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Abstract

We consider the widely-used average-linkage, single-linkage, and Ward’s methods
for computing hierarchical clusterings of high-dimensional Euclidean inputs. It is
easy to show that there is no efficient implementation of these algorithms in high
dimensional Euclidean space since it implicitly requires to solve the closest pair
problem, a notoriously difficult problem.
However, how fast can these algorithms be implemented if we allow approxima-
tion? More precisely: these algorithms successively merge the clusters that are
at closest average (for average-linkage), minimum distance (for single-linkage),
or inducing the least sum-of-square error (for Ward’s). We ask whether one
could obtain a significant running-time improvement if the algorithm can merge
γ-approximate closest clusters (namely, clusters that are at distance (average, min-
imum, or sum-of-square error) at most γ times the distance of the closest clusters).
We show that one can indeed take advantage of the relaxation and compute the
approximate hierarchical clustering tree using rOpnq γ-approximate nearest neigh-
bor queries. This leads to an algorithm running in time rOpndq ` n1`Op1{γq for
d-dimensional Euclidean space. We then provide experiments showing that these
algorithms perform as well as the non-approximate version for classic classifica-
tion tasks while achieving a significant speed-up.

1 Introduction

Hierarchical Clustering (HC) is a ubiquitous task in data science. Given a data set of n points
with some similarity or distance function over them, the goal is to group similar points together
into clusters, and then recursively group similar clusters into larger clusters. The clusters produced
throughout the procedure can be thought of as a hierarchy or a tree with the data points at the leaves
and each internal node corresponds to a cluster containing the points in its subtree. This tree is often
referred to as a “dendrogram” and is an important illustrative aid in many settings. By inspecting the
tree at different levels we get partitions of the data points to varying degrees of granularity. Famous
applications are in image and text classification [39], community detection [28], finance [40], and in
biology [8, 19].

Perhaps the most popular procedures for HC are Single-Linkage, Average-Linkage, and Ward’s
method. These are so-called agglomerative HC algorithms (as opposed to divisive) since they pro-
ceed in a bottom-up fashion: In the beginning, each data point is in its own cluster, and then the
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most similar clusters are iteratively merged - creating a larger cluster that contains the union of the
points from the two smaller clusters - until all points are in the same, final cluster.

The difference between the different procedures is in their notion of similarity between clusters,
which determines the choice of clusters to be merged. In Single-Linkage the distance (or dissim-
ilarity) is defined as the minimum distance between any two points, one from each cluster. In
Average-Linkage we take the average instead of the minimum, and in Ward’s method we take the
error sum-of-squares (ESS). It is widely accepted that Single-Linkage enjoys implementations that
are somewhat simpler and faster than Average-Linkage and Ward’s, but the results of the latter two
are often more meaningful. This is because its notion of distance is too sensitive and a meaningless
“chain” in the data can sabotage the resulting clustering. Extensive discussions of these procedures
can be found in many books (e.g. [21, 28, 37, 1]), surveys (e.g. [31, 32, 9]), and experimental studies
(e.g. [34]).

All of these procedures can be performed in nearly quadratic time, and the main question studied
by this paper is whether we can reduce the time complexity to subquadratic. The standard quadratic
algorithm for Single-Linkage is quite simple and can be described as follows. After computing the
nˆ n distance matrix of the points, we find a minimum spanning tree (MST). This first stage takes
Opn2dq time if the points are in d-dimensional Euclidean space. In the second stage we perform
merging iterations, in which the clusters correspond to connected subgraphs of the MST (initially,
each point is its own subgraph). We merge the two subgraph whose in-between edge in the MST
is the smallest. By the properties of MST, the edge between two subgraphs (clusters) is exactly the
minimum distance between them. This second stage can be done with Opnq insertions, deletions,
and minimum queries to a data structure, which can be done in near-linear time. The algorithms for
Average-Linkage and Ward’s are more complicated since the MST edges between two clusters can
be arbitrarily smaller than the average distance or the ESS between them, and we must consider all
pairwise distances in clusters that quickly become very large. Nonetheless, anOpn2 log nq algorithm
(following a first stage of computing the distance matrix) has been known for many decades [31].

Can we possibly beat quadratic time? It is often claimed (informally) that Ωpn2q is a lower bound
because of the fist stage: it seems necessary to compute the distance matrix of the points whose size
is already quadratic. More formally, we observe that these procedures are at least as hard as finding
the closest pair among the set of points, since the very first pair to be merged is the closest pair. And
indeed, under plausible complexity theoretic assumptions1, there is an almost-quadratic n2´op1q
lower bound for the closest pair problem in Euclidean space with dimension d “ ωplog nq [2, 26].
This gives a quadratic conditional lower bound for all three Single-Linkage, Average-Linkage, and
Ward’s method.

Achieving subquadratic runtime has been of interest for many decades (as can be deduced from the
survey of Murtagh [31]) and it is increasingly desirable in the era of big data. (See also the recent
work on quadratic vs. subquadratic complexity of Empirical Risk Minimization problems [5].)

In this work, we focus on worst-case guarantees while allowing for small approximation in the
answers: how fast can we perform these procedures if each iteration is allowed to pick an approxi-
mately best pair to merge? More precisely, when merging two clusters the algorithm is allowed to
do the following. If the best pair of (available) clusters has (minimum, average, or ESS) distance
d then the algorithm can choose any pair of clusters whose distance is between d and γ ¨ d, where
γ ě 1 is a small constant.

When approximations are allowed the time complexity of closest pair drops, and so does the con-
ditional lower bound. Even in high dimensions, Locality Sensitive Hashing techniques can find the
γ-approximate nearest neighbors (ANN) in L1-distance with nOp1{γq time per query [3, 4]. This
gives a subqadratic n1`Op1{γq algorithm for closest pair2, but can we achieve the same speed-up for
γ-approximate Average-Linkage? Namely, can we do Average-Linkage as fast as performing rOpnq
(approximate) nearest-neighbor queries?

For the simpler γ-approximate Single-Linkage it is rather easy to see that the answer is yes. This
essentially follows from the classical Nearest Neighbor Chain algorithm for HC [31]. Here is a

1These lower bounds hold under the Strong Exponential Time Hypothesis of Impagliazzo and Paturi [23, 24]
regarding the complexity of k-SAT.

2On the negative side, we know that a p1` εq approximation requires quadratic time [36].
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simple way to see why subquadratic is possible in this case: The idea is to replace the expensive first
stage of the Single-Linkage algorithm (described above) with an approximate MST computation
which can be done in subquadratic time [7, 22] using ANN queries. Then we continue to perform
the second stage of the algorithm with this tree.

Still it is of great interest to speed up the Average-Linkage and Ward’s algorithms since they typically
give more meaningful results. This is much harder and before this work, no subquadratic time
algorithm for Average-Linkage or Ward’s with provable guarantees were known. Various algorithms
and heuristics have been proposed, see e.g. [38, 20, 27, 33, 25, 41], that beat quadratic time by either
making assumptions on the data or by changing the merging criteria altogether. Intuitively, while
in Single-Linkage only Opnq distances are sufficient for the entire computation (the distances in the
MST), it is far from clear why this would be true for Average-Linkage and Ward’s.

1.1 Our Contribution

Our main result is a γ-approximate Ward’s algorithm that runs in subquadratic Õpn1`Op1{γ
2
qε´2 `

ndq time, for any γ ą 1 and ε ą 0, when the points are in d-dimensional Euclidean space. For
instance, using the precise bounds of [4] on the constants in the Op1{γq term, we can get a 2.35-
approximation in time Õpn1.1ε´2q. We also prove a similar but slightly slower result for Average-
Linkage: our running time for a γ-approximation of Average-Linkage is Õpn1`Op1{γq`ndq. More-
over, our algorithms are reductions to Õpnq approximate nearest neighbor queries in dimension Õpdq
with L2 distance (for Ward’s) or L1 distance (for Average-Linkage). Thus, further improvements
in ANN algorithms imply faster approximate HC, and more importantly, one can use the optimized
ANN libraries to speed up our algorithm in a black-box way. In fact, this is what we do to produce
our experimental results. Our theorems are as follows.

Theorem 1.1. Given a set of n points in Rd and a γ-Approximate Nearest Neighbor data structure
which supports insertion, deletion and query time in time Tn, there exists a γp1` εq-approximation
of Ward’s Method running in time Opn ¨ T ¨ ε´2 logp∆nqq, where ∆ is the aspect ratio of the point
set.

Theorem 1.2. Given a set of n points in Rd and a data structure for γ-Approximate Nearest Neigh-
bor under the L1-norm which supports insertion, deletion and query time in time Tn, there exists a
γp1` εq-approximation of Average Linkage running in time n ¨T ¨ ε´2 logOp1qp∆nq, where ∆ is the
aspect ratio of the point set.

Our algorithm for approximating Ward’s method is very simple: We follow Ward’s algorithm and
iteratively merge clusters. To do so efficiently, we maintain the list of centroids of the current clusters
and perform approximate nearest neighbor queries on the centroids to find the closest clusters. Of
course, this may not be enough since some clusters may be of very large size compared to others
and this has to be taken into account in order to obtain a γ-approximation. We thus partition the
centroids of the clusters into buckets that represents the approximate sizes of the corresponding
clusters and have approximate nearest neighbor data structure for each bucket. Then, given a cluster
C, we identify its closest neighbor (in terms of Ward’s objective) by performing an approximate
nearest neighbor query on the centroid of C for each bucket and return the best one.

Our algorithm for Average-Linkage is slightly more involved. Our algorithm adapts the standard
Average-Linkage algorithm, with a careful sampling scheme that picks out representatives for each
large cluster, and a strategic policy for when to recompute nearest neighbor information. The other
sections of this paper are dedicated to explaining the algorithm. Implementation-wise it is on the
same order of complexity as the standard Average-Linkage algorithm (assuming a nearest neighbor
data structure is used as a black-box), while efficiency-wise it is significantly better as it goes below
quadratic time. The gains increase as we increase the tolerance for error, in a controlled way.

We focus our empirical analysis on Ward’s method. We show that even for a set of parameters
inducing very loose approximation gurantees, the hierarchical clustering tree output by our algorithm
is as good as the hierarchical clustering tree produced by Ward’s method in terms of classification
for most of several classic datasets. On the other hand, we show that even for moderately large
datasets, e.g.: sets of 20-dimensional points of size 20000, our algorithm offers a speed-up of 2.5
over the popular implementation of Ward’s method of sci-kit learn.
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1.2 Related Works

A related but orthogonal approach to ours was taken by a recent paper [14]. The authors design
an agglomerative hierarchical clustering algorithm, also using LSH techniques, that at each step,
with constant probability, performs the merge that average linkage would have done. However, with
constant probability, the merge done by their algorithm is arbitrary, and there is no guarantee on
the quality of the merge (in terms of average distance between the clusters merged compared to the
closest pair of clusters). We believe that our approach may be more robust since we have a guarantee
on the quality of every merge, which is the crux of our algorithms. Moreover, they only consider
Average-Linkage but not Ward’s method.

Strengthening the theoretical foundations for HC has always been of interest. Recently, an influ-
ential paper of Dasgupta [17] pointed to the lack of a well-defined objective function that HC al-
gorithms try to optimize and proposed one such function. Follow up works showed that Average-
Linkage achieves a constant factor approximation to (the dual of) this function [16, 29], and also
proposed new polynomial time HC algorithms for both worst-case and beyond-worst-case scenarios
that can achieve better approximation factors [35, 10, 15, 11, 12]. Other theoretical works prove that
Average-Linkage can reproduce a “correct” clustering, under some stability assumptions on the data
[6]. Our work takes a different approach. Rather than studying the reasons for the widespread em-
pirical findings of the utility of HC algorithms (and mainly Average-Linkage and Ward’s), we take
it as a given and ask: how fast can we produce results that are as close as possible to the output of
Average-Linkage and Ward’s. In some sense, the objective function we try to optimize is closeness
to whatever Average-Linkage or Ward’s produce.

2 A γ-Approximation of Ward’s Method

2.1 Preliminaries

Let P Ă Rd be a set of n points. Up to rescaling distances we may assume that the min-
imum distance between any pair of points is 1. Let ∆ denote the aspect ratio of P , namely
∆ “ maxu,vPP distpu, vq. Let γ ą 1 be a fixed parameter. Our goal is to build a γ-approximation
of Ward’s hierarchical clustering.

Let C be a cluster, then define the error sum-of-square as

ESSpCq “
ÿ

xPC

px´ µpCqqT px´ µpCqq

where µpCq “ 1
|C|

ř

xPC x. We let the error sum-of-square of a clustering C “ tC1, . . . , C`u be

ESSpCq “
ÿ

CPC
ESSpCq.

Thus, Ward’s algorithm constructs a hierarchy of clusters where each level represents a clustering of
the points and where clusters at a given level ` are subsets of clusters of level ``1. Ward’s algorithm
builds this hierarchy in a bottom-up fashion, starting from n clusters (each point is itself a cluster).
Then, given the clustering of a given level `, Ward’s algorithm obtains the clustering of the next
level by merging the two clusters that yield the clustering of minimal ESS. More formally, consider
a clustering C “ tC1, . . . , C`u. To find the clustering of minimum ESS obtained by merging a pair
of clusters of C, it is enough to minimize the increase in the ESS induced by the merge. Therefore,
we want to identify the clusters Ci, Cj that minimize the following quantity.

∆ESSpCi, Cjq “
|Ci||Cj |

|Ci| ` |Cj |
||µpCiq ´ µpCjq||

2
2. (1)

We will also make use of the following fact.

Fact 1. Given two set of pointsA,B with corresponding centroids µpAq, µpBq respectively, we have
that the centroid of AYB is on the line joining µpAq to µpBq, at distance |B|

|AYB| ||µpAq ´ µpBq||
2
2

from µpAq.
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Let γ ą 0 be a parameter, P a set of points in Rd. Let D be a data structure that for any set P of
n points in Rd where d “ Oplog nq, supports the following operations. Insertion of a point in P in
timeOpnfpγqq, for some function f . Deletion of a point in P in timeOpnfpγqq; Given a point p P P ,
outputs a point inserted to the data structure at L2 ´ distance at most γ times the distance from p
to the closest point inserted to the data structure, in time Opnfpγqq.

There are data structures based on locality sensitive hashing for fpγq “ 1 ` Op1{γ2q, see for
example [4].

2.1.1 Finding The Nearest Neighbour Cluster

Our algorithm relies on a Nearest Neighbour Data Structure for clusters, where the distance between
two clusters A,B is given by ESSpAYBq ´ ESSpAq ´ ESSpBq. Given a parameter ε ą 0, our
Nearest Neighbour Data Structure Dpγ, εq for clusters consists of Opε´1 log nq Nearest Neighbour
Data Structures for points defined as follows. There is a data structure D` for each ` P tp1 ` εqi |
i P r1, . . . , log1`ε nsu. The data structure works as follows.
Insertion(C): Inserting a cluster of a set C of points is done by inserting µpCq in the Di such that
p1` εqi´1 ď |C| ă p1` εqi.
Query(C): For each i P tp1 ` εqi | i P r1, . . . , log1`ε nsu perform a nearest neighbor data query
for µpCq in Di, let NNipCq be the result. Output NNipCq that minimizes ∆ESSC,NNipCq.

The proof of the following lemma is in the appendix.
Lemma 2.1. For any ε ą 0, the above nearest neighbour data structure for clusters with parameters
γ, ε, Dpγ, εq has the following properties:

• The insertion time is Opnfpγqε´1 log nq;

• On Query(C), it returns a clusters C 1 such that ESSpC YC 1q ´ESSpCq ´ESSpC 1q ď
p1` εqγminBPDpε,γq pESSpC YBq ´ ESSpCq ´ ESSpBqq.

• The query time is Opnfpγqε´1 logpn∆qq.

2.1.2 The Main Algorithm

We define the value of merging two clustersA,B asESSpAYBq´ESSpAq´ESSpBq. Our algo-
rithm starts by considering each point as its own cluster, together with the Nearest Neighbour Cluster
Data Structure described above. Then, the algorithm creates a logarithmic number of rounded merge
values that partition the range of possible merge values. Let I be the sequence of all possible merge
values in increasing order.

Given a set of n points with minimum pairwise distance 1 and maximum pairwise distance ∆, we
have that the total number of merge value β is Oplogpn∆qq.

The algorithm maintains a clustering and at each step decides which two clusters of the current
clustering should be merged. The clusters of the current clustering are called unmerged clusters.
The algorithm iterates over all merge values in an increasing order while maintaining the following
invariant:
Invariant 2.2. When the algorithm reaches merge value δ, for any pair of unmerged cluster C,C 1
we have ESSpC Y C 1q ´ ESSpCq ´ ESSpC 1q ě δ{γ.

We now give a complete description of our algorithm.

1. Let L be the list of unmerged clusters, initially it contains all the points.
2. For each ν P I:

(a) ToMergeÐ L
(b) While ToMerge is not empty:

i. Pick a cluster C from ToMerge, and remove it from ToMerge.
ii. NNpCq Ð Approximate Nearest Neighbour Cluster of C.

iii. If ESSpC YNNpCqq ´ ESSpCq ´ ESSpNNpCqq ď ν:
A. Merge C and NNpCq. Let C 1 be the resulting cluster.
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B. Remove NNpCq from ToMerge and add C 1 to ToMerge; µpC 1q follows imme-
diately from µpCq, µpNNpCqq, |C| and |NNpCq| (see Fact 1)

C. Remove C,NNpCq from L and add C 1 to L

The running time analysis and proof of correctness of the algorithm are deferred to the appendix.

3 A γ-Approximation of Average-Linkage

3.1 Preliminaries

For two sets of points A,B, we let avgpA,Bq “ 1
|A||B|

ř

aPA

ř

bPB dpa, bq. The following simple
lemma is proved in the appendix.
Lemma 3.1. Consider three sets of points A,B,C. We have that avgpA,Cq “ avgpC,Aq ď
avgpA,Bq ` avgpB,Cq

3.2 Overview and Main Data Structures

Our goal is to design a γ-approximate Average-Linkage algorithm. The input is a set P of n points
in a d-dimensional Euclidean space. The algorithm starts with a clustering where each input point is
in its own cluster. The algorithm then successively merges pairs of clusters. When two clusters are
merged, a new cluster consisting of the union of the two merged clusters is created. The unmerged
clusters at a given time of the execution of the algorithm are the clusters that have not been merged so
far. More formally, at the start the set of unmerged clusters is the set of all clusters. Then, whenever
two clusters are merged, the newly created cluster is inserted to the set of unmerged clusters while
the two merged clusters are removed from the set. The algorithm merges clusters until all the points
are in one cluster.

To be a γ-approximation to Average-Linkage, our algorithm must merge clusters according to the
following rule: If the minimum average distance between a pair of unmerged clusters is v then the
algorithm is not allowed to merge two unmerged clusters with average distance larger than γ ¨ v.

Let ε ą 0 and γ ě 1 be parameters. We will show how to use a γ-approximate nearest neighbor
data structure (on points) to get a γ1-approximate Average-Linkage algorithm where γ1 “ p1`εq ¨γ.

We make use of the following key ingredients.

• We design a sampling scheme that allows to choose at most poly log n points per cluster
while preserving the average distance up to p1`εq-factor with probability at least 1´1{n5.

• We design a data structure that given a set of clusters, allows to answer approximate nearest
neighbor queries (on clusters) according to the average distance.

• Finally we provide a careful scheme for the merging steps that allows to bound the number
of times the nearest neighbor queries for a given cluster have to be performed.

3.3 The Algorithm

We are now ready to describe our algorithm. Our algorithm starts with all input points in their
own clusters and performs a nearest neighbor query for each of them. The algorithm maintains a
partition of the input into clusters that we call the unmerged clusters, identical to average linkage.
The algorithm proceeds in steps. Each step consists of merging several pairs of clusters. For each
step we associate a value v, which we refer to as the merge value of the step, which is a power
of p1 ` εq and we will show the invariant that at the end of the step associated with value v, the
unmerged clusters are at distance greater than v{pp1` εq2γq.

For each cluster C, we will maintain a sample of its points by applying the sampling procedure
(see supplementary materials for more details). To avoid recomputing a sample too often, we set a
variable spCq which corresponds to the size of the cluster the last time the sampling procedure was
called.

Lazy sampling. Every time two clusters C1, C2 are merged by the algorithm to create a new
cluster, the following operations are performed:
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1. If |C1YC2| ě p1` ε
2{p1`γqqmaxpspC1q, spC2qq, then the sampling procedure is called

on C1YC2 and an approximate nearest cluster query is performed using the nearest cluster
data structure (see supplementary materials). Then, spC1 Y C2q is set to |C1 Y C2|. The
resolution parameter for sampling is the value of the current step divided by n. Namely, if
the value of the current step is v, we set αC1YC1

“ v for the sampling procedure.
2. Otherwise, spC1 Y C2q is set to maxpspC1q, spC2qq and the algorithm uses the sample of

argmaxCPtC1,C2u
|C| as the sample for C1 Y C2.

Once the above has been performed, a γ-approximate nearest cluster query is performed using the
sample defined for the cluster resulting of the merge.

Thus, at each step, all the clusters have a γp1 ` Opεqq-approximate nearest neighbor among the
clusters. We denote νtpCq the approximate nearest neighbor for cluster C at the tth step. This
approximate nearest neighbor is computed using our data structure (see supplementary materials).
We let νpCq “ νtpCqpCq, where tpCq is the step at which C was created.

We say that a cluster C is active at a step of value v if v ě avgpC, νpCqq{n2. For all steps at
which a cluster is not active, the algorithm does not recompute an approximate nearest cluster and
the algorithm keeps the approximate nearest cluster computed at the creation of the cluster. This is
a crucial point for making our algorithm run in subquadratic time. If this cluster has been merged,
a pointer to the resulting cluster is kept instead. During the steps at which the cluster is active, a
γ-approximate nearest cluster query is performed.

Algorithm at a given step. A step of value v is performed when the minimum distance between
pairs of approximate nearest clusters is at least v{γ and no more than p1 ` εqv. At a given step of
value v, the algorithm is as follows. The clusters are processed one by one. Each cluster is inserted
into our nearest cluster data structure (see supplementary materials) and an approximate nearest
cluster query is performed. If the approximate nearest clusters returned by the data structure is at
distance at most v, then the two clusters are merged and the following operations are performed: the
two clusters are removed from the data structure and the new cluster is inserted into the list of the
clusters to be processed. Then the algorithm continues to process the list.

See supplementary materials for the proof of correctness.

4 Experiments

Our experiments focus on Ward’s method and its approximation since it is a simpler algorithm in
contrast with average-linkage. We implemented our algorithm using C++11 on 2.5 GHz 8 core CPU
with 7.5 GiB under the Linux operating system. Our algorithm takes a dynamic Nearest Neighbour
data structure as a block box. In our implementation, we are using the popular FLANN library [30]
and our own implementation of LSH for performing approximate nearest neighbor queries. We
compare our algorithm to the sci-kit learn implementation of Ward’s method [34] which is a Python
library that also uses C++ in the background.

Our algorithm has different parameters for controlling the approximation factor. These parameters
have a significant effect on the performance and the precision of the algorithm. The main parameter
that we have is ε which determines the number of data structures to be used (recall that we have one
approximate nearest neighbor data structure for each p1` εqi, for representing the potential cluster
sizes) and the sequence of merge values. Moreover, we make use of FLANN library procedure for
finding approximate nearest neighbors using KD-trees. This procedure takes two parameters the
number of trees t and the number of leaves visited f . The algorithm builds t randomized KD-trees
over the dataset. The number of leaves parameter controls how many leaves of the KD-trees are
visited before stopping the search and returning a solution. These parameters control the speed and
precision of the nearest neighbor search. For instance, increasing the number of leaves will lead to
a high precision but at the expense of a higher running time. In addition, decreasing the number of
KD-Tree increases the performance but it decreases the precision. For LSH, we use the algorithm
of Datar et al. [18] which has mainly two parameters, H the number of hash functions used and r
controlling the ’collision’ rate (see details in [18]).

To study the effects of these parameters, we did different experiments that combine several param-
eters and we report and discuss the main results in Table 1. The main data that is used in these
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Iris Cancer Digits Boston Newsgroup
Ward’s 0.67 0.46 0.82 0.80 0.146

Ward-FLANN (ε = 0.5, T = 16, L = 5) 0.62 0.53 0.79 0.80 ă 0.05
Ward-FLANN (ε = 4, T = 16, L = 128) 0.76 0.47 0.56 0.78 ă 0.05

Ward-FLANN (ε = 8, T = 2, L = 10) 0.75 0.51 0.47 0.80 ă 0.05
Ward-LSH (ε “ 10, r “ 3, H “ n1{10) 0.69 0.58 0.58 0.82 ă 0.05
Ward-LSH (ε “ 10, r “ 3, H “ n1{2) 0.72 0.48 0.73 0.83 0.104
Ward-LSH (ε “ 2, r “ 3, H “ n1{2) 0.72 0.57 0.63 0.83 0.113

Table 1: We report the normalized mutual information score of the clustering output by the different
algorithms compared to the ground-truth labels for each dataset. We note that 0.05 can obtained on
Newsgroup through a random labelling of the vertices (up to ˘0.02). Hence LSH seems a more
robust approach for implementing approx-ward.

experiments are classic real-world datasets from the UCI repository and the sci-kit-learn library.
Iris contains 150 points in 4 dimensions, Digits 1797 in 64 dimensions, Boston 506 points in 13
dimensions, Cancer 569 points in 3 dimensions, and Newsgroup 11314 points in 2241 dimensions.

To measure the speed-up achieved by our algorithm, we focus our attention on a set of parameters
which gives classification error that is similar to Ward’s on the real-world datasets, and then run
our algorithm (with these parameters) on synthetic dataset of increasing sizes. These parameters are
precisely ε “ 8, number of trees T “ 2, the number of visited leaves L “ 10. The datasets are
generated using the blobs procedure of sci-kit learn. The datasets generated are d-dimensional for
d “ t10, 20u and consists of a number of points ranging from 10 000 to 20 000. In both dimensions,
we witness a significant speed-up over the sci-kit learn implementation of Ward’s algorithm. Perhaps
surprisingly, the speed-up is already significant for moderate size datasets. We observe that the
running time is similar for LSH or FLANN.

(a) Running time of our algorithm with parameters (ε
= 8, T = 2, L = 10) (in red) and of Ward’s method, on
datasets of sizes ranging from 10 000 points to 20 000
points in R10. We observe that our algorithm is more
than 2.5 faster on datasets of size 20 000.

(b) Running time of our algorithm with parameters (ε
= 8, T = 2, L = 10) (in red) and of Ward’s method, on
datasets of sizes ranging from 10 000 points to 20 000
points in R20. We observe that our algorithm is more
than 2.5 faster on datasets of size 20 000. Interestingly,
it seems that the dimension has little influence on both
our algorithm and Ward’s method.
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References

[1] James Abello, Panos M Pardalos, and Mauricio GC Resende. Handbook of massive data sets,
volume 4. Springer, 2013.

8



[2] Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.
In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17-20 October, 2015, pages 136–150, 2015.

[3] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-
sensitive hashing. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 1018–1028. Society for Industrial and Applied Mathematics, 2014.

[4] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 793–801. ACM, 2015.

[5] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained complexity of empirical
risk minimization: Kernel methods and neural networks. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, pages 4311–4321, 2017.

[6] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative framework for
clustering via similarity functions. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 671–680. ACM, 2008.

[7] Allan Borodin, Rafail Ostrovsky, and Yuval Rabani. Subquadratic approximation algorithms
for clustering problems in high dimensional spaces. In Proceedings of the thirty-first annual
ACM symposium on Theory of computing, pages 435–444. ACM, 1999.

[8] Peter Breyne and Marc Zabeau. Genome-wide expression analysis of plant cell cycle modu-
lated genes. Current opinion in plant biology, 4(2):136–142, 2001.

[9] Gunnar Carlsson and Facundo Mémoli. Characterization, stability and convergence of hierar-
chical clustering methods. Journal of machine learning research, 11(Apr):1425–1470, 2010.

[10] Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut
and spreading metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 841–854. Society for Industrial and Applied Mathematics, 2017.

[11] Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better than
average-linkage. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2291–2304. SIAM, 2019.

[12] Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, and Grigory Yaroslavtsev. Hierarchical
clustering for euclidean data. arXiv preprint arXiv:1812.10582, 2018.

[13] Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and
their applications. SIAM Journal on Computing, 39(3):923–947, 2009.

[14] Michael Cochez and Hao Mou. Twister tries: Approximate hierarchical agglomerative cluster-
ing for average distance in linear time. In Proceedings of the 2015 ACM SIGMOD international
conference on Management of data, pages 505–517. ACM, 2015.

[15] Vincent Cohen-Addad, Varun Kanade, and Frederik Mallmann-Trenn. Hierarchical clustering
beyond the worst-case. In Advances in Neural Information Processing Systems, pages 6201–
6209, 2017.

[16] Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hier-
archical clustering: Objective functions and algorithms. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 378–397. SIAM, 2018.

[17] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. arXiv preprint
arXiv:1510.05043, 2015.

[18] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pages 253–262. ACM, 2004.

9
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A Missing Proofs and details

A.1 Proofs for the approximate Ward’s algorithm

Proof of Lemma 2.1. The running time follows almost immediately from the definition: there
are Opε´1 log nq data structure to query. The correctness results from the following argu-
ment. Consider the cluster C˚ that has been inserted to the data structure and that minimizes
minC0 inserted ∆ESSpC,C0q. Let j be the integer such that p1` εqj´1 ď |C˚| ď p1` εqj . Consider
the cluster Cj returned by the query on Dj . We have that |Cj | ď p1` εq|C˚| and so by the correct-
ness of the data structure ∆ESSpCj , Cq ď γp1` εq∆ESSpC,C˚q and the lemma follows.

A.2 Runtime analysis and correctness for the approximate Ward’s algorithm

Running Time The outer loop of Algorithm 1 iterates β times. The total number of clusters
created by the algorithm is Opnq where n is the total number of input points. Thus, The inner for
loop takes Opnq times. By Lemma 2.1, the body of the inner loop will have at most the complexity
of the nearest neighbour search Opnfpγqε´1 logpn∆qq. Summing up all these complexities results
in Opn1`fpγqε´1 logpn∆qq.

Proof of Correctness

Lemma A.1. Invariant 2.2 holds.

Proof. We proceed by induction on the merge ν. When the merge value is 1, the invariant trivially
holds.

Now assume that the invariant holds up to some merge value ν. We first show that there is no pair of
clusters Ci, Cj with ∆ESSpCi, Cjq ă ν{γ at the end of the iteration corresponding to merge value
ν. Assume toward contradiction that this wasn’t the case and consider the cluster of Ci, Cj that was
created the last, say Ci. Then, a nearest neighbor cluster query was made on Ci and since Cj was
already in the data structure, Lemma 2.1 implies that the query returned a cluster of C` such that
∆pC`, Ciq ă ν. Hence Ci was merged to C` and not an unmerged cluster at the end of the iteration.
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A.3 Proofs for the approximate Average-Linkage algorithm

Proof of Lemma 3.1. LetU “ |A||C||B|. We note that for each a P A, c P C, the triangle inequality
implies that dpa, cq ď minbPBpdpa, bq ` dpb, cqq and so dpa, cq ď 1

|B|

ř

bPBpdpa, bq ` dpb, cqq.

avgpA,Cq “
1

|A||C|

ÿ

aPA

ÿ

cPC

dpa, cq

ď
1

|A||C|

ÿ

aPA

ÿ

cPC

1

|B|

ÿ

bPB

pdpa, bq ` dpb, cqq

“
1

U

ÿ

aPA

ÿ

cPC

ÿ

bPB

pdpa, bq ` dpb, cqq

“
1

U

˜

|C|
ÿ

aPA

ÿ

bPB

dpa, bq ` |A|
ÿ

cPC

ÿ

bPB

dpb, cq

¸

“ avgpA,Bq ` avgpB,Cq

A.3.1 Approximating Cluster Distance by Sampling

Let C1, . . . , Ck be a collection of clusters. Let n2αi be an upper bound on the average distance
between points within Ci. Assume that the minimum average distance between any pair of clusters
is at least αi{n2 for all i. For each cluster Ci, we make a slight abuse of notation and let avgpCiq
denote the average distance between points in Ci (i.e.: avgpCiq “ avgpCi, Ciq). Let ci be a point
such that avgpci, Ciq ď avgpCiq{ε and let Ri denote the points of Ci whose distance to ci is at most
avgpCiq{ε2. In other words, Ri “ tp | p P Ci, distpp, ciq ď avgpCiq{ε2u. Let Gi “ Ci ´Ri.

We consider the following sampling scheme. Among the points in Ri, pick ηε´6 log3 n points
uniformly at random. Let κi “ avgpGi, Riq. By an immediate averaging argument we have that
|Gi| ď ε|Ci|.

We make use of the following lemma by Chen [13].

Lemma A.2 ([13], Lemma 3.3). Let V be a set of points in a metric space pX, dq, and let λ1, ξ ą 0
be given parameters. Let ∆ be the diameter of V . Let U be a sample of size ξ´2 lnp2{λ1q points of
V picked independently and uniformly, where each point of U is assigned weight |V |{|U | such that
ř

uPU wpuq “ |V |. For a fixed point p, where p is not necessarily a an element of V , we have that
|
ř

vPV distpv, pq ´
ř

uPU wpuqdistpu, pq| ď ξ|V |∆, with probability at least 1´ λ1.

From this, we deduce the following corollary.

Corollary 1. Let V be a set of points in a metric space pX, dq, and let λ1, ξ ą 0 be given parameters.
Let ∆ be the diameter of V . Let U be a sample of size ξ´2 lnp2{λ1q points of V picked independently
and uniformly. For a fixed point p, where p is not necessarily a an element of V , we have that
|avgpV, pq ´ avgpU, pq| ď ξ∆, with probability at least 1´ λ1.

The proof of the following lemma is in the appendix.

Lemma A.3. Given a set of point Ci of size m, the sampling procedure can be performed in time
Opm{ε5q.

For any two clusters Ci, Cj let SpCiq, SpCjq denote the set of points sampled by the above proce-
dure. Furthermore, we define xavgpCi, Cjq “ avgpSpCiq, SpCjqq ` εκi ` εκj . We then have the
following crucial lemma, proved in the appendix.

Lemma A.4. Consider a set of clusters tC1, . . . , C`u such that for any pair of clusters Ci, Cj ,
avgpCiq, avgpCjq ď ηavgpCi, Ciq for some constant η.

Then, by taking a sampling of size 10ηε´6 log3 n, we have xavgpCi, Cjq “ p1˘ εqavgpCi, Cjq with
probability at least 1´ 1{n5.
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A.3.2 A Data Structure for Approximate Nearest Cluster

In this section, we introduce a data structure for finding approximate nearest clusters. The following
theorem is proved in the appendix.
Theorem A.5. Let γ ą 0 be a parameter, P a set . Let D be a data structure that for any set P of
n points in Rd where d “ Ωplog nq, supports the following operations:

1. Insertion of a point in P in time Opnfpγqq, for some function f ;

2. Deletion of a point in P in time Opnfpγqq;

3. Given a point p P P , outputs a point inserted to the data structure at L1-distance at
most γ times the distance from p to the closest point inserted to the data structure, in time
Opnfpγqq.

Then, for any ε ą 0, there exists a data structure for pairs pS,wq where S is a set of points in Rd
and w is a positive value, that supports the following operations:

1. Insertion of a pair (set, value) in time Opηε´1 log n ¨ nfpγqq;

2. Deletion of a pair (set, value) in time Opηε´1 log n ¨ nfpγqq;

3. Given a set of points C in Rd and a value w, outputs a pair pC 1, w1q inserted to the
data structure that is such that that avgpC,C 1q ` w ` w1 is at most γp1 ` εq times
minpC˚,w˚q in the data structure avgpC,C

˚q ` w ` w˚ in time Opηε´1 log n ¨ nfpγqq.

Proof of Lemma A.3. We claim that we can simply use a constant factor approximation to the me-
dian problem to find ci – there is a vast literature of near-linear algorithms producing an Op1q-
approximation to the median.

Consider the median of P , namely the point p˚ P P that minimizes
ř

pPP distpp, p˚q. We have that
1

|P |´1

ř

pPP distpp, p˚q is at most avgpP q. Thus, consider any point p̂ that is anOp1q-approximation
to the median of P . We have that 1

|P |´1

ř

pPP distpp, p̂q “ OpavgpP q.

Then, the remaining step of the sampling procedure is to evaluate the distance from each point to p̂
to define Ri and Gi. This can be done in linear time. Finally, the sampling of points in Ri can also
be done in linear time.

Proof of Lemma A.4. We have, by Lemma 3.1,

avgpCi, Cjq “
|Ri|

|Ci|
avgpRi, Cjq `

|Gi|

|Ci|
avgpGi, Cjq

ď avgpRi, Cjq `
|Gi|

|Ci|
avgpRi, Giq

ď avgpRi, Cjq ` ε ¨ avgpRi, Giq
ď avgpRi, Cjq ` ε ¨ avgpCiq

Similarly, we have

avgpRi, Cjq “
|Rj |

|Cj |
avgpRi, Rjq `

|Gj |

|Cj |
avgpGj , Riq

ď avgpRi, Rjq `
|Gj |

|Cj |
avgpRj , Gjq

ď avgpRi, Rjq ` ε ¨ avgpRj , Gjq
ď avgpRi, Rjq ` ε ¨ avgpCjq
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Combining yields

avgpCi, Cjq ď avgpRi, Rjq ` ε ¨ avgpCjq ` ε ¨ avgpCiq.

Therefore, by applying Corollary 1 to SpCiq, SpCjq, we have that avgpSpCiq, SpCjq “ p1 ˘
εqavgpRi, Rjq and so avgpCi, Cjq ď p1 ` εqxavgpCi, Cjq since the diameter of the points in Ri
and Rj is at most avgpCiq{ε and avgpCjq{ε respectively.

We now aim at proving that avgpCi, Cjq ě p1 ´ OpεηqqxavgpCi, Cjq. Recall that by assumption,
we have that avgpCiq, avgpCjq ď η ¨ avgpCi, Cjq. Thus, again combining with Corollary 1, we
have that xavgpCi, Cjq ď p1 ` εqavgpRi, Rjq ` 2εη ¨ avgpCi, Cjq. Moreover, as discussed above,
we have that avgpCi, Cjq ě p1 ´ OpεqqavgpRi, Rjq and so, rescalling ε, we have xavgpCi, Cjq ď
p1` εqavgpCi, Cjq, as claimed.

Proof of Theorem A.5. We start with some preprocessing steps and notations. We consider an iso-
metric embedding of all the input points into L1 with distortion at most p1`εq, for some sufficiently
small ε ą 0. In the remaining, we thus work with the L1 norm.

For each point p, for each integer i, let pi “ p1 ¨ p1 . . . p1
loooooomoooooon

i

Namely, the coordinates of pi are ob-

tained by concatenating the coordinates of p i times. Given a set of j points S “ tp1, p2, . . . , pju
and a value wS , we let qipSq be the point in a pi ¨ j ¨ d ` 2q-dimensional space with coor-
dinates pi1, p

i
2, . . . p

i
j , 0, i ¨ j ¨ wS . Namely, qipSq is obtained by concatenating pi of all the j

points p P S, adding an extra coordinate of value 0 and adding a final coordinate with value
i ¨ j ¨ wS . We also let dipSq be the point in a pj ¨ i ¨ d ` 2q-dimensional space with coordinates
p1, p2, . . . pj , p1, p2, . . . pj , . . . p1, p2, . . . pj
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

i¨j

, i ¨ j ¨ wS , 0. Namely obtained by concatenating the co-

ordinates of the point p1, p2, . . . pj , i times, adding an extra coordinate of value i ¨j ¨wS and adding a
final coordinate with value 0. We have the following claim, whose proof follows immediately from
the definition.

Claim 1. Given two setsA andB, of size i and j respectively, and two values wA, wB , we have that

1

i ¨ j
||qjpAq ´ dipBq||1 “ wA ` wB `

1

i ¨ j

ÿ

aPA

ÿ

bPB

||a´ b||1.

We now describe our data structure using an approximate nearest-neighbor data structure D for the
L1 distance between points. We make use of an approximate nearest neighbor data structure Di,j,k,
for each integers i, j P t1, 2, . . . , ηu.

Let C be a cluster. The insertion is as follows. Let i “ |C|. The algorithm inserts the point djpCq in
the data structure Di,j , for all j P t1, 2, . . . , ηu. Deletion of C consists of removing djpCq from the
Di,j it has been inserted into. The time complexities for insertion and deletion follow immediately.

The approximate nearest neighbor query for cluster C is performed as follows. For all j P

t1, 2, . . . , ηu, the algorithm creates the point qjpCq, and makes a nearest neighbor query in the
data structure Di,j . Let pj be the point returned by the query qjpCq on data structure Di,j
and νj be the cluster corresponding to pj . Claim 1 implies that 1

|C|¨|νj |
||qjpCq ´ dipνjq||1 “

p1˘ εqpwC ` wνj ` avgpC, νjqq.

Then, let j˚ “ argminj avgpC, νjq. We now argue that avgpC, νj
˚

q ` wC ` wνj˚ ď γp1 `

εqminC1‰CpavgpC,C 1q ` wC ` wC1q.

Let Ĉ “ argminC1‰CpavgpC,C 1q ` wC ` wC1q and ĵ “ |Ĉ|. Consider the data structure Di,ĵ . By
its correctness, Di,ĵ returned a point pĵ such that ||qĵpCq ´ pĵ ||1 ď γp||qĵpCq ´ dipĈq||1. Thus,
applying Claim 1 yields that avgwpC, ν

ĵq `wC `wν ĵ ď γp1` εqpavgpC, Ĉq `wC `wĈq. By the
choice of j˚, we thus have that avgpC, νj

˚

q ď γavgpC, Ĉq, as claimed.
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Invariant. The correctness of the algorithm is captured by the following invariant. The proof, as
well as the running time analysis, are deferred to the appendix.
Lemma A.6 (Invariant for correctness). The following holds with probability at least 1 ´ 1{n3.
Consider the tth step of the algorithm, let v be the merge value at the tth step.

1. At the end of the step, no cluster at (inner) average distance greater than vp1 ` εq has
been merged by the algorithm so far. For any unmerged clusters Ci, Cj , we have that
xavgpCi, Cjq “ p1`OpεqqavgpCi, Cjq.

2. For any unmerged cluster C at the end of the step, νtpCq is an unmerged p1 ` Opεqqγ-
approximate nearest cluster of C.

3. Finally, at the end of a step of value v, there is no pair of clusters at average distance less
than v{pp1` εq2γq.

Proof of Lemma A.6. We prove it by induction on the number of steps of the algorithm. This is
clearly true at first.

We start with (1). For simplicity, assume that first that the algorithm does not do lazy sampling and
runs the sampling procedure after each merge. Then, (1) follows from the definition of the algo-
rithm and the inductive hypothesis on the correctness of the sampling procedure (Lemma A.4).
More formally, the definition of the algorithm ensures that no pair of clusters Ci, Cj such that
xavgpCi, Cjq ą vp1 ` εq are merged Moreover, by the inductive hypothesis, we have that for any
cluster C, avgpCq ď vp1` εq.

Thus, we can apply Lemma A.4 with η “ p1` εq and we deduce that for any pair of clusters Ci, Cj ,
xavgpCi, Cjq “ p1˘ εqavgpCi, Cjq with probability at least 1´ 1{n5. Taking a union bound over all
n steps and n merges of the algorithm and all Opn2q pairs of clusters in total concludes the proof of
(1) in the case of non-lazy sampling.

To finish the proof of (1), we need to show that lazy sampling does not degrade the qual-
ity of the outcome of the sampling by too much. Hence, consider an unmerged cluster re-
sulting from the merge possibly at a previous step of two clusters C1, C2. If |C1 Y C2| ě

p1 ` ε2{p1 ` γqqmaxpspC1q, spC2qq, then the sampling procedure is applied and the average
distance between the samples of C1 Y C2 and any other cluster C3 is within a p1 ` εq factor
from the average distance between C1 Y C2 and C3 with probability at least 1 ´ 1{n4 and the
above analysis applies. Now, if |C1 Y C2| ă p1 ` ε2{p1 ` γqqmaxpspC1q, spC2qq, then assume
w.l.o.g. that |C1| ě |C2|. Hence, we have that by Lemma 3.1 that for any other unmerged clus-
ter C3 avgpC2, C3q ď avgpC2, C1q ` avgpC1, C3q. Now, by the inductive hypothesis, we have
that avgpC2, C1q ď γavgpC1, C3q and so avgpC2, C3q ď p1 ` γqavgpC1, C3q. It follows that
avgpC1 Y C2, C3q ď p1 ` εqavgpC1, C3q. Finally, by the induction hypothesis, we have that the
sample of C1 preserves the distance from C1 to C3 with probability at least 1´ 1{n4 up to a p1` εq
factor. Thus, we indeed have that the average distance between the samples of any pair of unmerged
clusters is within a factor p1` εq of the average distance of the pair.

We then turn to (3), thus consider the end of a step. Observe that if there are two clusters C1, C2

that are at pairwise distance less than v{pp1` εq2γq then by the inductive hypothesis, the sampling
procedure guarantees the two samples for C1, C2 are at average distance at most v{γ. Therefore,
a γ-approximate nearest cluster query returns a cluster at distance less than v. Thus, consider the
cluster, say C2, that is inserted into the data structure last. When C2 is processed, a nearest neighbor
query is performed and so, since the clusterC1 has been inserted first in the data structure, C2 should
have had an approximate nearest neighbor at distance less than v and so should have been merged.

We now move to prove (2): We finish by considering unmerged clusters at step t. We show that
for any unmerged cluster C, the nearest cluster is at average distance at least 1

γ avgpC, νpCqq and at
most p1` 1{nqavgpC, νpCqq. This will conclude the proof of the invariant.

Let i be the step at which C is created. Let C˚ be the nearest cluster to C at the tth step. By Theo-
rem A.5, Lemma A.4 and the inductive hypothesis of the γ-approximate nearest neighbor procedure
we have that avgpνpCq, Cq ď γavgpC˚, Cq. Since the unmerged clusters at step t ą i are the union
of the clusters of Ci, we have that avgpC,C0q ě avgpC,C˚q for any cluster C0 of Ct0 . It follows
that for any i1 ě i, the cluster of Ci

1

that is the nearest to C is at distance at least γ´1 ¨avgpC, νpCqq.
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We now show an upper bound on the distance to the cluster C 1 containing νpCq. This follows
from applying Lemma 3.1 as follows. Consider the sequence of merges that involve νpCq. Let
νpCq Ă νpCq1 Ă . . . Ă νpCqk denote the clusters that contain νpCq and that are successively
merged after step i and until time t. By Lemma 3.1, we have that avgpC, νpCq1q ď avgpC, νpCqq`
avgpνpCq, νpCq1q ď avgpC, νpCqq ` avgpC, νpCqq{n2 since C is not active. Similarly, by the
inductive hypothesis (1), avgpC, νpCq2q ď avgpC, νpCq1q ` avgpνpCq1, νpCq2q. Here again, C is
not active and so avgpνpCq1, νpCq2q ď avgpC, νpCqq{n2. Since the overall number of merges is at
most n, we conclude that avgpC, νpCqkq ď `avgpC, νpCqq ` avgpC, νpCqq{n as claimed.

Therefore, the invariant also holds and so the inductive hypothesis is satisfied.

A.4 Running Time Analysis for the approximate Average-Linkage algorithm

We need to bound the number of times an approximate nearest cluster query is performed, the total
time incurred by the sampling procedure, the running time of a step, and the number of steps. This
is the purpose of the following section.

A.4.1 Sampling Time

Lemma A.7 bounds the total running time incurred by the sampling procedure.
Lemma A.7. The total running time caused by the sampling procedure over the entire execution of
the algorithm is at most Opn1`ρε´2γ log nq.

Proof. The lemma follows from Lemma A.3 and due to the fact that the procedure is only called
on clusters resulting from the merge of two clusters C1, C2 such that |C1 Y C2| ě p1 ` ε2{p1 `
γqqmaxpspC1q, spC2qq. Thus, the number of clusters in which an input point can contribute to the
running time of the sampling procedure is Opε´2γ log nq.

Running Time of a Step At a given step associated with a certain merge value v, the goal is to
merge all clusters whose nearest neighbor is at distance at most v so that at the end of the step,
the distance from each cluster to its approximate nearest neighbor is greater than v. Let nv be the
number of active clusters at the beginning of the step.
Lemma A.8. The total number of nearest neighbor queries made by the algorithm during a step
with merge value v is Opnvq.

Proof. Observe that the total number of merges is at most Opnvq. Moreover the total number of
nearest neighbor queries is bounded by the total number of merges plus the number of active clusters
and so at most Opnvq.

A cluster can remain active throughout the entire algorithm. Hence, the number of active step is a
priori only bounded by Opε´1 log ∆nq which gives the claimed complexity.

A slightly more involved algorithm allows to remove the dependency in log ∆ at the price of a
slightly worse approximation guarantee: we were only able to show a γ2-approximation instead of
a γ-approximation in this case. We defer this to the full version of the paper.
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