Fully Dynamic Consistent Facility Location - Archive ouverte HAL Access content directly
Conference Papers Year :

Fully Dynamic Consistent Facility Location


We consider classic clustering problems in fully dynamic data streams, where data elements can be both inserted and deleted. In this context, there are several important parameters: (1) the quality of the solution after each insertion or deletion, (2) the time it takes to update the solution, and (3) how different consecutive solutions are. The question of obtaining efficient algorithms in this context for facility location, k-median and k-means has been raised in a recent paper by Hubert-Chan et al. [WWW'18] and also appears as a natural follow-up on the online model with recourse studied by Lattanzi and Vassilvitskii [ICML'17] (i.e.: in insertion-only streams). In this paper, we focus on general metric spaces and mainly on the facility location problem. We give an arguably simple algorithm that maintains a constant factor approximation, with O(n log n) update time, and total recourse O(n). This improves over the naive algorithm which consists in recomputing a solution after each update and that can take up to O(n 2) update time, and O(n 2) total recourse. Our bounds are nearly optimal: in general metric space, inserting a point takes O(n) times to describe the distances to other points, and we give a simple lower bound of O(n) for the recourse. Moreover, we generalize this result for the k-medians and k-means problems: our algorithms maintain a constant factor approximation in O(n + k 2) time per update. We complement our analysis with experiments showing that the cost of the solution maintained by our algorithm at any time t is very close to the cost of a solution obtained by quickly recomputing a solution from scratch at time t while having a much better running time.
Fichier principal
Vignette du fichier
main.pdf (416.47 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02360783 , version 1 (13-11-2019)


  • HAL Id : hal-02360783 , version 1


Vincent Cohen-Addad, Niklas Hjuler, Nikos Parotsidis, David Saulpic, Chris Schwiegelshohn. Fully Dynamic Consistent Facility Location. NeurIPS'19 - 33rd Conference on Neural Information Processing Systems, Dec 2019, Vancouver, United States. ⟨hal-02360783⟩
115 View
168 Download


Gmail Facebook Twitter LinkedIn More