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Appendix: analytical derivations 1 

In this appendix, we detail the analytical derivations leading to the equations given in the main 2 

text, in four sections. First, in section I. “Settings and general results”, we briefly recall the 3 

derivations from Martin et al. (2013) leading to the evolutionary rescue (ER) probability. Then, 4 

in section II. “Application to Fisher’s Geometric Model (FGM)”, we apply this framework to the 5 

FGM, yielding the ER probability in the SSWM regime. In section III. “Small mutational effects 6 

approximation (SME)”, we derive explicit approximations under the assumption of weak 7 

mutation effects (limit as 𝜆/𝑟𝑚𝑎𝑥 → 0), illustrated by numerical examples (Supplementary 8 

Figs.3-4). Then, in section “IV. Key properties of the model” we use these approximations to 9 

provide simple insights into key properties of the model: proportion of ER caused by standing 10 

variance, characteristic stress and stress window over which ER changes from highly likely to 11 

highly unlikely. 12 

All along 𝔼𝑋(. ) denotes an expectation taken over the distribution of 𝑋 (which can be 13 

multivariate), and 𝑋|𝑌 denotes a random variable 𝑋 conditional on 𝑌. Most computations are 14 

checked in a Mathematica® notebook (Supplementary file S1), provided as a .cdf file that can 15 

be ran using a freely available “CDF player” from the Wolfram website. 16 

  17 

I. Settings and general results 18 

We recall the general model and approximations described in Martin et al. (2013), which apply 19 

to Fisher’s Geometrical Model (FGM), in the limit of Strong Selection Weak Mutation (SSWM). 20 

We call ‘new environment’ the environment imposed at the onset of stress (𝑡 = 0): it induces 21 

a decay of the population under study, at 𝑡 = 0. The environment in which the population was 22 

before the onset of stress is called ‘previous environment’. 23 

 24 

1. General stochastic demography: Each genotype 𝑖 present at 𝑡 = 0 or later produced by 25 

mutation (via a Poisson process) is characterized by the parameters (𝑟𝑖, 𝜎𝑖) of a Feller diffusion 26 

approximating its stochastic demography. Let  𝑁𝑖(𝑡) be the size of the genotypic class 𝑖 at 27 

time 𝑡. The growth rate 𝑟𝑖 and reproductive variance 𝜎𝑖 give the expectation and variance of 28 

the change, over 𝑑𝑡, in log 𝑁𝑖(𝑡) (which is Δ𝑁𝑖/𝑁𝑖), given 𝑁𝑖(𝑡). We have 𝑟𝑖 = 𝔼(Δ𝑁𝑖|𝑁𝑖)/29 
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(𝑑𝑡 𝑁𝑖) over some time interval (infinitesimal in the diffusion limit), and 𝜎𝑖 = 𝑉(Δ𝑁𝑖|𝑁𝑖)/30 

(𝑑𝑡 𝑁𝑖). In the diffusion limit, the population size of the genotypic class is characterized by the 31 

stochastic differential equation 𝑑𝑁𝑖(𝑡) = 𝑟𝑖𝑁𝑖(𝑡)𝑑𝑡 + √𝜎𝑖 𝑁𝑖(𝑡)𝑑𝐵𝑡 where 𝐵𝑡 is a standard 32 

Brownian motion. 33 

 34 

2. Application to a discrete time model with Poisson offspring distribution: In our case, we 35 

consider, as an example, discrete non-overlapping generations where the subclass consisting 36 

of individuals of genotype 𝑖 produces 𝑁𝑖(𝑡 + 1) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑊𝑖𝑁𝑖(𝑡)) offspring over one 37 

generation, where 𝑊𝑖 is the absolute Darwinian (i.e., multiplicative) fitness of this genotype. In 38 

this case 𝑟𝑖 = 𝔼(𝑁𝑖(𝑡 + 1) − 𝑁𝑖(𝑡))/𝑁𝑖(𝑡) = 𝑊𝑖 − 1, while 𝜎𝑖 = 𝑉(𝑁𝑖(𝑡 + 1) − 𝑁𝑖(𝑡))/39 

𝑁𝑖(𝑡) = 𝑊𝑖 are two constant coefficients for any genotype. The diffusion limit applies when 40 

the demographic changes per generation are small, which requires 𝑊𝑖 → 1. In this case we 41 

retrieve a Feller diffusion where  𝑟𝑖 = 𝑊𝑖 − 1 → log(𝑊𝑖) is the absolute Malthusian fitness of 42 

genotype 𝑖, while 𝜎𝑖 = 𝑊𝑖 → 1 is constant across genotypes (Martin et al. 2013).  43 

Extinction of the population occurs if none of the genotypes present or produced over the 44 

course to extinction avoids extinction: following classic notation, non-extinction (over infinite 45 

time) is denoted “establishment”. The probability of establishment, for a lineage started in 46 

single copy, with growth rate 𝑟 and stochastic variance 𝜎 in the new environment, is 𝜋(𝑟) =47 

(1 − 𝑒−2𝑟 𝜎⁄ )Θ(𝑟) where Θ(. ) is the Heaviside theta function (Θ(𝑥) = 0 if 𝑥 ≤ 0 and Θ(𝑥) =48 

1 if 𝑥 > 0) and the reproductive variance 𝜎 ≈ 1 (as in our simulation example mentioned 49 

above considering a Poisson reproduction). 50 

 51 

3. Strong selection weak mutation (SSWM): In this work we use a SSWM approximation 52 

(Gillespie 1983; McCandlish and Stoltzfus 2014). We consider that the mutation rate is low 53 

relative to the strength of selection, so that rescue mutations are typically single step mutants 54 

(sampled from the pool of possible mutants), be it present before the onset of stress (from 55 

standing variance, hereafter ‘SV’) or arising after it (de novo hereafter ‘DN’). We thus only 56 

consider rescue from a single allele, which is randomly drawn among all possible alleles, 57 

weighted by their probability to produce a rescue (illustrated in Supplementary Fig.1). Under 58 

the SSWM approximation, all possible rescue events (SV or DN, from any given allele) arise as 59 
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alternative Poisson events (Martin et al. 2013). The overall probability of extinction is thus 60 

simply the zero class of a Poisson distribution and the probability of evolutionary rescue (ER) is 61 

that of the complementary event (‘no extinction’). The key to describing the process is 62 

therefore to derive the rate of these Poisson events, over all possible mutations in the model 63 

considered. 64 

 65 

(A) Proportion of individuals carrying different numbers of de novo mutations in rescued populations. 66 

 67 

(B) Proportion of individuals carrying different numbers of de novo resistant mutations in rescued populations. 68 

Supplementary Figure 1: Proportion of individuals carrying different numbers of de novo mutations (all mutations 69 

in (A) or only resistant mutations in (B)) in rescued populations, from exact simulations. These proportions were 70 

evaluated in those populations having been rescued, at the time where they reached our stop criterion, that is 71 
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when their current mean growth rate and population size imply a very low probability of future extinction, even 72 

in the absence of future adaptation (see simulation methods in the main text). The distributions are given for 73 

different mutation rates (x-axis), given relative to the critical mutation rate (𝑈𝑐 = 𝑛2 𝜆 4⁄ = 0.1 here) below which 74 

the SSWM assumption should hold. Populations were initially composed of a single clone, with 𝑁0 = 105, 𝑛 = 4, 75 

�̅� = 0.01, 𝑟𝑚𝑎𝑥 = 1.5, 𝑟𝐷 = (0.042, 0.129, 0.23, 0.32) from right to left in each panel. Whenever 𝑈 ≪ 𝑈𝑐, 76 

rescued populations mostly consist of the wild type (0 mutation, not shown here) and single mutants (purple bars). 77 

As 𝑈 approaches 𝑈𝐶 , a substantial proportion of multiple mutants is found in late rescued populations (fewer 78 

when focusing on the resistant mutants that are the potential rescuers of the populations). Note however that 79 

this illustration does not ascertain whether these multiple mutants are the cause of rescue or not. 80 

 81 

4. Rescue from de novo mutation: We first consider rescue starting from a clonal population (of 82 

inoculum size 𝑁0), so that any rescue event is caused by de novo mutations (‘DN’). We define 83 

the rate of ‘DN’ rescue events 𝜔𝐷𝑁 per individual present at the onset of stress, such 84 

that 𝑁0 𝜔𝐷𝑁 is the parameter of the Poisson number of ‘DN’ rescue events. Ignoring 85 

stochasticity in the decay dynamics of the wild-type (large 𝑁0𝑟𝐷), the total number, over time, 86 

of rescue mutations for those mutants with growth rate 𝑟 (more precisely, within the 87 

infinitesimal class [𝑟, 𝑟 + 𝑑𝑟]) is 𝑁0 𝑈 𝜋(𝑟) 𝑓(𝑟)𝑑𝑟 /𝑟𝐷. Here 𝑈 𝜋(𝑟) 𝑓(𝑟)𝑑𝑟 is the rate, per 88 

capita per unit time, of mutations towards this class, weighted by their probability 𝜋(𝑟) to 89 

generate a rescue. After integrating over the whole distribution of possible resistant mutants 90 

we get (following Martin et al. 2013): 91 

 𝜔𝐷𝑁 = 𝑈 
𝔼𝑟(𝜋(𝑟))

𝑟𝐷
=

𝑈

𝑟𝐷
 ∫ (1 − 𝑒−2 𝑟/𝜎) 𝑓(𝑟)𝑑𝑟

𝑟𝑚𝑎𝑥

0

  , (A1) 

where the random variable 𝑟 denotes mutant growth rates in the new environment and 𝑓(𝑟) 92 

their probability density function. The corresponding probability of extinction is then 𝑃𝑒𝑥𝑡 =93 

𝑒−𝑁0 𝜔𝐷𝑁 (Martin et al. 2013). 94 

 95 

5. Rescue from standing variance: In an alternative scenario, the initial population (of size 𝑁0) is 96 

previously at equilibrium in the non-stressful ‘previous environment’. In the SSWM regime, the 97 

rescue process results from the contributions from two independent processes: rescue caused 98 

by a mutant appearing after the onset of stress and rescue caused by a mutant already present 99 

at the onset of stress. The numbers of each event overall are approximately Poisson distributed, 100 
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with rates 𝑁0 𝜔𝐷𝑁 (given in Eq.(A1)) and 𝑁0 𝜔𝑆𝑉, respectively. The latter depends on the joint 101 

distribution of the cost 𝑐 of resistance mutations in the previous environment, and of their 102 

growth rate 𝑟 in the new environment. The cost 𝑐 (in the previous environment) is equal to 103 

minus the selection coefficient, relative to the dominant background, of random mutations 104 

arising in this very background (Martin et al. 2013); we then have: 105 

 𝜔𝑆𝑉 =  𝑈 𝔼𝑐,𝑟 (
𝜋(𝑟)

𝑐
) = 𝑈 𝔼𝑟 (𝜋(𝑟) 𝔼𝑐 (

1
𝑐 |𝑟)) . (A2) 

This Poisson approximation applies under the SSWM regime (Martin et al. 2013), regardless of 106 

whether the population is initially at stochastic mutation-selection-drift balance at constant 107 

size 𝑁0, or at quasi-deterministic mutation-selection balance (at some size 𝑁 ≫ 𝑁0) followed 108 

by a bottleneck at the onset of stress (to reach size 𝑁0). The extinction probability in the 109 

presence of both initial standing variance and de novo mutations is 𝑃𝑒𝑥𝑡 = 𝑒−𝑁0 (𝜔𝐷𝑁+𝜔𝑆𝑉), and 110 

because rescue events are Poisson distributed, the proportion 𝜙𝑆𝑉 of rescue from standing 111 

variants (over all rescue events) is 112 

 𝜙𝑆𝑉 =
𝜔𝑆𝑉

𝜔𝐷𝑁 + 𝜔𝑆𝑉
  . (A3) 

 113 

II. Application to Fisher’s Geometric Model (FGM) 114 

In our case, the joint distribution of 𝑐 and 𝑟 emerges from the FGM: growth rates (both in the 115 

previous and new environment) are quadratic functions of phenotype, around an environment-116 

dependent optimum. We recall that we directly give the results in the case of a Poisson 117 

offspring number as mentioned in section I subsection 2 (where 𝜎 ≈ 1 for all genotypes). In the 118 

following, we derive the above quantities in this context. 119 

 120 

1. Definitions: Define 𝑛 the number of dimensions of the fitness landscape (number of traits 121 

under stabilizing selection) and 𝜆, the variance of mutational effects. In our model, λ varies with 122 

both the strength of selection and the effect of mutations. To see this, consider an isotropic 123 

model on some arbitrary phenotypic space: we can define the Malthusian fitness of a 124 

phenotype 𝐳 as 𝑟(𝐳) = 𝑟𝑚𝑎𝑥 − 𝜆𝑆 ‖𝐳‖2 2⁄  with 𝜆𝑆 the strength of stabilizing selection on each 125 
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trait. Each mutation creates a random perturbation 𝐝𝐳 ~ 𝑁(𝟎, 𝜆𝑀𝐈𝑛) with 𝐈𝑛 the identity 126 

matrix in ℝ𝑛 and 𝜆𝑀 the variance of mutational effects on each trait. As we focus only on fitness 127 

here, we can consider the model in a scaled phenotypic space, with phenotypes 𝐱 = √𝜆𝑆 𝐳 so 128 

that 𝑟(𝐱) = 𝑟𝑚𝑎𝑥 − ‖𝐱‖2/2 and 𝐝𝐱 ~ 𝑁(𝟎, 𝜆 𝐈n) where 𝜆 = 𝜆𝑆 𝜆𝑀. Thus, we need not 129 

separate selective and mutational scalings, and simply ‘measure’ phenotypic traits in 130 

convenient units of ‘selection strength’. The mean fitness effect of random mutations is 131 

|𝔼(𝑠)| = 𝜆 𝑛/2 , in absolute value (Martin and Lenormand 2015). Therefore, 𝜆 directly gives a 132 

measure of mutant selective effects per trait. 133 

It proves handy to define the scaled variable 𝑦 = 𝑟 𝑟𝑚𝑎𝑥⁄ ∈ [0,1] and the corresponding scaled 134 

decay rate 𝑦𝐷 = 𝑟𝐷/𝑟𝑚𝑎𝑥(which are also used in the main text). For the sake of compactness, 135 

in the derivations of this appendix only, we also define a scaled height of the fitness 136 

peak 𝜌𝑚𝑎𝑥 = 𝑟𝑚𝑎𝑥/𝜆 (scaled by the variance of mutational effects 𝜆) and a measure of 137 

dimensionality 𝜃 = 𝑛/2. 138 

 139 

2. Distribution of mutant growth rates: The initial clone lies at fitness distance 𝑠0 = 𝑟𝑚𝑎𝑥 + 𝑟𝐷 140 

from the optimum in the new environment, which, together with 𝑛 and 𝜆, fully determines the 141 

distribution of mutant selection coefficients (and hence growth rates 𝑟). The distribution of 142 

selection coefficients 𝑠 = 𝑟 + 𝑟𝐷 of random mutants relative to the ancestor has known exact 143 

form for the isotropic FGM (eq.(3) in Martin and Lenormand 2015). From it, the distribution of 144 

growth rates 𝑟 among random mutants, within the new environment, is readily obtained. It has 145 

stochastic representation 146 

 𝑟 = 𝑟𝑚𝑎𝑥 −
𝜆

2
 𝜒𝑛

2(2 𝜌𝑚𝑎𝑥  (1 + 𝑦𝐷)) 147 

where 𝜒𝑛
2(𝜈) is a non-central chisquare with 𝑛 degree of freedom and non-centrality 148 

parameter 𝜈. The scaled growth rate 𝑦 = 𝑟 𝑟𝑚𝑎𝑥⁄ ∈ [0,1] has stochastic representation 𝑦 =149 

1 − 𝜒𝑛
2(2 𝜌𝑚𝑎𝑥(1 + 𝑦𝐷)) (2𝜌𝑚𝑎𝑥⁄ )  with corresponding probability density function (see also 150 

Supplementary file S1) 151 

  𝑓𝑦(𝑦) = 𝑒−𝜌𝑚𝑎𝑥(2+𝑦𝐷−𝑦)𝜌𝑚𝑎𝑥
𝜃 (1 − 𝑦)𝜃−1 0𝐹1(𝜃, 𝜌𝑚𝑎𝑥

2 (1 + 𝑦𝐷)(1 − 𝑦))

Γ(𝜃)
  , (A4) 

where 0𝐹1(. , . ) is the confluent hypergeometric function. 152 
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  153 

3. Rescue from de novo mutation: The rate of ER from de novo mutations in Eq.(A1) can be 154 

equivalently computed by integrating over the distribution of the scaled growth rate 𝑦 =155 

𝑟/𝑟𝑚𝑎𝑥. The non-extinction probability, given 𝑦, is 𝜋(𝑦) = (1 − 𝑒−2 𝑟𝑚𝑎𝑥 𝑦)Θ(𝑦) where Θ(. ) is 156 

the Heaviside theta function (Θ(𝑥) = 1 for 𝑥 ∈ ℝ+ and Θ(𝑥) = 0 for 𝑥 ∈ ℝ−):  157 

 𝜔𝐷𝑁 = 𝑈 
𝔼𝑦(𝜋(𝑦))

𝑟𝐷
=  

𝑈

𝑟𝐷
∫ (1 − 𝑒−2 𝑟𝑚𝑎𝑥 𝑦) 𝑓𝑦(𝑦)𝑑𝑦

1

0

, (A5) 

where 𝑓𝑦(𝑦) is given by Eq.(A4). This integral can readily be computed numerically. 158 

 159 

4. Rescue from standing variance (𝒏 ≥ 𝟐): For rescue from standing variants (‘SV’), the 160 

distribution of the cost, in the previous environment, of mutations with growth rate 𝑟 (or scaled 161 

growth rate 𝑦), in the new environment, must also be known (see Eq.(A2)). In the SSWM 162 

approximation, we neglect the effect of standing background variation on the distribution of 163 

fitness effects of mutations generated before the onset of stress. We thus consider that the 164 

joint distribution of (𝑐, 𝑟) is the one generated if all mutants arose from the dominant genotype 165 

in the previous environment, which is optimal in this environment (same as the initial clone in 166 

the DN rescue problem. For the FGM, the distribution of 𝑐 has a known form, conditional on 167 

the effect of the mutant (𝑠 = 𝑟 + 𝑟𝐷) in the new environment. Consider a background optimal 168 

in the previous environment, not too close to the optimum of the new environment and 169 

with 𝑛 ≥ 2. The conditional cost then has a simple stochastic representation (from eq. (9) in 170 

Martin and Lenormand 2015): 𝑐|𝑠 ~  𝑐𝑚𝑖𝑛 + 𝛾, where 𝛾 ~ Γ(𝜃 − 1/2, 𝜆) is a gamma deviate 171 

and 𝑐𝑚𝑖𝑛 = 2𝑠0 − 𝑠 − 2𝑠0√1 − 𝑠 𝑠0⁄  is a constant, with 𝑠0 = 𝑟𝑚𝑎𝑥 + 𝑟𝐷 . Expressed in terms of 172 

scaled growth rates 𝑦 (𝑠 = 𝑦 𝑟𝑚𝑎𝑥 + 𝑟𝐷), we have  𝑐𝑚𝑖𝑛 = 𝑐𝑚𝑖𝑛(𝑦) = (2 + 𝑦𝐷 −173 

2√(1 + 𝑦𝐷)(1 − 𝑦) − 𝑦)  𝑟𝑚𝑎𝑥 and we have 𝑐|𝑦 ~ 𝑐𝑚𝑖𝑛(𝑦) + 𝛾. The cost 𝑐𝑚𝑖𝑛(𝑦) can be 174 

simply interpreted as an “incompressible cost”: the minimum cost that mutants within the 175 

class [𝑦, 𝑦 + 𝑑𝑦] must pay, because they cannot get close to the new optimum without moving 176 

away from the former one. The stochastic component 𝛾 describes the variation in distance to 177 

the former optimum, of those mutants within the class [𝑦, 𝑦 + 𝑑𝑦], i.e. lying on the subspace 178 

of phenotypes equally distant to the new optimum. This component happens to be 179 

independent of 𝑦, which simplifies our derivations. 180 
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From Martin et al. (2013), the key to predict ER from standing variance is the harmonic mean 181 

of 𝑐|𝑦 (among random mutants with effect 𝑦), which we denote 𝑐𝐻(𝑦). From the stochastic 182 

representation of 𝑐|𝑦 described above, it is given by (see also Supplementary file S1): 183 

 

𝑐𝐻(𝑦) =
1

𝔼𝑐 (
1
𝑐 |𝑦)

=
1

𝔼𝛾 (
1

𝛾 + 𝑐𝑚𝑖𝑛(𝑦)
)

=
𝜆 𝑒− 𝑣(𝑦)

𝐸𝜃−1 2⁄ (𝑣(𝑦)) 

with 𝑣(𝑦) = c𝑚𝑖𝑛(𝑦) 𝜆⁄ = 𝜌𝑚𝑎𝑥 (2 + 𝑦𝐷 − 2√(1 + 𝑦𝐷)(1 − 𝑦) − 𝑦)

, (A6) 

where 𝔼𝛾(. ) is taken over the distribution of 𝛾 ~  Γ(𝜃 − 1/2, 𝜆) and 𝐸𝑘(𝑧) = ∫ 𝑒−𝑧 𝑡/𝑡𝑘  𝑑𝑡
∞

1
 184 

is the exponential integral function.  Using Eq.(A6), Eq.(A2) yields the rate of ER from standing 185 

variance: 186 

 𝜔𝑆𝑉 ≈ 𝑈 𝔼𝑦 (
𝜋(𝑦)

𝑐𝐻(𝑦)
) =

𝑈

𝜆
∫ (1 − 𝑒−2 𝑟𝑚𝑎𝑥 𝑦) 𝑒𝑣(𝑦) 𝐸𝜃−1 2⁄ (𝑣(𝑦)) 𝑓𝑦(𝑦) 𝑑𝑦

1

0

. (A7) 

 187 

5. Case 𝒏 = 𝟏: Eq. (9) in Martin and Lenormand (2015) applies for all 𝑛 ≥ 2, but not if 𝑛 = 1. 188 

In this case, the geometry of the landscape is more constrained, and the cost distribution is 189 

simplified. We can use elementary computations (see Supplementary file S1) from the results 190 

of (Martin and Lenormand 2015) to see that the conditional cost 𝑐|𝑦 is a constant 𝑐|𝑦 =191 

𝑐𝑚𝑖𝑛(𝑦) = 𝜆 𝑣(𝑦), so that its harmonic mean is also 𝑐𝐻(𝑦) = 𝜆 𝑣(𝑦). Intuitively this result 192 

arises because, in one dimension, there is no freedom in the position of a mutant relative to its 193 

ancestor and to the optimum in the new environment (all three phenotypes must be aligned). 194 

The ER rate from standing variance, in this case, is simply 195 

 𝜔𝑆𝑉 ≈ 𝑈 𝔼𝑦 (
𝜋(𝑦)

𝑐𝐻(𝑦)
) =

𝑈

𝜆
∫ (1 − 𝑒−2 𝑟𝑚𝑎𝑥 𝑦)

𝑓𝑦(𝑦)

𝑣(𝑦)
 𝑑𝑦

1

0

. (A8) 

 196 

III. Small mutational effects approximation (SME) 197 

Eqs. (A5) and (A7) provide a mathematical framework to predict rescue from both de novo 198 

mutants and standing variants, in the SSWM regime. However, they do not provide simple 199 

closed form expressions (the integrals must be computed numerically). To gain more analytical 200 
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insight, we rely on a further approximation: we look for limit expressions for these rates, as the 201 

variance of mutational effects 𝜆 becomes small relative to the maximal growth rate 𝑟𝑚𝑎𝑥. As 202 

we have seen above (Section II subsection 1), 𝜆 measures the average mutant selective effect 203 

per trait. Therefore, we denote these limits “small mutation effect (SME) approximations”, in 204 

the sense that we let 𝜆 𝑟𝑚𝑎𝑥⁄ = 𝜌𝑚𝑎𝑥
−1 → 0 or 𝜌𝑚𝑎𝑥 → ∞, holding all other parameters fixed. 205 

This approximation implies that most resistant mutants grow much less than the optimal 206 

phenotype: they remain far from the optimum of the new environment so that 𝑦 = 𝑟 𝑟𝑚𝑎𝑥⁄ ≪207 

1. 208 

 209 

1. Approximate probability density function of 𝒚: As the SME implies both that 1 − 𝑦 = 𝑂(1) 210 

while 𝜌𝑚𝑎𝑥 ≫ 1, the second argument in the hypergeometric function in Eq.(A4) is large: ℎ =211 

 𝜌𝑚𝑎𝑥
2 (1 + 𝑦𝐷)(1 − 𝑦) = 𝑂(𝜌𝑚𝑎𝑥

2 ) ≫ 1 for any 𝑦𝐷. Therefore, we can use an asymptotic 212 

expansion, when |ℎ| → ∞, for this function:  0𝐹1(𝜃, ℎ) Γ(𝜃)⁄ ≈ ℎ1 4⁄ −𝜃 2⁄  𝑒2√ℎ (2√𝜋)⁄  213 

(Wolfram Research 2001). Plugging this into Eq.(A4) yields a simplified expression for the pdf 214 

of the scaled mutant growth rate distribution (see Supplementary file S1): 215 

 𝑓𝑦(𝑦) ≈
√𝜌𝑚𝑎𝑥

2√𝜋
(1 + 𝑦𝐷)1 4⁄  − 𝜃 2⁄  𝑒−𝑣(𝑦) (1 − 𝑦)𝜃 2⁄  − 3 4⁄    , 𝑦 ∈ [0,1] , (A9) 

where 𝑣(𝑦) = 𝜌𝑚𝑎𝑥(2 + 𝑦𝐷 − 2√(1 + 𝑦𝐷)(1 − 𝑦) − 𝑦) was defined in Eq.(A6). Convergence 216 

to this limit is faster with (i) stronger stress (𝑧 increases with 𝑦𝐷) and (ii) lower dimensionality. 217 

It is roughly exact, for any 𝜌𝑚𝑎𝑥, when 𝜃 = 1/2 (see Supplementary file S1). 218 

 219 

2. Change of variables 𝒚 → 𝝍: The distribution in Eq.(A9) takes a more compact form by using 220 

a bijective change of variable, which corresponds to an alternative measure of the mutant 221 

growth rate 𝑦. More precisely, we consider 𝜓 = 𝜓(𝑦) = 2(1 − √1 − 𝑦) as a measure of 222 

growth rate, so that, conversely, 𝑦 = 𝑦(𝜓) = 𝜓 (1 − 𝜓 4⁄ ). The scaled growth rate of the 223 

initial clone is −𝑦𝐷 which yields a corresponding decay rate 𝜓𝐷 = |𝜓(−𝑦𝐷)| = 2(√1 + 𝑦𝐷 −224 

1). The transformation is bijective and strictly increasing (𝜓′(𝑦) = 1/√1 − 𝑦 > 0), from 𝑦 ∈225 

[0,1] to 𝜓 ∈ [0,2]. A linear approximation 𝜓𝐷 ≈ 𝑦𝐷 + 𝑜(𝑦𝐷) yields a relative error ≤ 20% for 226 

all 𝑦𝐷 ∈ [0,1], as illustrated in Supplementary Figure 2 below. 227 
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 228 

 229 

Supplementary Figure 2: Relative error implied by the approximation 𝜓𝐷 = 𝑦𝐷. 230 

 231 

The probability density function 𝑓𝜓(. ) of the transformed variable 𝜓, based on the 232 

approximate probability density function of  𝑦 in Eq.(A9), is 𝑦′(𝜓)𝑓𝑦(𝑦(𝜓)) yielding: 233 

 

𝑓𝜓(𝜓) = 𝑦′(𝜓)𝑓𝑦(𝑦(𝜓)) ≈
√𝜌𝑚𝑎𝑥

2 √𝜋
 𝑒− 𝜌𝑚𝑎𝑥 𝑞(𝜓) (

1 − 𝜓/2

1 + 𝜓𝐷/2
)

𝜃 −1 2⁄

𝑞(𝜓) =
1

4
 (𝜓 + 𝜓𝐷)2  , 𝜓 ∈ [0,2]

.  (A10) 

This form makes it more visible how the SME corresponds to small 𝑦 (here to small 𝜓 = 𝑦 +234 

𝑜(𝑦)). Indeed, as 𝜌𝑚𝑎𝑥  gets larger, the probability density function in Eq.(A10) is dominated by 235 

𝑒− 𝜌𝑚𝑎𝑥 𝑞(𝜓), which falls off sharply with 𝜓, so that most 𝜓 values are small. 236 

 237 

3. Approximate ER rate 𝜔𝐷𝑁 from de novo mutations: Using the 𝜓-scale, the ER rate in Eqs.(A5) 238 

is amenable to the so-called Laplace method of approximation for integrals (Breitung 1994). 239 

Broadly speaking, this method studies integrals over some domain for 𝜓, involving integrands 240 

of the form ℎ(𝜓) 𝑒−𝜌 𝑞(𝜓) (with some functions 𝑞(. ) and ℎ(. ), independent of 𝜌). As 𝜌 → ∞, 241 

such integrals are dominated by terms in the vicinity of the minimum of 𝑞(. ), over the 242 

integration domain. They can thus be computed approximately, by (i) using the leading order 243 

of ℎ(. ) (and possibly 𝑞(. ), although we do not require this) around this minimum, and by (ii) 244 

integrating over any domain that proves handy, away from the minimum.  245 
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Eq.(A5), once expressed in terms of 𝜓, with probability density function given in Eq.(A10), is of 246 

this form. We have 𝜋(𝑦(𝜓)) = 1 − 𝑒−2 𝑟𝑚𝑎𝑥 𝜓 (1−𝜓 4⁄ ) so that Eq. (A5) can be written: 247 

 

𝜔𝐷𝑁 =
𝑈

𝑟𝐷
𝔼𝜓(𝜋(𝑦(𝜓))) ≈  

𝑈

𝑟𝐷
 
√𝜌𝑚𝑎𝑥

2 √𝜋
 ∫ ℎ(𝜓) 𝑒−𝜌𝑚𝑎𝑥 𝑞(𝜓) 𝑑𝜓

2

0

ℎ(𝜓) = (
1 − 𝜓/2

1 + 𝜓𝐷/2
)

𝜃 −1 2⁄

(1 − 𝑒−2 𝑟𝑚𝑎𝑥 𝜓 (1−𝜓 4⁄ ))

, (A11) 

where the function 𝑞(. ) (Eq.(A10)) has a unique minimum, over 𝜓 ≥ 0, at 𝜓 = 0. Therefore, 248 

an approximation to the integral in Eq.(A11), as 𝜌𝑚𝑎𝑥 → ∞, is obtained by approximating ℎ(. ) 249 

by its leading order around 𝜓 = 0: ℎ(𝜓) = ℎ∗(𝜓) + 𝑜(𝜓), with ℎ∗(𝜓) = 2 𝑟𝑚𝑎𝑥 𝜓 (1 +250 

𝜓𝐷 2⁄ )1 2⁄ −𝜃. Plugging this into the integral, expressing 𝑟𝐷 as 𝑟𝐷 = 𝜓𝐷(1 + 𝜓𝐷 4⁄ ) 𝑟𝑚𝑎𝑥, and 251 

computing the integral over 𝜓 ∈ [0, ∞] yields (see Supplementary file S1): 252 

 

𝜔𝐷𝑁 →
𝜌𝑚𝑎𝑥 → ∞

𝜔𝐷𝑁
∗ =  

𝑈

𝑟𝐷
 
√𝜌𝑚𝑎𝑥

2 √𝜋
 ∫ ℎ∗(𝜓) 𝑒−𝜌𝑚𝑎𝑥 𝑞(𝜓) 𝑑𝜓

∞

0

𝜔𝐷𝑁
∗ = 𝑈

(1 + 𝜓𝐷 2⁄ )1 2⁄ −𝜃

1 + 𝜓𝐷 4⁄
𝑔(𝛼)

with 𝛼 = 𝜓𝐷
2

𝜌𝑚𝑎𝑥

4
   and    𝑔(𝛼) =

𝑒−𝛼

√𝜋 𝛼
− erfc(√𝛼)

, (A12) 

where erfc(. ) is the complementary error function. It can be checked numerically that the 253 

‘exact’ rate 𝜔𝐷𝑁 (Eq.(A5)) indeed converges to this limit as 𝜆 𝑟𝑚𝑎𝑥⁄ → 0 (i.e. as 𝜌𝑚𝑎𝑥 → ∞). This 254 

is illustrated in Supplementary Fig.3: the convergence to 𝜔𝐷𝑁
∗  , as 𝜆/𝑟𝑚𝑎𝑥 → 0, is faster for 255 

higher stress levels (higher 𝑦𝐷). 256 

 257 
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 258 

Supplementary Figure 3: relative error between 𝜔𝐷𝑁
∗  and 𝜔𝐷𝑁 (here 𝜃 = 2 and 𝑟𝑚𝑎𝑥 = 0.5), for different stress 259 

levels (scaled decay rates 𝑦𝐷  indicated in legend). 260 

 261 

4. Effect of FGM parameters on the rate of rescue from de novo mutations: Here we detail how 262 

each of the FGM parameters (𝑟𝐷 , 𝜆, 𝑛, 𝑟𝑚𝑎𝑥) qualitatively affects the rate of rescue from de novo 263 

mutations. First, we note that both 𝜓𝐷 and 𝛼 (Eq.(6) of the main text) are increasing functions 264 

of 𝑟𝐷, while 𝑔(. ) (Eq.(7) of the main text) is a decreasing function of 𝛼 and the factor 265 

(1 + 𝜓𝐷 2⁄ )1 2⁄ −𝜃 (1 + 𝜓𝐷 4⁄ )⁄  (Eq.(7) of the main text) is a decreasing function of 𝜓𝐷. Overall, 266 

when 𝑟𝐷 increases, the rate of ER (Eq.(A12)) decreases, and so does the ER probability. Second, 267 

the only effect of decreasing the variance of mutational effects (𝜆) is to increase 𝛼 and thus to 268 

decrease the ER probability. Third, the effect of dimensionality (𝜃 = 𝑛/2) is straightforward: 269 

increasing 𝑛 decreases the factor (1 + 𝜓𝐷 2⁄ )1 2⁄ −𝜃, thus decreasing the ER probability. Finally, 270 

the effect of the fitness peak height (𝑟𝑚𝑎𝑥) is less obvious from the formula, as increased 𝑟𝑚𝑎𝑥 271 

decreases 𝜓𝐷 but increases 𝜌𝑚𝑎𝑥  (and hence potentially 𝛼). 272 

In fact, from the definitions in Eq.(A12) and replacing by 𝜓𝐷 = 2(√1 + 𝑦𝐷 − 1), 𝜕𝑟𝑚𝑎𝑥
𝛼 =273 

− (√1 + 𝑦𝐷 − 1)
2

(√1 + 𝑦𝐷 𝜆)⁄ < 0. Thus, increased 𝑟𝑚𝑎𝑥 decreases both 𝛼 and 𝜓𝐷 and thus 274 

increases the ER probability. 275 

 276 

5. Approximate ER rate 𝜔𝑆𝑉 from standing variance: We can follow the same approach used to 277 

approximate 𝜔𝐷𝑁 to compute an approximation for 𝜔𝑆𝑉 in Eq.(A7). Expressed in terms of 𝜓, 278 
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we find that 𝑣(𝑦(𝜓)) = 𝑞(𝜓) 𝜌𝑚𝑎𝑥  (with 𝑣(. ) from Eq.(A6) and 𝑞(. ) from Eq.(A10)). The 279 

integral in Eq.(A7) thus becomes: 280 

 𝜔𝑆𝑉 = 𝑈 𝔼𝜓 (
𝜋(𝑦(𝜓))

𝑐𝐻(𝑣(𝑦(𝜓)))
) ≈  

𝑈

𝜆
 
√𝜌𝑚𝑎𝑥

2 √𝜋
 ∫ ℎ(𝜓) 𝐸𝜃−1 2⁄ (𝜌𝑚𝑎𝑥 𝑞(𝜓)) 𝑑𝜓

2

0

  , (A13) 

with ℎ(. ) given in Eq.(A11).  281 

 The approximation is in two steps. In a first step, we find an asymptotic expression for 282 

the exponential integral function as 𝜌𝑚𝑎𝑥 → ∞, via the Laplace method. By the definition of 283 

this function, we have 𝐸𝜃−1 2⁄ (𝜌𝑚𝑎𝑥  𝑞(𝜓)) = ∫ 𝑒− 𝜌𝑚𝑎𝑥 𝑞(𝜓) 𝑢 𝑢1 2⁄ −𝜃 𝑑𝑢
∞

1
. With 0 ≤ 𝜓 ≤ 2, 284 

we have  𝛼 ≤  𝜌𝑚𝑎𝑥  𝑞(𝜓) ≤ 𝛼(2 + 𝜓𝐷 2⁄ )2 where  𝛼 = 𝜓𝐷
2 𝜌𝑚𝑎𝑥 4⁄  as given in Eq. (A12). 285 

Assume that 𝜌𝑚𝑎𝑥 → ∞, but further conditioning on 𝜓𝐷 non-vanishing, e.g. letting 𝜆 → 0 with 286 

 𝑟𝐷 and 𝑟𝑚𝑎𝑥 held constant. These criterions guarantee that 𝛼 is large, so that 𝜌𝑚𝑎𝑥  𝑞(𝜓) ≥ 𝛼 287 

is large too. We can then use the Laplace method as 𝜌𝑚𝑎𝑥  𝑞(𝜓) → ∞, to approximate the 288 

integral 𝐸𝜃−1 2⁄ (𝜌𝑚𝑎𝑥  𝑞(𝜓)). We apply the approximation around the minimum of the 289 

exponential term in the integrand (𝑒− 𝜌𝑚𝑎𝑥 𝑞(𝜓) 𝑢), over the integration domain 𝑢 ∈ [1, ∞], 290 

namely around 𝑢 = 1. Using the approximation 𝑢1 2⁄ −𝜃 ≈ 𝑒(𝜃−1/2)(𝑢−1) in the vicinity of 𝑢 =291 

1, we get the following approximation for the exponential integral term: 292 

 𝐸𝜃−1 2⁄ (𝜌𝑚𝑎𝑥 𝑞(𝜓)) → 
𝜌𝑚𝑎𝑥 𝜓𝐷

2 4⁄   → ∞

𝑒−𝜌𝑚𝑎𝑥 𝑞(𝜓)

𝜃 − 1 2⁄ + 𝜌𝑚𝑎𝑥  𝑞(𝜓)
 . (A14) 

In a second step, we now plug this asymptote into Eq.(A13). We retrieve the required form for 293 

our integral to apply the Laplace method as in section III subsection 3 for the whole expression 294 

of 𝜔𝑆𝑉: 295 

 

𝜔𝑆𝑉  → 
𝜌𝑚𝑎𝑥 𝜓𝐷

2 4⁄   → ∞
   

𝑈

𝜆
 
√𝜌𝑚𝑎𝑥

2 √𝜋
 ∫ 𝜂(𝜓) 𝑒−𝜌𝑚𝑎𝑥 𝑞(𝜓) 𝑑𝜓

2

0

𝜂(𝜓) =
ℎ(𝜓)

𝜃 − 1 2⁄ + 𝜌𝑚𝑎𝑥  𝑞(𝜓)

  , (A15) 

We thus apply the exact same method as in Eq. (A12) with the leading order for 𝜂(𝜓), 296 

when 𝜌𝑚𝑎𝑥 → ∞, in the vicinity of 𝜓 = 0, given by 𝜂∗(𝜓) = 2 𝑟𝑚𝑎𝑥  𝜓 (1 + 𝜓𝐷 2⁄ )1 2⁄ −𝜃/(𝛼 +297 

𝜃 − 1/2). The resulting asymptotic approximation for 𝜔𝑆𝑉, as 𝜌𝑚𝑎𝑥 → ∞ (with non-298 
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vanishing 𝜓𝐷), then satisfies the following relationship with the asymptotic ER rate from de 299 

novo mutations (𝜔𝐷𝑁
∗  in Eq. (A12)): 300 

 

𝜔𝑆𝑉  → 
𝜌𝑚𝑎𝑥 𝜓𝐷

2 4⁄   → ∞
 𝜔𝑆𝑉

∗ =   
𝑈

𝜆
 
√𝜌𝑚𝑎𝑥

2 √𝜋
 ∫ 𝜂∗(𝜓) 𝑒−𝜌𝑚𝑎𝑥 𝑞(𝜓) 𝑑𝜓

∞

0

𝜔𝑆𝑉
∗ = 𝜔𝐷𝑁

∗  
1 + 𝜓𝐷 4⁄

𝜖 𝜓𝐷⁄ + 𝜓𝐷 4⁄
  𝑤𝑖𝑡ℎ  𝜖 =

𝜃 − 1 2⁄

𝜌𝑚𝑎𝑥

  . (A16) 

The convergence of the ER rate  𝜔𝑆𝑉 to its SME approximation (𝜔𝑆𝑉
∗ , Eq.(A16)) is illustrated in 301 

Supplementary Fig.4. The convergence pattern is slightly more complex than for 𝜔𝐷𝑁, especially 302 

at low stress levels (e.g. with 𝑦𝐷 = 0.05 in the figure): indeed, this SME limit now requires 303 

both 𝜌𝑚𝑎𝑥 → ∞ and 𝜓𝐷 non-vanishing (i.e. 𝛼 → ∞). Logically, convergence is again faster with 304 

higher stress levels (higher 𝑦𝐷). 305 

 306 

 307 

Supplementary Figure 4: same as Supplementary Fig.3 but for the relative error between 𝜔𝑆𝑉  and 𝜔𝑆𝑉
∗ . 308 

 309 

IV. Some key properties of the model 310 

1. Characteristic stress level: The relationship between the parameters characterizing the stress 311 

(𝑟𝑚𝑎𝑥, 𝑟𝐷 , 𝜆) and the rate of rescue shows a sharp drop from no extinction to nearly certain 312 

extinction. We here derive a heuristic characterization of this behavior, for de novo rescue 313 

(rescue from standing variance is discussed in a later section). We start by the heuristic behavior 314 
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suggested by Eq.(A12), in the limit of mild decay (Eq. 7b, main text): whenever 𝜓𝐷 ≪ 2, 𝜔𝐷𝑁
∗ ≈315 

𝑈 𝑔(𝛼). Second, we further simplify the model by taking a series expansion of 𝑔(𝛼) ≈316 

𝑒− 𝛼𝛼−3 2⁄ /2√𝜋, when 𝛼 is large. This approximation yields a relative error of less than 20% as 317 

long as 𝛼 ≥ 7. Note that this approximation can apply (i.e., alpha can be that large) even for 318 

mild stress 𝜓𝐷 ≪ 2, as long as 𝜌𝑚𝑎𝑥  is large enough. 319 

We define  𝛼𝑝 of level 𝑝 by the set of parameter values such that 𝛼 = 𝛼𝑝 and 𝑃𝑅 = 𝑝 a 320 

given ER probability. Under the approximate heuristic derived above, 𝛼𝑝 is characterized 321 

by 𝑝 = 𝑃𝑅 ≈ 1 − exp (−𝑁0𝑈 𝑔(𝛼𝑝)), with  𝑔(𝛼) ≈ 𝑒− 𝛼𝛼−3 2⁄ /2√𝜋. This implies 𝑔(𝛼𝑝) =322 

− log(1 − 𝑝) /𝑁0𝑈, and inversion of 𝑔(. ) then yields 323 

 𝛼𝑝 ≈
3

2
𝒲 ((

2

𝜋
)

1 3⁄ 1

3
 (

𝑁0𝑈

log(1 (1 − 𝑝)⁄ )
)

2 3⁄

)  , (A17) 

where 𝒲(. ) is Lambert’s (‘productlog’) function. A linear regression of 𝒲(𝑥) 𝑣𝑠. log(𝑥) − 1 324 

(checked by visual inspection, see Supplementary file S1) suggests that, over a biologically 325 

relevant range ∈ [10,1012] : 𝒲(𝑥) ≈ 0.9(log(𝑥) − 1). This yields the approximation (see 326 

numerical check in Supplementary file S1) 327 

 𝛼𝑝 ≈ 0.9 (log(𝑁0𝑈) − log (log (
1

1 − 𝑝
))) − 3  . (A18) 

A characteristic stress level 𝛼𝑐 can be defined as the value of 𝛼 where the ER probability is 328 

50%: 𝛼𝑐 = 𝛼1/2. It characterizes the level of stress about which rescue drops from highly likely 329 

to highly unlikely. Setting 𝑝 = 1/2 in Eq.(A18), the characteristic stress is approximately  330 

 𝛼𝑐 ≈ 0.9 log(𝑁0𝑈) − 2.7  . (A19) 

 331 

2. Self-consistency at large 𝑵𝟎𝑼: We have used both (i) a large 𝛼 approximation and (ii) a 332 

small 𝜓𝐷 ≪ 2 approximation (Eq. 7b) to derive the characteristic stress in Eq.(A19). We argue 333 

that they are self-consistent as long as 𝑁0𝑈 is large. 334 

We have (Eq.(A19)) 𝛼𝑐 ≈ 0.9 log(𝑁0𝑈) − 2.7, which is indeed large provided 𝑁0𝑈 is large. We 335 

have seen that approximating 𝑔(𝛼) ≈ 𝑒− 𝛼𝛼−3 2⁄ /2√𝜋 should be reasonably accurate (<20% 336 

relative error) as long as 𝛼𝑐 ≥ 7, which corresponds to 𝑁0𝑈 ≥ 5. 104, a condition quite easily 337 
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met in microbial experiments, for example. Furthermore, as 𝛼𝑐 = 𝜌𝑚𝑎𝑥(𝜓𝐷
𝑐 )2/4 (Eq.(A12)), the 338 

corresponding characteristic 𝜓𝐷 is equal to 𝜓𝐷
𝑐 = 2√(0.9 log(𝑁0𝑈) − 2.7) 𝜌𝑚𝑎𝑥⁄  (Eq.(A19) 339 

and is indeed negligible relative to 1 as long as 𝑁0𝑈 ≪ 20 𝑒𝜌𝑚𝑎𝑥 . This second criterion is in fact 340 

so easily met that it does not constrain the results; for example, with 𝜌𝑚𝑎𝑥 = 50, the 341 

requirement is simply that 𝑁0𝑈 ≪ 1025 ! Overall, it appears that Eq.(A19) is self-consistent 342 

whenever 𝑁0𝑈 is large. 343 

 344 

3. Characteristic stress window: Around the characteristic stress, the ER probability falls off 345 

more or less sharply. We define a characteristic stress window of level 𝑞 over which 𝑃𝑅 drops 346 

from 1/2 + 𝑞 to 1 2⁄ − 𝑞. As an illustration, we use 𝑞 = 0.25, so that the window characterizes 347 

the drop from 75% to 25% ER. This window can be directly computed from Eq.(A17) as Δ𝛼 =348 

𝛼1/4 − 𝛼3/4. It is also approximately given by the inverse of the slope of the ER probability 349 

with 𝛼, at 𝛼 = 𝛼𝑐 = 𝛼1/2, namely: Δ𝛼 ≈ 2𝑞 |𝑃𝑅
′ (𝛼𝑐)|⁄ = 1/(2|𝑃𝑅

′ (𝛼𝑐)|), with 𝑞 = 1/4.  350 

Letting 𝑃𝑅(𝛼) = 1 − 𝑒−𝑁0𝑈𝑔(𝛼) (Eq. 7b, main text), and using the large 𝛼 approximation to 𝑔(. ) 351 

(𝑔(𝛼) ≈ 𝑒− 𝛼𝛼−3 2⁄ /2√𝜋), we have 𝑔′(𝛼) ≈ −𝑔(𝛼)(1 + 3 (2𝛼)⁄ ), so that 𝑃𝑅′(𝛼𝑝) = (1 −352 

𝑝) log(1 − 𝑝) (1 + 3 2𝛼𝑝⁄ ) for any level 𝑝. Setting 𝑝 = 1/2 so that 𝛼 = 𝛼𝑐 we have 353 

 Δ𝛼 ≈
1/2

|𝑃𝑅
′(𝛼𝑐)|

≈
2 𝛼𝑐

log 8 + log 4 𝛼𝑐
≈

𝛼𝑐

1 + 0.7 𝛼𝑐
  . (A20) 

The width of the window can be scaled by the value of the characteristic stress 𝛼𝑐 around which 354 

the drop occurs, in order to characterize how sharp the drop is, as is done in Eq. (9) of the main 355 

text. Obviously, this simple heuristic, based on a linear approximation for 𝑃𝑅, gets more 356 

accurate over narrower windows, e.g. it is very accurate for describing the decay from 70% to 357 

30%, and less accurate for describing the decay from 95% to 5%. 358 

 359 

4. Proportion of rescue from standing variance: The result in Eq. (A16) shows the relationship 360 

between 𝜔𝑆𝑉
∗  and 𝜔𝐷𝑁

∗  in the SME approximation. Then, from Eq.(A3), the proportion 𝜙𝑆𝑉 361 

converges to a simple limit  𝜙𝑆𝑉
∗ : 362 

 𝜙𝑆𝑉
∗ =

𝜔𝑆𝑉
∗

𝜔𝐷𝑁
∗ + 𝜔𝑆𝑉

∗ =
1 + 𝜓𝐷 4⁄

𝜖 𝜓𝐷⁄ + 1 + 𝜓𝐷 2⁄
 (A21) 
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Obviously, in the limit where 𝜖 ≪ 𝜓𝐷 (with 𝜖 in Eq.(A16)), the proportion 𝜙𝑆𝑉
∗  simplifies 363 

to 1 2⁄ + 1/(2 + 𝜓𝐷), being always above 50%, and decreasing with higher stress-scaled decay 364 

rates. 365 

For non-vanishing 𝜖/𝜓𝐷, as  𝜓𝐷 varies, the proportion 𝜙𝑆𝑉
∗  reaches a maximum at the unique 366 

positive 𝜓𝐷 where 𝜕𝜙𝑆𝑉
∗ /𝜕𝜓𝐷 = 0, which is at 𝜓𝐷 = 𝜓𝐷

0 = 𝜖 + √𝜖(4 + 𝜖). At that point, its 367 

value is 368 

 max 𝜙𝑆𝑉
∗ = 𝜙𝑆𝑉

∗ (𝜓𝐷
0 ) =

1 − 𝜖 2⁄ − √𝜖 (1 + 𝜖 4⁄ )

1 − 2 𝜖
= 1 − √𝜖 + 𝑜(√𝜖) . (A22) 

 369 

5. Stability of 𝝓𝑺𝑽
∗  across a range of stress: In fact, as 𝑃𝑅 drops sharply with 𝜓𝐷 (or 𝑦𝐷), the 370 

proportion 𝜙𝑆𝑉
∗  happens to be fairly stable across stress levels, if stress only affects decay rates. 371 

To see this, we can derive the curvature, as 𝜓𝐷 varies, of 𝜙𝑆𝑉
∗  with respect to the log of the 372 

extinction probability | log 𝑃𝐸 |, in the presence of de novo mutation and standing variance. We 373 

study this curvature around the value of 𝜓𝐷 where the proportion is maximal, namely around 374 

𝜓𝐷 = 𝜓𝐷
0 . It is equivalent and proves convenient to study this curvature by defining the two 375 

quantities as functions of 𝛼, and studying the curvature when 𝛼 varies. Because 𝜓𝐷
0 = 𝑂(𝜖), 376 

we can use the small 𝜓𝐷 approximation (Eq. 7b) 𝜔𝐷𝑁
∗ ≈ 𝑈𝑔(𝛼). From Eq. (A16) and using 𝜓𝐷 =377 

√𝛼/𝜌𝑚𝑎𝑥, we can write the ratio of ER rates as 378 

 
𝜔𝑆𝑉

∗

𝜔𝐷𝑁
∗ = 2 

√𝛼 𝜌𝑚𝑎𝑥

𝛼 + 𝜃 − 1/2
(1 −

𝜓𝐷

4
)  , (A23) 

Again, as we study this ratio in the vicinity of 𝜓𝐷
0 = 𝑂(𝜖), we can ignore the factor 1 − 𝜓𝐷 4⁄  379 

in Eq.(A23) and compute the proportion of ER from standing variance as: 380 

 𝑌(𝛼) = 𝜙𝑆𝑉
∗ ≈

2√𝛼 𝜌𝑚𝑎𝑥

𝛼 + 𝜃 − 1/2 + 2√𝛼 𝜌𝑚𝑎𝑥

 . (A24) 

This is maximal at 𝛼 = 𝜃 − 1/2, which is consistent with the expression for 𝛼 = 𝜌𝑚𝑎𝑥𝜓𝐷
2 /4 381 

when using the leading order for 𝜓𝐷
0 = 2√𝜖 + 𝑜(√𝜖). The total ER rate from de novo mutations 382 

plus standing variance ( 𝜔∗ = 𝜔𝐷𝑁
∗ + 𝜔𝑆𝑉

∗ ) is also simplified, once we ignore the factor 1 −383 
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𝜓𝐷 4⁄  in Eq.(A23). This yields a relatively simple form for the log of the extinction probability 384 

(recalling that 𝑃𝐸 = 𝑒−𝑁0𝜔∗
):  385 

 𝑋(𝛼) = |log 𝑃𝐸| ≈ 𝑁0𝑈 (𝜔𝐷𝑁
∗ + 𝜔𝑆𝑉

∗ ) ≈ 𝑁0𝑈 𝑔(𝛼) (1 +
2√𝛼 𝜌𝑚𝑎𝑥

𝛼 + 𝜃 − 1/2
 ). (A25) 

The two quantities (𝑋(𝛼), 𝑌(𝛼)) define a parametric curve as 𝛼 varies, with a maximum in 𝑌(. ) 386 

at 𝛼 = 𝜃 − 1/2. The curvature of 𝑌 = 𝜙𝑆𝑉
∗  with 𝑋 = log 𝑃𝑅 , at this point 𝛼0, is given by (see 387 

e.g. Goldman 2005) 388 

 𝜅 =
𝑋′(𝜃 − 1/2)𝑌′′(𝜃 − 1/2) − 𝑌′(𝜃 − 1/2)𝑋′′(𝜃 − 1/2)

(𝑋′(𝜃 − 1/2)2 + 𝑌′(𝜃 − 1/2)2)3 2⁄  
   , (A26) 

using the expressions for 𝑋(. ) and 𝑌(. ) in Eqs(A24) and (A25), we get 389 

 𝜅 =
𝑒2 (𝜃−1 2⁄ ) 𝜋 (𝜃 − 1/2)5 2⁄ √𝜌𝑚𝑎𝑥

𝑁0
2 𝑈2 (√𝜃 − 1/2 + √𝜌𝑚𝑎𝑥)4

 . (A27) 

This curvature is obviously very small, of order 1/(𝑁0
2 𝑈2 𝜌𝑚𝑎𝑥

3/2
). This flatness of the 390 

proportion 𝜙𝑆𝑉
∗  with| log 𝑃𝐸 | (extinction probability on a log-scale), shows formally that it is 391 

almost unaffected by changes in decay rates, over a wide range of stress levels, spanning 392 

several orders of magnitude of change in 𝑃𝐸 (or equivalently 𝑃𝑅). 393 

 394 
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