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Abstract: 
 
Background: Alzheimer’s disease (AD) is associated with extracellular accumulation and aggregation 
of amyloid β (Aβ) peptides ultimately seeding in senile plaques. Recent data show that their direct 
precursor C99 (βCTF) also accumulates in AD-affected brain as well as in AD-like mouse models. C99 
is consistently detected much earlier than Aβ, suggesting that this metabolite could be an early 
contributor to AD pathology. C99 accumulates principally within endolysosomal and autophagic 
structures and its accumulation was described as both a consequence and one of the causes of 
endolysosomal-autophagic pathology, the occurrence of which has been documented as an early 
defect in AD.  C99 was also accompanied with C99-derived C83 (αCTF) accumulation occurring within 
the same intracellular organelles. Moreover, both α- and β-CTFs can dimerize, thereby leading to the 
generation of higher molecular weight CTFs, which were immunohistochemically characterized in situ 
by means of aggregate-specific antibodies. Here, we discuss studies demonstrating a direct link 
between the accumulation of C99 and C99-derived APP-CTFs and early neurotoxicity. We discuss the 
role of C99 in endosomal-lysosomal-autophagic dysfunction, neuroinflammation, early brain network 
alterations and synaptic dysfunction as well as in memory-related behavioral alterations, in triple 
transgenic mice as well as in newly developed AD animal models. 
Conclusion: this review summarizes current evidence suggesting a potential role of the β-secretase- 
derived APP C-terminal fragment C99 in Alzheimer’s disease etiology. 
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Introduction 
Alzheimer’s disease (AD) is the most common 
form of dementia observed in western 
populations. A consistent histological feature of 
AD-affected brains is the extracellular 
accumulation of abnormal protein deposits 
mainly composed of aggregated Aβ. When 
autosomal dominant mutations in APP were 
shown to trigger early and aggressive forms of 
AD and when cell biology approaches 
indicated that these mutations systematically 
triggered modulations of Aβ production or 
yielded aggregation-prone Aβ species, the 
amyloid cascade hypothesis was proposed, in 
which Aβ is at the center of gravity [1-2]. Aβ 
peptides are generated by sequential 

processing of the transmembrane amyloid 
precursor protein (APP) by β- and γ-secretases 
[2]. First, APP is cleaved by β-secretase 
generating the membrane-bound fragment C99 
(also referred to as βCTF), which then 
undergoes a secondary cleavage by γ-
secretase leading to the release of soluble Aβ 
peptides. This sequence of proteolytic events 
is considered as the amyloidogenic pathway. γ-
secretase is a membrane protein complex 
composed of Aph-1, Pen-2, nicastrin and 
presenilins (1 and 2)	
   [3-5] and mutations in 
both PSEN1 and more rarely PSEN2 genes, 
encoding presenilin 1 and presenilin 2, 
respectively, are known to cause familial AD 
[6-7]. Transgenic mouse models harboring 
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mutated APP and/or mutated presenilins 
recapitulate present age-dependent 
extracellular amyloid deposits and other AD-
related anatomical stigmata. Mounting data 
indicate that not only Aβ, but also other 
catabolites of APP accumulate in the AD brain, 
and our previous work, based on the 3xTgAD 
(APPswe, PS1M106V, TauP301L) mouse 
model, indicated a particularly strong age-
dependent intraneuronal accumulation of the 
C99 fragment, the direct precursor of Aβ [8-9]. 
In the 3xTgAD mouse, C99 accumulation 
occurs in specific AD-related brain areas 
(hippocampus and cortex) and appears at very 
early stages much before any detectable Aβ. 
Importantly, works from other groups later 
confirmed that early intraneuronal C99 
accumulation occurs in several other mouse 
models, including the APPE693Q (Dutch 
mutation) expressing mouse [10], the 
TgCRND8 (Swedish and Indiana mutations) 
mouse [11] and the J20 mouse (Swedish and 
Indiana mutations) [12]. Thus, C99 
accumulation appears as a common 
anatomical and biochemical denominator 
observed in AD mice models, could well be 
envisioned as an etiological trigger in AD 
pathology. 
 
C99 accumulation is both a consequence 
and a cause of early lysosomal-autophagic 
dysfunction 
Our work showed that C99 mainly accumulates 
within endosomal, lysosomal and autophagic 
structures [8], which also correspond to the 
principal intracellular sites for amyloidogenic 
APP processing	
   [13]. We found that C99 
accumulation in the 3xTgAD mouse did not 
result from either increased β-secretase or 
reduced γ-secretase cleavages, but was rather 
due to early AD-associated lysosomal-
autophagic impairment [8]. Thus, C99 
accumulation was similar in both 3xTgAD and 
2xTgAD mouse (APPswe, TauP301L), 
although the latter mice displayed little if any 
Aβ as expected from the absence of mutated 
presenilin-1 [8]. In agreement with lysosomal 
dysfunction in both mice, C99 accumulated 
within abnormally large cathepsins- and lamp-
positive structures, which number was also 
increased in C99-positive neurons [8-9]. 
Importantly, endolysomal-lysosomal dysfunc 

tion is also a key feature in human AD 
pathology and is consistently viewed as one of 
the earliest pathological events taking place in 
this disease. This dysfunction is reflected by 
the early appearance of morphological and 
functional abnormal endosomes and a 
progressive failure of lysosomal and 
autophagic degradation leading to the build-up 
of undigested autophagic vesicles [14]. Our 
data from mouse models indicated that C99 
accumulation itself could contribute to this 
pathology. Indeed, the pharmacological 
inhibition of γ-secretase in young animals led 
to increased C99 levels (and C99-derived 
APP-CTFs, see below) but also to exacerbated 
lysosomal impairment [9]. Strikingly, the group 
of Dr Levy drew the same conclusions from a 
study based on a transgenic mouse model 
harboring the Dutch mutation, the APPE693Q 
mouse [10]. As in the 3xTgAD mouse, C99 
accumulation was observed within enlarged 
LAMP-1, LAMP-2 and cathepsin D-positive 
structures and the number of these structures 
were strongly increased in C99-positive cells 
[9-10]. These findings showed that C99 could 
alter lysosomal function in addition to its earlier 
reported deleterious effects on endosomal 
dysfunction [14-16]. For instance, in fibroblasts 
from Down’s syndrome, a cause of early-onset 
AD-like pathology due to an extra copy of APP, 
C99 was found to accumulate within early 
endosomes and cause both morphological and 
functional endosomal abnormalities, including 
up-regulated expression of endocytic proteins, 
aberrant endocytosis and impaired endosomal 
transport [15]. These deleterious effects were 
reversed in cells treated with a β-secretase 
inhibitor, but increased in the presence of a γ-
secretase inhibitor, demonstrating that C99 but 
not Aβ should underlie these abnormalities 
[15]. We and the group of Dr Levy also found 
that this intraneuronal accumulation is 
associated with microglial activation and 
astrogliosis [9-10]. These inflammatory 
responses were particularly important in γ-
secretase inhibitor-treated mice (displaying 
little if any Aβ and high APP-CTF levels) 
demonstrating that inflammation was indeed 
linked to C99 accumulation [9]. Again, the 
group of Dr Levy, working on the APPE693Q 
mouse, came to the same conclusion, since 
neuroinflammation in these mice appeared at 
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very early ages before any Aβ detection [10]. 
These observations are in agreement with 
more general conclusions linking intraneuronal 
accumulation of biologically inactive 
aggregated proteins to neuroinflammatory 
activation [17]. 
	
  
C99 accumulation exacerbates C99-derived 
C83 production and generate high 
molecular weight APP-CTFs-related 
species. 
Although, it was found that the major 
accumulating intraneuronal immunostaining 
corresponded to C99, our work also indicated 
that part of it could correspond to C83. This 
catabolite mainly arises from non-
amyloidogenic processing of APP by α-
secretase, which occurs primarily on the 
plasma membrane. However, this apparently 
paradoxical observation could be explained by 
the susceptibility of C99 itself to proteolysis by 
α-secretase [18-19] and suggests that α-
secretase activity should also be efficient 
within organelles of the endolysosomal system. 
Particularly high C99-derived C83 levels were 
found in animals treated with γ-secretase 
inhibitors, indicating that γ-secretase inhibition 
not only protected endogenous C83 from γ-
secretase-mediated breakdown, but also 
somehow favored the cleavage of C99 by α-
secretase. Strikingly, this interplay between γ- 
and α-secretase activities has already been 
described [20, 41]. Beside C99 and C83, 
expression analysis revealed the presence of 
high-molecular weight APP-CTFs in cells or 
brain tissue accumulating high levels of C99. 
We observed these APP-CTFs in cells 
expressing APP bearing the Swedish mutation, 
which favors the β-secretase cleavage of APP 
but also in cells expressing directly the C99 
fragment, indicating that these APP-CTFs 
derived directly from C99 and did not 
correspond to other putative APP-derived 
metabolites of higher molecular weight. In this 
context, recent work has focused on the ƞ-
secretase-derived APP cleavage product, 
APP-CTFƞ [21-22]. Indeed, this 30 kDa APP-
CTF can be recognized by anti-APP C-terminal 
antibodies and it has a size close to one of the 
high-molecular weight APP-CTFs observed in 
our study. We hypothesized that this 30kDa 
fragment could correspond to homodimers of 

C99, since several in vitro studies have shown 
that C99 can form homodimers [23-26]. This 
homodimerization is favored by three glycine-
xxx-glycine (GxxxG) motifs in the 
juxtamembrane and transmembrane regions of 
C99 [23], but its influence on γ-secretase-
mediated APP processing remains 
controversial. It was reported that C99 
homodimerisation hampered γ-secretase 
cleavage thus lowering Aβ production [26], 
while others reported on increased cleavage 
yielding enhanced Aβ production [23]. 
Interestingly, it was also reported that 
cholesterol could bind to C99 and compete 
with it, leading to a reduced homodimerization 
and increased Aβ production [25], in 
agreement with Winkler’s team conclusion [26]. 
Beside the 30kDa APP-CTF, we also observed 
the presence of additional high molecular 
weight APP-CTFs. Although never reported so 
far, our findings suggested that these 
immunoractivities could correspond to 
homodimers of C99 or C83, heterodimers of 
C99 and C83, as well as heterodimers of other 
APP-CTFs and cholesterol bound APP-CTFs. 
Of note, these APP-CTFs were recognized in 
situ in our mouse models by the aggregate-
specific antibodies NU1 and NU4 [27] 
indicating that these species could well harbor 
an “aggregate-like” conformation within the 
endolysosomal-autophagic vesicle 
membranes. Further immunological 
characterization of this intracellular staining 
revealed that these high molecular weight 
species were not recognized by APP C-
terminal directed antibodies, suggesting that 
dimers formation could well induce a 
conformation change precluding their C-
terminal epitope accessibility/interaction and 
antibody recognition. Immunostaining of brains 
of γ-secretase inhibitor-treated mice with NU1 
increased intracellular staining, indicating that 
the label could not be accounted for by 
aggregated Aβ [9]. Thus, our work not only 
revealed the early occurrence and 
accumulation of intraneuronal C99 monomers, 
but was also the first study to document the 
accumulation of C99-derived C83 and higher 
molecular weight APP-CTFS (dimers), in situ 
within the same intracellular structures. One 
could speculate that either alone or after 
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physical interaction, these species could 
cooperate to trigger neurotoxic phenotypes.  
 
Brain network or synaptic alterations can 
be linked to early C99 accumulation 
Several lines of evidence highlighted 
hippocampal synaptic dysfunction as a cause 
of memory impairment in AD [28]. In animal 
models, this impaired synaptic function 
appears as an early event and leads to defects 
in memory much before the appearance of 
amyloid plaques and neuronal degeneration 
[29]. In particular, AD has been associated with 
defects in synaptic transmission, long-term 
potentiation (LTP) and long-term depression 
(LTD), which are thought to underlie the 
cellular mechanisms of learning behavior and 
memory consolidation. Mounting evidence 
suggest that these synaptic dysfunction 
defects are triggered by soluble Aβ oligomers 
and much effort in recent years has been 
made to identify the receptors and signaling 
pathways implicated in oligomers-induced toxic 
effects [30-32]. Thus, Aβ was found to bind to 
receptors for glutamate, nicotinic acetyl-
choline, cellular prion protein, neurotrophins 
(p75NTR) and ephrin among others [32]. In 
order to study the implication of C99 in 
synaptic alterations, we recently analyzed 
hippocampal LTP in C99-expressing mice 
(AAV-mediated C99 expression) [9]. Indeed, 
our results indicated that hippocampal LTP 
was significantly reduced in young C99-
expressing mice, as compared to control mice 
infected with control virus. The inhibition of γ-
secretase did not rescue LTP alterations 
indicating that C99 rather than Aβ mediated 
these effects [9]. In agreement with these 
findings, two lines of independent observations 
also indicated that the hippocampal LTP 
alterations observed in the 3xTgAD mouse (at 
least at the early stages of the pathology) 
should likely be linked to C99. Firstly, the 
synaptic alterations were temporally and 
spatially correlated with C99 accumulation [33]. 
Secondly, these electrophysiological 
modifications were identical in the 2xTgAD 
(APPswe, TauP301L), which accumulate 
similar levels of C99, while Aβ levels remain 
poorly detectable in this mouse model [34]. 
Moreover, it was found that spatial learning 
(using the Morris water maze test) was altered 
in both the 2xTgAD and 3xTgAD mice, as 

compared to control mice, although with a 
higher  impact in the 3xTgAD mice, indicating 
that both C99 and Aβ could well contribute to 
these alterations [34]. Recently, it was 
proposed that memory impairment is not only 
explained by LTP/LTD defects, but is also 
associated with changes in brain circuits and 
network activities reflected by hyperexcitability 
and spontaneous epileptiform activity [35]. 
These alterations were also triggered by 
pathological Aβ oligomers [35-36]. 
Nevertheless, a number of recent works 
demonstrated that network alterations 
appeared at very early stages much before Aβ 
detection, proposing that other candidates 
could be responsible for these 
electrophysiological alterations. For instance, 
the group of Dr William observed alterations in 
hippocampal network oscillations and theta-
gamma coupling in the subiculum of the 
hippocampus of the TgCRND8 AD mouse 
brain, at early “Aβ-free” stages [37]. Later work 
from the same group demonstrated similar 
electrophysiological alterations in young J20 
mice and these abnormalities were correlated 
with early C99 accumulation, rather than with 
Aβ accumulation. Of importance, it was found 
that the treatment with a β-secretase inhibitor 
(that fully prevented C99 formation) rescued 
these alterations thus demonstrating that they 
should be directly linked to C99 [12].  
 
Conclusion 
There is a still growing body of evidence 
suggesting a critical role of C99 in Alzheimer 
disease mouse model neuropathology. The 
possibility that C99 could contribute to AD 
etiology independently of Aβ is supported by 
C99-induced endosome and lysosome 
dysfunction, neuroinflammation and 
electrophysiological alterations in various mice 
models at early stages of the pathology, at 
which little if any Aβ is detectable. Very little is 
still known about the role of C99 in human 
pathology, since most researches have so far 
focused on Aβ and have been performed at 
the end-stages of the disease, at which initial 
C99 toxicity may be overtaken by late Aβ 
accumulation and toxicity. Nevertheless, 
several papers have reported that C99 levels 
are indeed significantly elevated in human AD 
brain tissues, as compared to control brains	
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[16, 38-39] indicating that C99 accumulation 
also occurs in human pathology and can be 
monitored also at late stage of the disease. 
Overall, one can envision an AD setting 
initiated by C99, while disease progression and 
late cognitive alterations should be attributed to 
C99, Aβ and certainly other APP-derived 
catabolites [40].  
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