respectively.
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4.10. Western Blot

Cell lysates from various cell lines were prepared using Cell Signaling Technology cell lysis buffer
supplemented with protease/phosphatase inhibitor cocktails (Cell Signaling Technology, Ozyme,
Saint Quentin en Yvelines, France). Proteins were loaded onto 10% Tris-acrylamide gels, transferred
with I-blot system (Thermofisher Scientific, Bordeaux, France) on PVDF membrane and blotted with
anti-human Orai1 or STIM1 antibodies overnight at 4 ◦C. Proteins of interest were visualized using a
chemiluminescent HRP substrate kit (Merck-Millipore, Fontenay sous bois, France) revealed with a
Fusion system (Vilber Lourmat, Marne-laVallée, France) and analyzed using Bio1D software (Vilber
Lourmat). The densitometry values were normalized with those of β-actin (loading control).

4.11. Confocal Microscopy

Cells were plated on glass coverslips pre-coated with fibronectin at 2 µg/cm2. Cells were rinsed
twice in serum-free medium and treated with or without SDF1 for 1 h. After fixation in PBS containing
4% (w/v) paraformaldehyde for 10 min, cells were then permeabilized in PBS supplemented with 0.2%
triton X-100 for 5 min. After a step of saturation with a solution containing PBS and 0.2% gelatin
for 30 min, cells were incubated with anti-phosphoMLC2 mAb in PBS/0.2% gelatin overnight at
4 ◦C. Phospho-MLC was revealed using secondary Alexa488-coupled donkey anti-mouse Ab. F-actin
and Nuclei were stained using phalloïdin and Hoechst 33258, respectively. Images were acquired
using a Zeiss LSM 510 meta confocal microscope (Zeiss, Göttingen, Germany) with an ApoPLAN
63× objective.

4.12. Statistical Analysis

Data are shown as mean ± standard error of mean (SEM). The significance of differences was
calculated using a 2-tailed unpaired Student t-test or Mann and Whitney or one-way ANOVA or
chi-square test, as indicated. Differences were considered statistically significant when p < 0.05 (*).

5. Conclusions

We provide evidences that DLBCL migration is regulated by Orai1 and STIM1 expression
but not by intracellular Ca2+ concentration, revealing by the way additional functions for these
proteins. Further experiments should be done to determine the precise molecular mechanism linking
Orai1/STIM1 to RhoA and DLBCL migration. The elucidation of this mechanism could be particularly
relevant for development of drugs targeting DLBCL dissemination.
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