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Abstract—We consider the classic FACILITY LOCATION prob-
lem on planar graphs (non-uniform, uncapacitated). Given an
edge-weighted planar graph G, a set of clients C ⊆ V (G),
a set of facilities F ⊆ V (G), and opening costs open : F →
R>0, the goal is to find a subset D of F that minimizes∑

c∈C minf∈D dist(c, f) +
∑

f∈D open(f).
The FACILITY LOCATION problem remains one of the most

classic and fundamental optimization problem for which it is not
known whether it admits a polynomial-time approximation scheme
(PTAS) on planar graphs despite significant effort for obtaining
one. We solve this open problem by giving an algorithm that for
any ε > 0, computes a solution of cost at most (1 + ε) times the
optimum in time n2O(ε−2 log(1/ε))

.
Index Terms—facility location, polynomial-time approximation

scheme, planar metric

I. INTRODUCTION

We study the classic FACILITY LOCATION objective in planar
metrics. Given an edge-weighted planar graph G, together with
a set C of vertices called clients, a set F of vertices called
candidate facilities, and opening costs open : F → R>0, the
FACILITY LOCATION problem asks for a subset D of F that
minimizes

∑
c∈C minf∈D dist(c, f) +

∑
f∈D open(f).

The FACILITY LOCATION objective is a model of choice
when trying to identify the best location for public infras-
tructures such as hospitals, water tanks or fire stations, or
when looking for the best location for warehouses or delivery
stores. More recent applications also include prepositionning
transportation resources such as bikes, scooters, or cabs. This
has made FACILITY LOCATION a fundamental problem that
attracted a lot of attention over the years, both in theoretical
computer science and in operations research communities.
Since the problem is NP-hard, but one is often satisfied with a
near-optimum solution, a large volume of work was devoted
to the design of approximation algorithms [?], [?], [?], [?],
culminating with the 1.488-approximation algorithm by Li [?].
Unfortunately, there is no chance of going much beyond this
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result, as the problem is known to be NP-hard to approximate
within factor better than 1.46-approximation [?].

Therefore, a natural route is to consider restricted metrics
arising in applications. For example, when the underlying
metric of the application is a road networks, the shortest path
metric induced by edge-weighted planar graphs is model of
choice. Thus, it has been a long standing open question whether
FACILITY LOCATION admits a polynomial-time approximation
scheme on planar graphs. For the uniform case, this was
resolved only recently in the affirmative by Cohen-Addad et
al. [?] using a simple local search algorithm: given a solution
D, determine whether there exists a solution D′ of better cost
that differs from D by at most O(1/ε2) centers. If so, take D′

as the new solution and repeat, otherwise output D. However,
no such approach is known to work in the nonuniform case and,
in fact, it is easy to show that the same local search heuristic
would provide a solution of cost at least twice the optimum
in the worst-case for planar inputs. This has been a major
roadblock since local search is the only technique we know so
far for obtaining approximation schemes to min-sum clustering
objectives such as the classic k-median, k-means or for uniform
facility location, despite a significant effort from the community.
In fact, and perhaps surprisingly, such a situation is not unique.
For the problem of computing a maximum independent set of
pseudo-disks, local search yields a PTAS in the unweighted
case and it remains an important open problem as whether a
PTAS exists for the weighted case [?]. Thus, obtaining a PTAS
for the “weighted” version of some problems seems a much
harder task than for the unweighted case.

Our main result is a polynomial-time approximation scheme
for the (nonuniform, uncapacitated) FACILITY LOCATION
problem in planar graphs. From a complexity perspective, our
result refutes APX-hardness of FACILITY LOCATION on planar
graphs (unless NP = P). From a techniques perspective, we
believe that our approach provides a new set of interesting
tools, such as for example a “metric-Baker” layering tailored
to min-sum objectives (and so of a different nature than the
“metric-Baker” used for k-center in recent works [?], [?]). More
formally, we show that following theorem.

Theorem 1. Given a FACILITY LOCATION instance
(G,C, F, open), where G is a planar graph, and an accuracy



parameter ε > 0, one can in n2O(ε−2 log(1/ε))

time compute a
solution of cost at most (1 + ε) times the optimum cost.

We now describe the structure of the proof and our algorithm.
To do so conveniently, let us first introduce some terminology:
we define for a set D ⊆ F , the connection cost of D is as
conn(D,C) =

∑
c∈C dist(c,D) and the opening cost of D as∑

f∈D open(f).
The first step of our algorithm is to compute an O(1)-

approximate solution to a modified input instance where every
opening cost is scaled down by a factor of ε. This solution
D̃ is computed through a greedy procedure and it is still an
O(ε−1)-approximation to the original instance. Interestingly,
this solution reveals a lot of structure of the input graph metric,
which will be crucial for the proof of Theorem 11. Indeed,
the proof of the theorem and our algorithm can be broken
into two pieces. The first one consists in a partitioning of the
instance into separate, more structured, and almost independent
sub-instances (based on the output of the greedy procedure).
The second one is a heavily technical dynamic programming
algorithm for solving these sub-instances.

To understand how the two pieces articulate, we need to
introduce a couple of definitions. Let f ∈ D̃ be an opened
facility and let cluster(f) be the set of clients connected to
f in the solution D̃ (i.e., cluster(f) consists of these clients
c ∈ C for which f is the closest facility from D̃). The average
cost of cluster(f) is defined as:

avgcost(f) =
open(f) +

∑
c∈cluster(f) dist(c, f)

|cluster(f)|
.

At a high-level, the sub-instances will be defined by dividing
the metric space according to the clustering induced by D̃:
putting in the same instance the clusters of D̃ that have roughly
the same avgcost values. More concretely, a deep analysis of
the structure of the approximate solution D̃ and an intricate
Baker-type layering step based on average costs of the facilities
of D̃ yields an instance such that (i) all values of avgcost(f)
for f ∈ D̃ are within constant ratio from each other, and (ii)
for every f ∈ D̃ and c ∈ cluster(f) the distance dist(c, f)
is within constant ratio of avgcost(f). This is described in
Section IIII.

The second part of the algorithm described in Section IIIIII,
consists mainly of our technical dynamic programming algo-
rithm for solving the instances produced in the first part.

II. REDUCING TO THE CONSTANT SCOPE OF THE AVERAGE
COSTS

Setup: We shall work with an instance I =
(G,C, F, open) where G is a planar edge-weighted graph,
C ⊆ V (G) is a set of clients, F ⊆ V (G) is a set of facilities,
and open : F → R>0 defines the opening cost of facilities. We
shall assume that G is embedded in a sphere and that distances
between pairs of vertices of G are finite and pairwise distinct.

For a set of clients S ⊆ C and solution R ⊆ F , by
conn(S,R) we denote the contribution of clients from S to

the connection cost of R and by open(R) the opening cost of
R. That is,

conn(S,R) =
∑
c∈S

min
f∈R

dist(c, f)

and
open(R) =

∑
f∈R

open(f).

We write conn(R) for conn(C,R). Thus, the cost of R is
defined as cost(R) = conn(R) + open(R). For the remainder
of this section, let us fix some optimum solution D in I , and
we denote OPT = cost(D).

We consider the accuracy parameter ε > 0; w.l.o.g. we
assume that ε < 1/10. Our goal is to compute a (1 + cε)-
approximate solution for some constant c, so that ε can be
scaled appropriately at the end.

Recall that the considered problem admits a constant-factor
approximation for the problem: as shown by Li [?], given an
instance of non-uniform facility location one can in polynomial
time find a solution of cost at most α times the optimum, where
α = 1.488. We apply this algorithm to the input instance,
obtaining a solution D′ ⊆ F , and we rescale the distances and
the opening costs by the same factor so that

cost(D′) = ε−1 · (|F |+ |C| · |E(G)|).

Note that this means that the total contribution of edges of
length less than 1 and facilities of opening cost less than
1 to any solution is bounded by |F | + |C| · |E(G)| 6 ε ·
cost(D′) 6 αε · OPT. Thus, at the cost of paying at most
ε · cost(D′) 6 αε · OPT we may assume that all edges of
length less than 1 can be traversed for free, hence we may
simply contract them. Similarly, we zero the opening costs
of all facilities whose opening cost is less than 1. Therefore,
we assume that all edges in G have weight at least 1 and all
opening costs are either 0 or at least 1, while

OPT = Θ(ε−1 · (|F |+ |C| · |E(G)|)). (1)

Robust approximate solution: Let us consider the modified
instance

Ĩ = (G,C, F, ε · open);

that is, the instance is the same as I but all the opening costs
are scaled down by a multiplicative factor of ε. For a solution
R ⊆ F , we denote the cost of R in the instance Ĩ by cost(R; Ĩ);
note that cost(R; Ĩ) = conn(R) + ε · open(R). Note that for
any R ⊆ F , we have ε · cost(R) 6 cost(R; Ĩ) 6 cost(R).

We apply the aforementioned α-approximation algorithm
of Li [?] to the instance Ĩ . Furthermore, we will need the
following property from the returned approximate solution D̃:

cost(D̃ ∪ {f}; Ĩ) > cost(D̃; Ĩ) for every f ∈ F ; (2)

This is trivially true for any f ∈ D̃ and to ensure that this holds
for every f , we make use of the following greedy process.
As long as there exists a facility f ∈ F \ D̃ that violates the
condition above, we add it to D̃.



Finally, at the end of this greedy process we remove from
D̃ all facilities that do not serve any client, that is, we remove
all facilities f ∈ D̃ such that for every c ∈ C we have
dist(c, D̃) < dist(c, f). Note that this step does not increase
the cost of D̃ and does not break property (22). We now start
analysing the structure of D̃.

We start by verifying that D̃ is actually an O(ε−1)-
approximate solution in the original instance.

Lemma 2. We have cost(D̃) 6 αε−1 · OPT.

PROOF. Recalling that D is an optimum solution in I , we
have that

cost(D; Ĩ) 6 cost(D) = OPT.

On the other hand, D̃ is an α-approximate solution in Ĩ , hence

cost(D̃; Ĩ) 6 α · cost(D; Ĩ)

Finally, as observed before we have

ε · cost(D̃) 6 cost(D̃; Ĩ).

Combining the above three inequalities yields the claim. �

Let R ⊆ F be a nonempty set of facilities. For a facility
f ∈ R, the R-cluster of f , denoted cluster(f,R), is the set of
all clients that are served by f in the solution R; that is:

cluster(f,R) = {c ∈ C : dist(c, f) = min
g∈R

dist(c, g)}.

Note that since distances between pairs of vertices in G are
pairwise different, the R-clusters are pairwise disjoint. In the
sequel we will most often work with D̃-clusters, hence we use
shorthands: a cluster means a D̃-cluster and for f ∈ D̃ we
denote cluster(f) = cluster(f, D̃).

The next lemma intuitively says the following: for any subset
of clients, its connection cost in D̃ is not much larger than its
connection cost D.

Lemma 3. For any subset of clients S ⊆ C we have

conn(S, D̃) 6 conn(S,D) + ε · open(D).

PROOF. For any f ∈ D, let

σ(f) = conn(cluster(f,D) ∩ S,D) + ε · open(f).

Observe that the right hand side of the inequality is equal to∑
f∈D σ(f).
Consider modifying the solution D̃ by opening facility f ,

for any f ∈ D, and applying (22). If in solution D̃ ∪ {f} we
consider directing all clients of cluster(f,D) ∩ S to f and all
other clients as in D̃, then

0 6 cost(D̃ ∪ {f}; Ĩ)− cost(D̃; Ĩ)

6 conn(cluster(f,D) ∩ S,D)

−conn(cluster(f,D) ∩ S, D̃) + ε · open(f)

= σ(f)− conn(cluster(f,D) ∩ S, D̃).

By summing the above inequality through all f ∈ D, we infer
that

0 6
∑
f∈D

σ(f)−
∑
f∈D

conn(cluster(f,D) ∩ S, D̃)

= (conn(S,D) + ε · open(D))− conn(S, D̃).

This establishes the claim. �

For any f ∈ D̃, we define the average cost of f as

avgcost(f) =
open(f) +

∑
c∈cluster(f) dist(c, f)

|cluster(f)|
.

Note that in this definition we use the original opening costs of
facilities, not the scaled-down ones. Recall here that cluster(f)
is nonempty for each f ∈ D̃ as we removed from D̃ all facilites
that do not serve any clients. Moreover, we have

cost(D̃) =
∑
f∈D̃

|cluster(f)| · avgcost(f). (3)

Next, we prove that for every cluster cluster(f) for any
f ∈ D̃, there is always a facility of the optimum solution D
that is not far from f , measured in terms of avgcost(f). We
first state the lemma in a very abstract form so that we can
apply it later in various settings.

Lemma 4. Let I = (G,C, F, open) be a NON-UNIFORM
FACILITY LOCATION instance, R ⊆ F a nonempty set of
facilities, K ⊆ C a nonempty set of clients, and let f /∈ R be
a facility. Assume that

dist(f,R) >
2

|K|
·

(
open(f) +

∑
c∈K

dist(c, f)

)
.

Then cost(R; I) > cost(R ∪ {f}; I).

PROOF. Let

a :=
open(f) +

∑
c∈K dist(c, f)

|K|
.

Observe that every client c ∈ cluster(f) has to be served in
solution R by a facility that is at distance more than 2a from
f , implying by triangle inequality that

min
g∈R

dist(c, g) > 2a− dist(c, f).

Take solution R∪ {f}. By considering directing all the clients
of K to f , and all other clients as in R, we observe that

cost(R ∪ {f})− cost(R)

6
∑
c∈K

dist(c, f)−
∑
c∈K

min
g∈R

dist(c, g) + open(f)

<

(
2
∑
c∈K

dist(c, f) + open(f)

)
− 2|K| · a

6 2|K| · a− 2|K| · a = 0.

This implies that cost(R ∪ {f}) < cost(R) as desired. �



Corollary 5. For every f ∈ D̃ there exists g ∈ D such that
dist(f, g) 6 2 · avgcost(f).

PROOF. The claim is obvious for f ∈ D. Otherwise, we apply
Lemma 44 to the instance I , optimum solution D, the facility
f , and K = cluster(f). The optimality of D implies then that
dist(f,D) 6 2 · avgcost(f). �

Concentrating the clusters: We now analyze every cluster
cluster(f) for f ∈ D̃ and show that, at the cost of changing
the value of OPT only slightly, we may assume that all clients
of cluster(f) have connection cost w.r.t. D̃ not differing much
from avgcost(f). More precisely, we would like to get rid
of clients that are far and close according to the following
definition: for f ∈ D̃, let

Far(f) = {c ∈ cluster(f) : dist(c, f) > ε−2 · avgcost(f)},
Close(f) = {c ∈ cluster(f) : dist(c, f) < ε2 · avgcost(f)}.

Moreover, we define

Far =
⋃
f∈D̃

Far(f) and Close =
⋃
f∈D̃

Close(f).

Let

Ψ = conn(Far, D̃).

For each f ∈ D̃ let us pick any vertex x(f) of G that is at
distance exactly ε2 ·avgcost(f) from f (subdividing some edge,
if a priori there is none). Construct C ′ from C by performing
the following operation for each f ∈ D̃: move all clients of
Far(f) ∪ Close(f) to x(f), thus placing |Far(f)|+ |Close(f)|
clients at x(f). Similarly, for f ∈ D̃ we define cluster′(f)
to be the image of cluster(f) under this operation, i.e. with
clients from Far(f) ∪ Close(f) replaced as above.

Let

I ′ = (G,C ′, F, open);

that is, I ′ is constructed from I by replacing the client set
with C ′. Let OPT′ be the minimum cost of a solution in the
instance I ′. We now verify that in order to find near-optimum
solution to I , it suffices to find a near-optimum solution to I ′.

Lemma 6. We have

OPT′ 6 (1 + 6αε)OPT−Ψ

Moreover, for every R ⊆ F , we have

cost(R; I) 6 cost(R; I ′) + Ψ + 3αε · OPT.

PROOF. For the first inequality, note that we have

conn(C ′, D)

= conn(C,D)

+
∑
f∈D̃

∑
c∈Far(f)

(dist(x(f), D)− dist(c,D))

+
∑
f∈D̃

∑
c∈Close(f)

(dist(x(f), D)− dist(c,D))

6 conn(C,D)

+
∑
f∈D̃

∑
c∈Far(f)

(dist(x(f), D)− dist(c,D))

+
∑
f∈D̃

∑
c∈Close(f)

dist(c, x(f)). (4)

Let us analyze the last summand first. Observe that for each
f ∈ D̃ and c ∈ Close(f), we have

dist(c, x(f)) 6 dist(c, f) + dist(f, x(f)) 6 2ε2 · avgcost(f).

Thus, using (33) we have∑
f∈D̃

∑
c∈Close(f)

dist(c, x(f))

6
∑
f∈D̃

|Close(f)| · 2ε2 · avgcost(f)

6 2ε2 ·
∑
f∈D̃

|cluster(f)| · avgcost(f)

= 2ε2 · cost(D̃) 6 2αε · OPT. (5)

We are left with analyzing the middle summand of the right
hand side of (44). Observe that we have∑

f∈D̃

∑
c∈Far(f)

dist(c,D) = conn(Far, D).

By Lemma 33 applied to S = Far, we infer that

Ψ = conn(Far, D̃) 6 conn(Far, D) + ε · OPT,

and thus we have∑
f∈D̃

∑
c∈Far(f)

dist(c,D) > Ψ− ε · OPT. (6)

For every f ∈ D̃, let g(f) be the facility of D that is closest
to f . By Corollary 55 we have that

dist(f, g(f)) 6 2 · avgcost(f).

Now, for every c ∈ Far(f) we have

3 · dist(c, f) > 3ε−2 · avgcost(f)

> ε−2 · dist(f, g(f)) + ε−4 · dist(f, x(f))

> ε−2 · dist(x(f), g(f))

> ε−2 · dist(x(f), D),



where in the second step we used dist(f, x(f)) = ε2 ·
avgcost(f). Summing this inequality through all f ∈ D̃ and
c ∈ Far(f) we obtain that

conn(Far, D̃) =
∑
f∈D̃

∑
c∈Far(f)

dist(c, f)

>
ε−2

3

∑
f∈D̃

∑
c∈Far(f)

dist(x(f), D),

which means that ∑
f∈D̃

∑
c∈Far(f)

dist(x(f), D)

6 3ε2 · conn(Far, D̃)

6 3ε2 · cost(D̃) 6 3αε · OPT. (7)

By combining (44), (55), (66), and (77) we infer that

OPT′ 6 cost(D; I ′)

= open(D) + conn(C ′, D)

6 open(D) + conn(C,D)

+2αε · OPT−Ψ + ε · OPT + 3αε · OPT
6 cost(D; I) + 6αε · OPT−Ψ

= (1 + 6αε)OPT−Ψ.

This establishes the first inequality.
For the second inequality, again by triangle inequality we

have

conn(C,R) 6 conn(C ′, R) +
∑
f∈D̃

∑
c∈Far(f)

dist(c, x(f))

+
∑
f∈D̃

∑
c∈Close(f)

dist(c, x(f)).

The last summand has already been estimated in (55), so we
are left with analyzing the middle summand. Observe that for
each f ∈ D̃ and c ∈ Far(f), we have

dist(c, x(f)) 6 dist(c, f) + dist(f, x(f))

6 (1 + ε4) · dist(c, f),

where the last inequality follows from dist(c, f) > ε−2 ·
avgcost(f) and dist(f, x(f)) = ε2 · avgcost(f). Thus, we
have ∑

f∈D̃

∑
c∈Far(f)

dist(c, x(f))

6 (1 + ε4) ·
∑
f∈D̃

∑
c∈Far(f)

dist(c, f)

= (1 + ε4) · conn(Far, D̃)

= Ψ + ε4 · conn(Far, D̃)

6 Ψ + ε4 · cost(D̃)

6 Ψ + αε3 · OPT. (8)

By combining (8), (55), and (88) we obtain that

cost(R; I) = open(R) + conn(C,R)

6 open(R) + conn(C ′, R)

+Ψ + 3αε · OPT
= cost(R; I ′) + Ψ + 3αε · OPT.

This concludes the proof. �

Corollary 7. For any R ⊆ F , if

cost(R; I ′) 6 (1 + γ)OPT′ + δ,

for some γ, δ > 0, then

cost(R; I) 6 (1 + 2γ + 8αε)OPT + δ.

PROOF. First, note that

OPT′ 6 (1 + 5αε)OPT−Ψ 6 2 · OPT.

Then we have

cost(R; I) 6 cost(R; I ′) + Ψ + 3αε · OPT
6 (1 + γ)OPT′ + δ + Ψ + 3αε · OPT
6 OPT′ + 2γOPT + δ + Ψ + 3αε · OPT
6 (1 + 5αε)OPT−Ψ + 2γOPT + δ

+Ψ + 3αε · OPT
= (1 + 2γ + 8αε)OPT + δ,

as claimed. �

Thus, by Corollary 77 we may focus on finding a near-
optimum solution to instance I ′ instead of I . The instance
I ′, however, has the following concentration property that will
be useful later on: for every f ∈ D̃ and c ∈ cluster′(f), we
have

ε2 · avgcost(f) 6 dist(c, f) 6 ε−2 · avgcost(f).

Finally, we check that solution D̃ is still not too expensive
in the instance I ′.

Lemma 8. For every f ∈ D̃ it holds that

open(f) +
∑
c∈cluster′(f) dist(c, f)

6 (1 + ε2) · |cluster(f)| · avgcost(f). (9)

In total, we have

open(D̃) +
∑
f∈D̃

∑
c∈cluster′(f)

dist(c, f) 6 2αε−1 · OPT. (10)

PROOF. Recall that

|cluster(f)| · avgcost(f) = open(f) +
∑

c∈cluster(f)

dist(c, f).

Thus, to show (99), it suffices to prove that∑
c∈Far(f)∪Close(f)

(dist(x(f), f)− dist(c, f)))

6 ε2|cluster(f)| · avgcost(f).



For each c ∈ Far(f), we have dist(x(f), f) = ε2 · avgcost(f)
and dist(c, f) > ε−2 · avgcost(f), hence dist(x(f), f) −
dist(c, f) 6 0. On the other hand dist(x(f), f) =
ε2 · avgcost(f), hence for each c ∈ Close(f) we have
dist(x(f), f)− dist(c, f) 6 ε2 · avgcost(f). This proves (99).

By summing (99) over all f ∈ D̃ we obtain that

open(D̃) +
∑
f∈D̃

∑
c∈cluster′(f)

dist(c, f)

6 (1 + ε2) · cost(D̃)

6 2αε−1 · OPT,

as claimed. �

Note that in Lemma 88, the left hand side of (1010) is lower
bounded by cost(D̃, I ′), but is not necessarily equal to it, as
the clients of each cluster cluster′(f) are assigned to f , which
may cease to be the closest facility after moving a client.

Layering on magnitudes of the average cost: We now work
with the instance I ′. The goal is to use the obtained properties
of clusters to break the instance into several independent ones
at the cost of additionally paying εOPT, so that each of the
instances concerns only clients from clusters with average cost
of the same magnitude. This is because such instances can be
solved efficiently using the following crucial lemma, whose
proof will be given later.

Lemma 9. Suppose we are given an instance J =
(G,C, F, open) of NON-UNIFORM FACILITY LOCATION where
G is planar. Moreover, we are provided a real r > 1 and a
set of facilities D◦ ⊆ F such that the clients of C can be
partitioned into nonempty clusters (cluster(f))f∈D◦ so that
the following properties hold for each f ∈ D◦:
• 1 6 dist(c, f) 6 r for each c ∈ cluster(f); and
• open(f) +

∑
c∈cluster(f) dist(c, f) 6 |cluster(f)| · r.

Then, given ε > 0, one can in time nO(ε−2r) compute a solution
to J with cost at most (1 + ε)OPT(J) + ε ·M , where M =
open(D◦) +

∑
f∈D◦

∑
c∈cluster(f) dist(c, f).

Breaking into separate instances that can be treated using
Lemma 99 will be done using layering on the levels of magnitude
of average costs of facilities from D̃. While the layering
itself will be quite standard, the proof of the separation
property between the instances will be quite non-trivial and
will require the fine understanding of properties of D̃ that we
have developed.

Let us partition the facilities of D̃ into layers (Li)i∈Z, where
Li comprises facilities f ∈ D̃ satisfying

ε4i > avgcost(f) > ε4i+4.

For i ∈ Z, let

`i =
∑
f∈Li

open(f) +
∑

c∈cluster′(f)

dist(c, f)

 .

By Lemma 88, we have∑
i∈Z

`i 6 2αε−1 · OPT. (11)

Let q = dε−2e. Pick a ∈ {0, 1, . . . , q − 1} such that∑
i : i≡a mod q `i is minimum. Then by (88) and the fact that

q > ε−2 we infer that∑
i : i≡a mod q

`i 6 ε
2 · cost(D̃; I ′) 6 2αε · OPT. (12)

Now, define
S =

⋃
i : i≡a mod q

Li

and
Wj =

⋃
jq+a<i<(j+1)q+a

Li for j ∈ Z.

Set Wj will be called the j-ring. It follows that S and (Wj)j∈Z
form a partition of D̃.

Intuitively, the idea is to construct a near optimum solution by
buying all the facilities of S and using them to serve all clients
served by them in D̃ (the cost of this is bounded by 2αε ·OPT
by (1212)), and constructing an instance for each nonempty
ring Wj that is subsequently approximated using Lemma 99.
However, we need to prepare those instances carefully so that
they can be solved separately.

To this end, we heavily rely on Lemma 44 that more or less
says that one needs to open a facility within 2 · avgcost(f) of
f for every f ∈ D̃. This, together with the exponential scale
of average costs, implies that while focusing on the ring Wj

we do not need to understand how the solution to rings Wj′

for j′ > j looks like (namely, what are the precise locations
of the facilities); instead, we just put one zero-cost facility at
every f ∈ Wj′ that mimicks the closest opened facility, this
will be satisfying up to losing a factor (1 + ε).

Let us now proceed with formal details. Denote

CS =
⋃
f∈S

cluster′(f).

For every j ∈ Z we create the following instance Jj =
(G,Cj , Fj , openj):
• The graph G is the graph from the original instance;
• Cj =

⋃
f∈Wj

cluster′(f), that is, all clients in clusters of
facilities from the ring Wj ;

• Fj = F are all facilities from the input;
• openj(f) = 0 for every f ∈ Wj′ with j′ > j and every
f ∈ S, and openj(f) = open(f) otherwise.

Note that the sets (Cj)j∈Z are pairwise disjoint and together
with CS form a partition C. For every j ∈ Z let Dfree

j =
S∪
⋃
j′>jWj′ be the set of facilities f with openj(f) redefined

to 0 in the definition of Jj .
Observe also that if Wj = ∅, then Cj = ∅: the instance is

trivial and it admits the empty set as the optimum solution.
The algorithm does not really need to construct these instances
(and thus in fact constructs at most n instances Jj), but we
prefer to define them for the sake of clarity of notation. We
henceforth call the instances Jj trivial if Wj = ∅ and nontrivial
otherwise.

We now verify that it suffices to solve each instance Jj
separately. This is done through two lemmas. In the first one,



we show how to combine solutions to the instances Jj into a
solution to the instance I ′.

Lemma 10. Assume we are given sets Dj ⊆ Fj for every
nontrival instance Jj . Then one can construct in polynomial
time a set R ⊆ F such that

cost(R; I ′) 6
∑
j

cost(Dj ; Jj) + 10αε · OPT. (13)

PROOF. For every nontrivial instance Jj and for every f ∈
Fj \Dj we check whether opening f would not increase the
cost of Dj in Jj ; if this is the case, we add f to Dj . We
also add Dfree

j to Dj as it does not increase the cost of Dj .
Henceforth we assume that for every nontrivial instance Jj
and every f ∈ Fj \Dj it holds that

cost(Dj ∪ {f}; Jj) > cost(Dj ; Jj). (14)

We define Dj = Dfree
j for every trivial instance Jj . Note

that property (1414) also holds for the trivial instances. Let
D′j = Dj \Dfree

j for every j ∈ Z; note that D′j = ∅ for trivial
Jj . Let

R := S ∪
⋃
j∈Z

D′j .

We claim that R satisfies the requirements of the lemma; it is
clearly computable in polynomial time as D′j = ∅ for trivial
Jj . Note that Dj \D′j = Dfree

j for every j ∈ Z.
For a facility f ∈ Dj , let cluster(f,Dj ; Jj) ⊆ Cj be the

set of clients served by f in the solution Dj to Jj ; that is,
cluster(f,Dj ; Jj) is the set of these c ∈ Cj for which f is the
closest facility from Dj . Consider redirecting, in the solution
R to the instance I ′, all clients from cluster′(f) to f , for every
f ∈ S ⊆ R. Then we have:

cost(R; I ′) 6

open(S) +
∑
f∈S

∑
c∈cluster′(f)

dist(c, f)


+

(
open

⋃
j∈Z

D′j


+
∑
j∈Z

∑
f∈D′j

∑
c∈cluster(f,Dj ;Jj)

dist(c,R)

)

+

∑
j∈Z

∑
f∈Dfree

j

∑
c∈cluster(f,Dj ;Jj)

dist(c,R)

 .

We bound the three summands in the inequality above sepa-
ratedly. By (1212), the first summand is bounded by 2αεOPT.

Since D′j ⊆ R ∩Dj for every j ∈ Z, we have for the second
summand:

open

⋃
j∈Z

D′j

+
∑
j∈Z

∑
f∈D′j

∑
c∈cluster(f,Dj ;Jj)

dist(c,R)

6
∑
j∈Z

open(Dj) +
∑
f∈D′j

∑
c∈cluster(f,Dj ;Jj)

dist(c, f)


=
∑
j∈Z

(
open(Dj)

+ conn

 ⋃
f∈D′j

cluster(f,Dj ; Jj), Dj ; Jj

).
We now estimate the third summand. Consider a nontrivial
instance Jj and a facility f ∈Wj . Recall that cluster′(f) ⊆ Cj .
By applying Lemma 44 to the instance Jj , solution Dj , facility
f , and set K = cluster′(f) we infer that (1414) ensures that
there exists g ∈ Dj with

dist(f, g) 6 2 ·
open(f) +

∑
c∈cluster′(f) dist(c, f)

|cluster′(f)|
.

Plugging now the bound of Lemma 88, we obtain

dist(f,Dj) 6 2(1 + ε2) · avgcost(f)

6 4 · avgcost(f)

6 4ε4(jq+a+1). (15)

We now observe the following.

Claim 1. For every facility f ∈ Dj , we have

dist(f,R) 6 4

∞∑
j′=j+1

ε4(j′q+a+1).

PROOF. Since all but a finite number of Dj-s are empty, we
can proceed by induction on j, assuming the claim holds for
all j′ > j. Take any f ∈ Dj . If f ∈ R then dist(f,R) = 0
and we are done. Otherwise, f ∈ Dj \ R ⊆

⋃
j′>j Dj′ , so

f ∈ Dj′ for some j′ > j. By (1515), there exists g ∈ Dj′ such
that

dist(f, g) 6 4ε4(j′q+a+1).

By induction assumption for g, we have

dist(g,R) 6 4

∞∑
j′′=j′+1

ε4(j′′q+a+1).

Hence, we have

dist(f,R) 6 dist(f, g) + dist(g,R)

6 4ε4(j′q+a+1) + 4

∞∑
j′′=j′+1

ε4(j′′q+a+1)

6 4

∞∑
j′=j+1

ε4(j′q+a+1),



as required. y

By Claim 11, for every f ∈ Dfree
j and c ∈ cluster(f,Dj ; Jj)

with c ∈ cluster′(fc) for some fc ∈Wj we have the following:

dist(c,R) 6 dist(c, f) + dist(f,R)

6 dist(c, f) +

∞∑
j′=j+1

4ε4(j′q+a+1)

6 dist(c, f) + ε4((j+1)q+a+1) · 4

1− ε4q

6 dist(c, f) + 8ε4 · avgcost(fc).

By summing the above bound through all j ∈ Z and f ∈ Dfree
j

we obtain ∑
j∈Z

∑
f∈Dfree

j

∑
c∈cluster(f,Dj ;Jj)

dist(c,R)

6
∑
j∈Z

conn

 ⋃
f∈Dfree

j

cluster(f,Dj ; Jj), Dj ; Jj


+8ε4 · cost(D̃).

Since cost(D̃) 6 αε−1 · OPT, we can combine the obtained
bounds as follows:

cost(R; I ′)

6 2αεOPT

+
∑
j∈Z

(
open(Dj)

+conn

 ⋃
f∈D′j

cluster(f,Dj ; Jj), Dj ; Jj

)

+
∑
j∈Z

conn

 ⋃
f∈Dfree

j

cluster(f,Dj ; Jj), Dj ; Jj


+8αε3OPT

=
∑
j

cost(Dj ; Jj) + 2αεOPT + 8αε3OPT

6
∑
j

cost(Dj ; Jj) + 10αεOPT.

This concludes the proof. �

The second lemma shows that optima in instances Jj almost
partition the optimum in I .

Lemma 11. For j ∈ Z, let OPTj be the cost of the optimum
solution of Jj . Then∑

j∈Z
OPTj 6 (1 + 9αε) · OPT.

PROOF. Let D′ be an optimum solution to I ′. For every f ∈ D′
let j(f) be the maximum value of j such that there exists
g ∈ Wj with dist(f, g) 6 3ε−2 · avgcost(g). If no such j

exists, we set j(f) to be the minimum value of j for which
Jj is nontrivial. For every j ∈ Z we define

D′j = {f ∈ D′ | j(f) = j} and Dj = D′j ∪Dfree
j ;

note that D′j = ∅ for trivial Jj . Our goal is to estimate∑
j∈Z cost(Dj ; Jj) by cost(D′, I ′) plus some terms of the

order of ε · OPT. First, it is immediate from the definition
that open(D′) =

∑
j∈Z openj(Dj). Clearly, for trivial Jj we

have Dj = Dfree
j and cost(Dj ; Jj) = 0. Let Jj be nontrivial.

Consider a client c ∈ Cj ; by the definition of Jj , there exists
f0 ∈Wj with c ∈ cluster′(f0).

Let f ∈ D′ be the facility that serves c in the solution D′,
that is, dist(c, f) = dist(c,D′). We consider cases depending
on the relation of j(f) and j.

Case 1: j(f) > j. By the definition of j(f), there exists
g ∈ Wf(j) ⊆ Dfree

j with dist(f, g) 6 3ε−2 · avgcost(g) 6
3ε2 · avgcost(f0). Therefore

dist(c,Dj) 6 dist(c, g)

6 dist(c, f) + 3ε2 · avgcost(f0)

= dist(c,D′) + 3ε2 · avgcost(f0).

Case 2: j(f) = j. Here f ∈ Dj and thus

dist(c,Dj) 6 dist(c, f) = dist(c,D′).

Case 3: j(f) < j. Supposing that f0 /∈ D′, Lemma 44 applied
to the (optimal) solution D′ in I ′ with facility f0 and K =
cluster′(f0) yields that there exists g0 ∈ D′ with

dist(f0, g0) 6 2 ·
open(f0) +

∑
c∈cluster′(f0) dist(c, f0)

|cluster′(f0)|
6 2(1 + ε2) · avgcost(f0) 6 4 · avgcost(f0).

Here, the penultimate inequality follows from Lemma 88. If
f0 ∈ D′, then we can take g0 = f0 and the above inequality
also holds.

By the definition of j(f) we have that dist(f, f0) > 3ε−2 ·
avgcost(f0). On the other hand, dist(c, f0) 6 ε−2 ·avgcost(f0)
while dist(f0, g0) 6 4 ·avgcost(f0) 6 ε−2 ·avgcost(f0). Since
g0 ∈ D′, we infer that f is not the closest to c facility of D′,
a contradiction. We infer that this case is impossible.

We conclude that in any case, we have

dist(c,Dj) 6 dist(c,D′) + 3ε2 · avgcost(f0).

By summing this bound through all the clients and adding
opening costs to both sides, we obtain∑

j∈Z
cost(Dj ; Jj) 6 cost(D′; I ′) + 3ε2 · cost(D̃)

6 OPT′ + 3αε · OPT
6 (1 + 9αε)OPT,

where in the last inequality we use Lemma 66. This finishes
the proof of the lemma. �

We conclude this section with the observation that it
remains to prove Lemma 99 in order to show a polynomial-
time approximation scheme for NON-UNIFORM FACILITY



LOCATION in planar graphs. After initial preprocessing of the
input instance I , Corollary 77 asserts that it suffices to find a
(1 +O(ε))-approximate solution to I ′.

To this end, we break I ′ into instances (Jj)j∈Z. For every
nontrivial Jj , we scale all the edge lengths and opening costs
of Jj by a factor of ε−(4(jq+q+a)+2) and define D◦ = Wj

and cluster(f) := cluster′(f) for every f ∈ D◦. Note that
(cluster(f))f∈D◦ partitions Cj . Let

r = 2ε−4q 6 2ε−4ε−2

.

Then, since for every f ∈Wj we have

ε4(jq+a+1) > avgcost(f) > ε4(jq+q+a) (16)

and for every c ∈ cluster′(f) it holds that

ε2 · avgcost(f) 6 dist(c, f) 6 ε−2 · avgcost(f),

we infer that after scaling the distances, 1 6 dist(c, f) 6 r/2
for every f ∈ Wj and c ∈ cluster′(f). Furthermore, (1616) to-
gether with Lemma 88 imply the second condition of Lemma 99.

Consequently, the algorithm of Lemma 99 applied to Jj
prepared as above with accuracy parameter ε2 (instead of ε)
runs in time n2O(ε−2 log(1/ε))

and returns a solution Dj of cost
(after scaling back again all the edge weights and opening
costs) satisfying

cost(Dj ; Jj) 6 (1 + ε2)OPTj + ε2 ·Mj ,

where

Mj = open(Wj) +
∑
f∈Wj

∑
c∈cluster′(f)

dist(c, f).

Observe that ∑
j∈Z

Mj 6 cost(D̃) 6 2αε−1OPT.

Thus Lemma 1010 allows us to combine the solutions Dj into a
solution R to I ′ of cost satisfying:

cost(R; I ′) 6 (1 + ε2)
∑
j∈Z

OPTj + 12αε · OPT.

By Lemma 1111, this value is at most

(1 + ε2)OPT′ + 18αε · OPT.

Finally, we may apply Corollary 77 to conclude that

cost(R; I) 6 (1 + 2ε2 + 8αε)OPT + 18αε · OPT
6 (1 + 28αε) · OPT,

as required. Consequently, it remains to prove Lemma 99.

III. DYNAMIC PROGRAMMING ALGORITHM

A. Overview

Before we proceed to the formal proof of Lemma 99, we give
a short overview. The approach is based on a rather standard
layering argument plus portal-based Divide&Conquer. While
the formal reasoning is quite lengthy due to a number of
technical details that require attention, we hope that presenting
an intuitive description of consecutive steps will help the reader
with guiding through the proof.

Suppose D is an optimum solution to instance J . The first
observation is that D enjoys a similar proximity property as
expressed in Lemma 44. Namely, every client c ∈ C is at
distance at most 3r from some facility of D. The argument is
essentially the same: if all clients from some cluster cluster(f)
for f ∈ D◦ had connection costs larger than r in the solution
D, one could improve D by opening facility f and rediricting
all clients from cluster(f) to f . Otherwise, some client from
cluster(f) is within distance at most r from D, which implies
that all of them are at distance at most 3r.

This proximity property allows us to apply standard layering.
We fix a vertex s and classify facilities from D◦ of the
graph into layers (D◦i )i∈N of width 8r according to distances
from s: layer D◦i comprises facilities f ∈ D◦ satisfying
i · 8r 6 dist(s, f) < (i + 1) · 8r. With every facility
f ∈ D◦ we can associate its contribution to M , equal to
open(f) +

∑
c∈cluster(f) dist(c, f). Now, denoting q = dε−1e,

there exists a ∈ {0, 1, . . . , q−1} such that the total contribution
of facilities from layers D◦i with i ≡ a mod q is at most
εM . Hence, by paying cost εM we may open these facilities
and direct all clients from their clusters to them. Now it
is easy to see that we have a separation property: instance
J can be decomposed into instances (Jj)j∈N, where Jj
concerns connecting all clients from clusters of facilities of⋃
jq+a<i<(j+1)q+aD

◦
i to facilities within distance between

(jq+a) ·8r−4r and ((j+1)q+a) ·8r−4r from s, which can
be (approximately) solved separately. This is because in the
optimum solution, no client-facility path used for connection
crosses any of the entirely bought layers due to having length
at most 3r.

Let us focus on one instance Jj . We may contract all vertices
at distance less than (jq + a) · 8r − 8r onto s and remove all
vertices at distance more than ((j + 1)q + a) · 8r, as these
vertices anyway will not participate in any shortest path used
by an optimum solution. Thus, we essentially achieve a small
radius property in Jj : one may assume that all vertices are at
distance at most 8qr = O(ε−1r) from s.

The idea is to compute a near-optimum solution to Jj
using Divide&Conquer on balanced separators, presented as
dynamic programming. Using standard separation properties
of planar graphs one can show that the graph (or rather its
plane embedding) admits a hierarchical decomposition into
regions so that the decomposition has depth at most log n and
every region is boundaried by a union of at most 6 shortest
paths, all with one endpoint in s. Thus, each of these paths
has length O(ε−1r). We apply dynamic programming over



this decomposition, where we put portals on the boudaries of
regions to limit the number of states. That is, along each path
we put portals spaced at δ, for some parameter δ > 0, and we
allow paths connecting clients with facilities to cross region
boundaries only through portals. Since the decomposition has
depth log n, each connection path in the optimum solution can
be “snapped to portals” to conform with this requirement by
using at most 2 log n snappings, incurring a total additional cost
of 2δ · log n. Therefore, we put δ = ε/ log n so that this error is
bounded by O(ε), which summed through all clients yields an
O(εM) error term in total. Thus, the total number of portals on
the boundary of each region is O(δ−1ε−1r) = O(ε−2r log n).

In the dynamic programming state associated with a region
R, we are concerned about opening facilities within R to
serve all clients in R. However, on the boundary of R we
have O(ε−2r log n) portals that carry information about the
assumed interaction between the parts of the overall solution
within R and outside of R. For every portal π, this information
consists of two pieces:
• request req(π) that gives a hard request on the sought

solution within R: there has to be a facility opened at
distance at most req(π) from π;

• prediction pred(π) that gives a possibility of connecting
clients to portals: every client c can be connected to π at
connection cost dist(c, π) + pred(π).

Intuitively, predictions represent “virtual” opened facilities
residing outside of R, which can be accessed at an additional
cost given by pred(π), while by satisfying requests we make
sure that predictions in other regions can be fulfilled. Since all
client-facility paths in the optimum solution are of length at
most 3r, we may assume that all requests and predictions in all
considered states are bounded by 3r. At the cost of an additional
error term O(εM) we can also assume that requests and
predictions are rounded to integer multiples of δ. Thus, for every
portal π we can limit ourselves to O(δ−1r) = O(ε−2r log n)
possibilities for req(π) and same for pred(π).

Let us estimate the number of states constructed so far. For
each of O(ε−2 log n) portals on the boundary of R we have
O(ε−2r log n) possibilities for req(π) and for pred(π), yielding
a total number of states being (ε−2r log n)O(ε−2r logn) =
npoly(1/ε)·r·log logn, which is quasi-polynomial. As transitions
in this dynamic programming can be implemented efficiently,
this already yields a QPTAS, and we are left with reducing
the number of states to polynomial.

The final trick is to take a closer look at what we store
in the states. Since req(·) stores the requested distance to the
closest facility opened within R, it is safe to assume that req(·)
(before rounding to integer multiples of δ) will be 1-Lipschitz
in the following sense: for any two portals π, ρ, we have

|req(π)− req(ρ)| 6 dist(π, ρ).

An analogous reasoning can be applied to predictions, so we
can assume that pred(·) is 1-Lipschitz as well. Now consider
any of the 6 shortest paths comprising the boundary of R, say
P . On this path we put portals spaced at δ, say π1, . . . , π` for

` 6 O(ε−2r log n) in the order on P . As argued, after rounding
we have O(ε−2 log n) possibilities for req(π1), but observe that
once (rounded) req(πi−1) is chosen, there are only at most 5
possibilites for req(πi): it must be an integer multiple of δ that
differs from req(πi−1) by at most 2δ, due to dist(πi−1, πi) = δ.
Hence, the total number of choices for the values of requests
along P is bounded byO(ε−2 log n)·5O(ε−2r logn) = nO(ε−2r).
Same argument applies to predictions, and as the boundary of
R consists of at most 6 such paths, the total number of states
we need to consider is nO(ε−2r).

B. Proof of Lemma 99

We now proceed with the formal proof of Lemma 99. For the
remainder of this section, let us fix the setting and the notation
from the statement of Lemma 99.

Fix an optimum solution D ⊆ F in the instance J . We first
prove that in fact, every client is not too far from its closest
facility in D.

Lemma 12. For each c ∈ C there exists g ∈ D such that
dist(c, g) 6 3r.

PROOF. Let f ∈ D◦ be such that c ∈ cluster(f); then
dist(c, f) 6 r. We shall prove that there exists some client
d ∈ cluster(f) and facility g ∈ D such that dist(d, g) 6 r.
Indeed, if this is true, then we have dist(c, g) 6 dist(c, f) +
dist(f, d) + dist(d, g) 6 r + r + r = 3r, as required.

Suppose otherwise: for each d ∈ cluster(f), the distance
from d to the closest facility from D is larger than r. As
cluster(f) is nonempty, the total connection cost incurred by
clients from cluster(f) in solution D can be lower bounded
as follows: ∑

c∈cluster(f)

dist(c,D)

> |cluster(f)| · r > open(f) +
∑

c∈cluster(f)

dist(c, f).

This means that the solution D ∪ {f} has a strictly smaller
cost than D, which contradicts the optimality of D. �

Let G′ be the subgraph of G induced by all vertices whose
distance from D◦ is at most 4r. Observe that all clients of
C are placed at vertices of G′. Lemma 1212 now immediately
implies the following.

Lemma 13. It holds that D ⊆ V (G′) and for every c ∈ C we
have distG′(c,D) = distG(c,D).

PROOF. For the first assertion, by the optimality of D, for every
g ∈ D there exists some client c ∈ C such that g is the facility
of D closest to c. By Lemma 1212 we have distG(c, g) 6 3r. If
now f ∈ D◦ is such that c ∈ cluster(f), then distG(c, f) 6 r.
Hence distG(f, g) 6 r + 3r = 4r, so g ∈ V (G′).

For the second assertion, observe that by Lemma 1212, for
every client c ∈ C, the shortest path from c to a facility of D
traverses only vertices that are at distance at most 4r from the
facility f ∈ D◦ satisfying c ∈ cluster′(f). It follows that the
distance from c to D is the same in G as in G′ �



Let F ′ consist of all the facilities that are placed at vertices of
G′, and let J ′ = (G′, C, F ′, open). We observe that Lemma 1212
implies that we can work with instance J ′ instead of J .

Corollary 14. For every R ⊆ F ′, we have cost(R; J ′) >
cost(R; J). Moreover, we have cost(D; J ′) = cost(D; J) and
consequently OPT(J ′) = OPT(J).

PROOF. The first assertion is straightforward, because G′ is
an induced subgraph of G, hence distances between vertices
of G′ are not smaller in G′ than in G. For the second
assertion, observe that by Lemma 1212 we have D ⊆ F ′ and
distG′(c,D) = distG(c,D) for every client c ∈ C, hence the
connection cost of D in J and in J ′ are the same. As the
opening costs are also obviously the same, we conclude that
indeed cost(D; J ′) = cost(D,J). This, together with the first
assertion, immediately entails OPT(J ′) = OPT(J). �

From now on we will assume that the graph G′ is connected.
This can be achieved either by connecting the connected
components using edges of very large (but finite) weight,
or applying the forthcoming reasoning to every connected
component of G′ separately and taking the union of obtained
solutions.

Fix any vertex s and partition the vertices of G′ into layers
(layeri)i∈N as follows: for i ∈ N we set:

layeri = {v ∈ V (G′) : i · 8r 6 dist(u, s) < (i+ 1)8r}.

Let D◦i = D◦ ∩ layeri. Denote q = dε−1e. Since (D◦i )i∈N is a
partition of D◦, it follows that there exists a ∈ {0, 1, . . . , q−1}
such that denoting S =

⋃
i : i≡a mod qD

◦
i , we have

∑
f∈S

open(f) +
∑

c∈cluster(f)

dist(c, f)


6 ε ·

∑
f∈D◦

open(f) +
∑

c∈cluster(f)

dist(c, f)


= ε ·M. (17)

Moreover, obviously such a can be found in polynomial time.
For j ∈ N, define the j-th ring as

Wj =
⋃

jq+a<i<(j+1)q+a

layeri.

For future reference, we note that rings are separated from
each other.

Lemma 15. For any different j, j′ ∈ N and u ∈ Wj and
u′ ∈Wj′ , we have distG′(u, u

′) > 8r.

PROOF. By the definition of Wj and Wj′ and since j 6= j′, we
have |distG′(u, s) − distG′(u

′, s)| > 8r. Then the statement
follows by triangle inequality. �

The idea now is to buy the facilities of S and connect the
clients from CS =

⋃
f∈S cluster(f) to the centers of their

clusters — which incurs cost at most ε ·M by (1717) — and to
construct a separate instance for each ring Wj so that these

instances can be solved independently. We now carefully define
those instances.

Fix j ∈ N and construct graph Hj obtained from G′ in the
following manner:

1) Remove all vertices w of G′ satisfying w ∈
⋃
ι>jq+a Lι.

2) Contract all vertices w of G′ satisfying w ∈⋃
ι<(j−1)q+a Lι onto s; we shall use the name s also

for the vertex obtained as the result of this contraction.
3) For every vertex w that, after the contraction explained

above, becomes a neighbor of s, we assign the edge sw
weight distG′(s, w).

Note that in the second, the set of vertices w contracted onto s
induces a connected subgraph of G′, and thus the contraction
is well-defined and preserves the planarity. We shall identify
vertices of Hj with their origins in G′ in the obvious way.

In essence, graph Hj retains all the relevant information
about distances between vertices of Wj . This is formalized in
the following lemma.

Lemma 16. The following assertions hold for each j ∈ N:
(P1) For every pair of vertices u, v ∈ V (Hj), we have

distHj (u, v) > distG′(u, v).
(P2) For every vertex u ∈ V (Hj), we have distHj

(u, s) =
distG′(u, s).

(P3) For every pair of vertices u, v ∈ V (Hj) satisfying
u ∈ Wj and distG′(u, v) 6 3r, we have distHj

(u, v) =
distG′(u, v).

PROOF. For assertion (P1)(P1), it suffices to observe that every path
in Hj with endpoints u and v can be lifted to a path in G′ of
the same length by substituting any edge incident to s, say sw,
by the shortest path between s and w in G′. For assertion (P2)(P2),
we already know that distHj

(u, s) > distG′(u, s), and to see
that distHj (u, s) 6 distG′(u, s) we may observe that on the
shortest path in G′ from s to u, vertices contracted onto s
form a prefix; this prefix can be then replaced by a single edge
of the same weight. For assertion (P3)(P3), the assumption that
u ∈ Wj implies that in G′, the vertex u is at distance more
than 3r from any vertex that is removed or contracted onto s
in the construction of Hj . Hence, the shortest path from u to
v in G′ survives the construction of Hj intact. �

Fix
L = 8r(q + 1) 6 16ε−1r.

For future reference, we also note the following observation.

Lemma 17. Let Q be a shortest path in H from s to some
vertex u. Then the length of Q− s (i.e. Q with the first vertex
removed) is smaller than L.

PROOF. Let v be the successor of s on the path Q. By the
construction of H we have that u, v ∈

⋃
(j−1)q+a6ι6jq+a Lι

which in particular means that

8r((j − 1)q + a) 6 dist(s, v),dist(s, u) < 8r(jq + a+ 1).

Since v lies on the shortest path from s to u, it follows that
the length of the suffix of Q from v to u (which is Q− s) is



equal to the dist(v, u), which in turn is smaller than 8r(jq +
a+ 1)− 8r((j − 1)q + a) = 8r(q + 1) = L. �

Having defined the graph Hj , we define the facility set Fj
and client set Cj as follows:

Fj = F ′ ∩
⋃

(j−1)q+a6ι6jq+a

Lι

and
Cj =

⋃
f∈D◦∩Wj

cluster(f).

Note that Fj ⊆ V (Hj) and Cj ⊆ V (Hj). Finally, we put

Jj = (Hj , Cj , Fj , open);

that is, the opening costs are inherited from the original instance
J . We now prove that by paying a small cost, we may solve
instances Jj separately.

Lemma 18. We have

OPT(J ′) >
∑
j∈N

OPT(Jj).

Moreover, for any sequence of solutions (Rj)j∈N to instances
(Jj)j∈N, respectively, we have

cost

S ∪ ⋃
j∈N

Rj ; J
′

 6 ε ·M +
∑
j∈N

cost(Rj ; Jj).

PROOF. For each j ∈ N, let Dj be the set consisting of all
facilities f ∈ D with the following property: there exists a
client c ∈ Cj for which f is the closest facility from D.
By Lemmas 1212 and 1313, we have distG′(c,Dj) 6 3r for all
c ∈ Cj , while from the definition of Dj it further follows that
distG′(f, Cj) 6 3r for all f ∈ Dj . Also, every client c ∈ Cj
is at distance at most r from the center of its cluster, which
is a facility of D◦ that resides in Wj . Hence, every facility
f ∈ Dj is at distance at most 4r from Wj . By Lemma 1515
and triangle inequality we now infer that sets (Dj)j∈N are
pairwise disjoint. Moreover, we have Dj ⊆ Fj and thus Dj

can be treated as a solution to the instance Jj Therefore, by
Lemma 1616, assertions (P1)(P1) and (P3)(P3), we have

OPT(J ′) = cost(D; J ′)

= open(D) +
∑
c∈C

distG′(c,D)

=
∑
j∈N

open(Dj) +
∑
c∈Cj

distG′(c,Dj)


=

∑
j∈N

open(Dj) +
∑
c∈Cj

distHj
(c,Dj)


=

∑
j∈N

cost(Dj ; Jj) >
∑
j∈N

OPT(Jj),

completing the proof of the first assertion.

For the second assertion, since CS and (Cj)j∈N form a
partition of C, we have

cost

S ∪ ⋃
j∈N

Rj ; J
′


6 open(S) +

∑
c∈CS

dist(c, S)

+
∑
j∈N

open(Rj) +
∑
c∈Cj

distG′(c,Rj)


6 open(S) +

∑
c∈CS

dist(c, S)

+
∑
j∈N

open(Rj) +
∑
c∈Cj

distHj (c,Rj)


6 ε ·M +

∑
j∈N

cost(Rj ; Jj).

where in the second inequality we use Lemma 1616, asser-
tion (P1)(P1), while in the last inequality we use (1717). �

Hence, from now on we focus on finding a near-optimum
solutions to instances Jj , for each j ∈ N for which Cj 6= ∅, as
such solutions can be combined into a near-optimum solution to
J ′ using Lemma 1818, which is then a near-optimum solution to J
by Corollary 1414. This will be done by dynamic programming.
Fix j ∈ J for which Cj is non-empty. For brevity, in the
following we write H for Hj . Before we proceed, let us observe
that Jj enjoys the same proximity property as J , expressed in
Lemma 1212.

Lemma 19. Suppose Dj is an optimum solution in the in-
stance Jj . Then for each c ∈ Cj there exists g ∈ Dj such that
distH(c, g) 6 3r.

PROOF. Apply the same reasoning as in the proof of
Lemma 1212, noting that all relevant vertices and paths are
completely contained H due to being at distance at most 3r
from Wj . �

Getting a suitable decomposition: Our dynamic program-
ming will work over a suitable decomposition of the graph
H . To define this decomposition, we will need some structural
understanding of H and its embedding.

Recall that we assume that H is embedded in a sphere Σ.
We shall assume that H is triangulated, as we can always
triangulate it using edges of weight +∞. Let L be the set of
faces11 of H . For future reference, we let ξ : V (H)→ L be a
function that assigns to every vertex u of H an arbitrary face
ξ(u) incident to u.

Let S be the spanning tree of shortest paths from s. That is,
if for each v ∈ V (H) by Pv we denote the shortest path from
v to s in H , then S is the union of paths {Pv : v ∈ V (H)}. Let
S? be the spanning subgraph of the dual H? of H consisting

1We use L here instead of usual F in order to avoid using the same letter
as for facility sets.



of edges of H? that are dual to the edges not belonging to S.
It is well-known that S? is then a spanning tree of H?.

Let
A = {(f, g), (g, f) : fg ∈ E(S?)};

that is, for each edge fg of S? we add to A two (oriented)
arcs: (f, g) and (g, f). For an arc a ∈ A, let L(a) ⊆ L denote
the set of those faces of H that are contained in this connected
component of S? with (unoriented) a removed that contains
the head of a. For nonempty B ⊆ A, we denote

L(B) =
⋂
a∈B

L(a),

and we put L(∅) = L by convention. We may now state and
prove the decomposition lemma that we shall need; in the
following, all logarithms are base 2.

Lemma 20. In polynomial time one can compute a rooted tree
T together with a labelling β of nodes of T with subsets of A
such that the following holds:
(T1) T has depth at most log n;
(T2) for each node t of T , we have |β(t)| 6 3;
(T3) if t0 is the root of T , then L(β(t0)) = L;
(T4) for each leaf t of T , we have |L(β(t))| = 1;
(T5) each non-leaf node t of T has at most 7 children, and if

chld(t) denotes the set of children of t, then

L(β(t)) =
⊎

t′∈chld(t)

L(β(t))

and
β(t) ⊆

⋃
t′∈chld(t)

β(t′).

PROOF. A subset X of nodes of S? is connected if it induces
a connected subtree of X . For a subset of nodes X , by ∂X
we denote the set of edges of S? with one endpoint in X and
second outside of X . Let a block be any nonempty, connected
subset of nodes X such that |∂X| 6 3. Note that since H is
triangulated, S? is a tree with maximum degree at most 3, so
every node of T constitutes a single-node block.

We observe the following.

Claim 2. Every block X with |X| > 2 admits a partition into
at most 7 blocks, each of size at most |X|/2.

PROOF. Let Z ⊆ X be the set of all the nodes of X that have a
neighbor (in S?) outside of X . Then |Z| 6 3 and, consequently,
there exists a node x ∈ X such that every connected component
of S?[X] − x contains at most one node of Z. Further, it is
well known that in S?[X] there exists a balanced node: a
node y such that every connected component of S?[X] − y
has at most |X|/2 nodes. Then S?[X] − {x, y} has at most
5 connected components, and it is straightforward to see that
each of them is a block and contains at most |X|/2 nodes.
Hence, as |X| > 2, for the promised partition of X into blocks
we can take the node sets of the connected components of
S?[X]−{x, y}, plus blocks {x} and {y} (or just {x}, in case
x = y). y

We now construct the tree T together with labeling β(·) by
recursively applying Claim 22 as follows. We start with the
block L and, as long as the currently decomposed block X
has size larger than 1, we apply Claim 22 to X and recursively
decompose all the blocks comprising the obtained partition.
Then T is the tree of this recursion and the nodes of T can be
naturally labelled with blocks decomposed in corresponding
calls; thus, the root of T is labelled by L, while the leaves of
T are labelled by single-node blocks. Finally, for every node t
of T , say associated with a block Xt, we set β(t) to consist of
edges of ∂Xt oriented towards endpoints belonging to Xt. It is
straightforward to verify that the obtained pair (T, β) satisfies
all of the required properties. Also, the above reasoning can be
trivially translated into a polynomial-time algorithm computing
(T, β). �

Thus, Lemma 2020 essentially provides a hierarchical decom-
position of the face set of H using separators consisting of
six-tuples of shortest paths originating in s: two per each arc
in β(t). The idea is to put portals on those separators and run a
bottom-up dynamic programming on the tree T that assembles
a near-optimum solution while snapping paths to the portals
along the way. First, however, we need to understand how to
put portals on paths in H .

Portalization: Let X be a set of vertices of H and let
f : X → R ∪ {+∞} be a function. For positive reals d, σ and
reals α 6 β, we shall say that f is
• d-discrete if all its values are integer multiples of d;
• [α, β]-bounded if every its value is either +∞ or belongs

to the interval [α, β]; and
• Lipschitz with slack σ if

|f(u)− f(v)| 6 dist(u, v) + σ

for all u, v ∈ X with f(u), f(v) < +∞.
A function that is d-discrete, [α, β]-bounded, and Lipschitz
with slack σ will be called (d, α, β, σ)-normal.

For portalization of shortest paths we shall use the following
lemma.

Lemma 21. Let P be a shortest path in H with one endpoint
in s and let d ∈ R>0. Then one can find a set Π of at most
(L/d) + 2 vertices on P with the following property: for every
vertex u on P , there exists π ∈ Π such that dist(u, π) 6 d.
Moreover, for any reals α 6 β, the number of functions on Π
that are (d, α, β, d)-normal is at most ((β − α)/d)2 · 2O(L/d),
and such functions can be enumerated in time ((β − α)/d)2 ·
2O(L/d).

PROOF. Let m = β − α. Let P ′ = P − s, i.e., P ′ is P with
the first vertex removed. Then, by Lemma 1717, the length of
P ′ is smaller than L.

Let u and v be the endpoints of P ′; then P ′ is the shortest
path connecting u and v. Partition the vertices of P ′ into inter-
vals I0, I1, I2, . . . , Ip, where p = bL/dc such that Ii comprises
vertices w of P ′ satisfying id 6 dist(u,w) < (i+ 1)d; since
the length of P ′ is smaller than L, each of the vertices of
P ′ is placed in one of these intervals. Observe that vertices



within every interval Ii are pairwise at distance smaller than
d. Therefore, we may construct a suitable set Π′ for the path
P ′ by taking one vertex πi from each interval Ii that is non-
empty; thus, Π′ has size at most p 6 (L/d) + 1. Finally, we
set Π = Π′ ∪ {s}.

We now bound the number (d, α, β, d)-normal functions f on
Π. Note that there are at most m/d+2 possibilities for the value
f(s), as this value is either an integer multiple of d between α
and β, or +∞. Therefore, it suffices to bound the number of
(d, α, β, d)-normal functions on Π′ by (m/d) · 2O(L/d). Recall
that |Π′| 6 (L/d)+1, hence there are at most 2(L/d)+1 choices
on which portals will be assigned value +∞. Supposing that
this choice has been made, we bound the number of choices of
(finite) values on remaining portals. Let 1 6 i1 < i2 < . . . <
iq 6 p be the indices such that portals chosen to be assigned
finite values are in intervals Ii1 , . . . , Iiq . As above, there are
at most m/d+ 1 possibilities for the value f(πi1). However,
for j > 1, the value f(πij ) must satisfy inequality

|f(πij )− f(πij−1
)| 6 dist(πij , πij−1

) + d

< (ij − ij−1 + 1)d+ d

= (ij − ij−1)d+ 2d.

As f(πij ) has to be an integer multiple of d, once f(πij−1
) has

been chosen, there are at most 2(ij − ij−1) + 4 choices for the
value of f(πij ). Hence, having chosen f(πi1), the number of
choices for the remaining values f(πi2), . . . , f(πiq ) is bounded
by

q∏
j=2

(2(ij − ij−1) + 4) 6 6q ·
q∏
j=2

(ij − ij−1)

6 6q ·
q∏
j=2

2ij−ij−1

= 6q · 2iq−i1

6 6q · 2p 6 12p.

Since p 6 (L/d) + 1, we conclude that the total number of
(d, α, β, d)-normal functions on Π′ is bounded by (m/d) ·
2O(L/d), as required.

The above reasoning can be trivially used to construct the
promised enumeration algorithm. �

Defining subproblems: As expected, in dynamic program-
ming we will need to solve more general subproblems, where
portals on boundaries of these subproblems are taken into
account. Formally, in an instance of the generalized problem
we are working with:
• The original set of available facilities Fj , which we denote
F � for consistency; this set is always the same in all
instance of the generalized problem, and is equipped with
the original opening cost function open(·).

• A subset of relevant clients C� ⊆ Cj ; this set varies in
instances of the generalized problem.

• A set of portals Π, which are vertices of H .
• A prediction function pred : Π→ R ∪ {+∞}.
• A request function req : Π→ R ∪ {+∞}.

Whenever considering an instance of the generalized problem,
all distances are measured in H . Note that we allow negative
requests and predictions.

Consider an instance K = (C�,Π, req, pred) of the general-
ized problem. For a solution R ⊆ F �, the connection cost of
a client c ∈ C� is defined as

connK(c,R) = min(min
f∈R

dist(c, f),min
π∈Π

(dist(c, π)+pred(π))).

That is, every client can be connected either to a facility of f at
the cost of the distance to this facility, or to a portal at the cost
of the distance to this portal plus its prediction. Note that portals
are always all open, so the factor minπ∈Π(dist(c, π)+pred(π))
is independent of the solution R. We will say that c is served
by the facility f or portal π for which the minimum above is
attained.

A solution R ⊆ F � is feasible if for every portal ρ ∈ Π
with req(ρ) 6= +∞, its request is satisfied in the following
sense:

min
f∈R

dist(ρ, f) 6 req(x).

Note that the request of a portal has to be satisfied by a facility
included in the solution; it cannot be satisfied by another portal.
Again ρ is served by the facility f for which the minimum
above is attained.

To analyze the approximation error, we will need to gradually
relax the feasibility constraint. For this, for a nonnegative real
λ we shall say that a solution R ⊆ F � is λ-near feasible if for
every portal ρ ∈ Π with req(ρ) 6= +∞ there exists a facility
f ∈ R with dist(ρ, f) 6 req(ρ) + λ. That is, we relax all
requests by an additive factor of λ.

Finally, for γ ∈ R>0, a solution R ⊆ F � is γ-close in K if

connK(c,R) 6 γ for every c ∈ C�; and
dist(π,R) 6 γ for every π ∈ Π with req(π) 6= +∞.

The cost of a solution R is defined as

cost(R;K) = open(R) +
∑
c∈C�

connK(c,R).

Note that the connection costs of portals do not contribute to
the cost of the solution. They are only used to define (near)
feasibility of a solution. Thus, every portal essentially puts a
hard constraint that there needs to be a facility opened within
some distance from it. By OPT(K) we denote the minimum
cost of a feasible solution to K.

The intuitive meaning of predictions and requests in the
dynamic programming are as follows. In the following, think
of dynamic programming over the decomposition provided
by Lemma 2020 as a recursive algorithm that breaks the given
instance into simpler ones (whose number is at most 7), solves
them using subcalls, and assembles the obtained solutions into a
solution to the input instance. Whenever we break the instance
using some separator, which constists of a constant number of
shortest paths, we put portals along them using Lemma 2121 in
all the obtained subinstances. For every portal π we guess in
which subinstance lies the closest facility f that is open in the



(unknown) optimum solution, and we approximately guess the
distance d from π to this facility (up to additive accuracy δ,
to be defined later). This allows us to define the requests and
predictions in subinstances: in the subinstance that is guessed
to contain f we put a request d on π to make sure that some
facility at this distance is indeed open there, while in other
subinstances we put a prediction d on π, so that solutions in
these subinstances may use a virtual, “promised” facility at
distance d from π.

Since recursion has depth O(log n) by Lemma 2020, condi-
tion (T1)(T1), the rounding error will accumulate through O(log n)
levels. Therefore, we needed to put δ = O(ε/ log n) and make
rounding errors of magnitude O(δ) ·OPT at each level, so that
the total error is kept at O(ε) · OPT. Precisely, we fix

δ =
ε

log n
.

Dynamic programming states: Once we have defined the
generalized problem with portals, we may formally define
the instances solved in the dynamic programming. For every
vertex v of H , we may apply Lemma 2121 to Pv and d = δ,
thus obtaining a suitable set of vertices Πv ⊆ V (Pv) of size
at most δ−1L+ 2 = O(ε−2r log n).

For each node t of T , we define

C�t = ξ−1(L(β(t))) ∩ C� and Πt =
⋃

uv∈Bt

Πu ∪Πv,

where Bt is the set of edges of H dual to the arcs of β(t).
Note that by condition (T5)(T5) of Lemma 2020, we have

Πt ⊆
⋃

t′∈chld(t)

Πt′ for each non-leaf node t of T.

Observe also that if t0 is the root of T , then C�t0 = Cj and
Πt0 = ∅. Finally, the following lemma expresses the crucial
separation property provided by the decomposition (T, β).

Lemma 22. Let s and t be nodes of T that are not in the
ancestor-descendant relation, and let u ∈ ξ−1(L(β(s))) and
v ∈ ξ−1(L(β(t))). Then there exists a portal ρ ∈ Πt such that

dist(u, v) > dist(u, ρ) + dist(ρ, v)− 2δ.

Furthermore, the same holds when s is an ancestor of t and
u ∈ Πs.

PROOF. Let B be the set of edges of H that are dual to
the arcs of β(t), and let Z be the set of endpoints of these
edges. Consider removing all paths Pz for z ∈ Z and all
edges of B from the plane. Then the plane breaks into several
connected components, out of which one consists of exactly
the faces of L(β(t)). It follows that every path connecting a
vertex from ξ−1(L(β(t))) with a vertex that does not belong
to ξ−1(L(β(t))) has to intersect one of the paths Pz for some
z ∈ Z. Observe that v ∈ ξ−1(L(β(t))). Moreover, if s and t
are not in the ancestor-descendant relation in T , then L(β(s))
and L(β(t)) are disjoint, implying u /∈ ξ−1(L(β(t))). Also, if
u ∈ Πs and s is an ancestor of t, then either u lies on one of
the paths Pz for z ∈ Z, or u /∈ ξ−1(L(β(t))).

In both cases we conclude that the shortest path connecting
u and v, call it Q, has to intersect the path Pz for some z ∈ Z.
Let w be any vertex in the intersection of these two paths.
Then, by Lemma 2121, there exists ρ ∈ Πz ⊆ Πt such that
dist(w, ρ) 6 δ. We conclude that

dist(u, v) = dist(u,w) + dist(w, v)

> dist(u,w) + dist(w, ρ)

+dist(ρ, w) + dist(w, v)− 2δ

> dist(u, ρ) + dist(ρ, v)− 2δ,

as required. �

For every node t of T , we define Ñt to be the set of all
functions from Πt to R ∪ {+∞}. Further, let Nt ⊆ Ñt be the
subset of all those functions from Ñt that are (δ,−5ε, 3r +
5ε, δ)-normal; in the sequel, when saying just normal we mean
being (δ,−5ε, 3r + 5ε, δ)-normal. While Ñt is infinite, Nt is
finite and actually of polynomial size.

Lemma 23. For each node t of T we have that |Nt| 6
nO(ε−2r) and Nt can be enumerated in time nO(ε−2r).

PROOF. By Lemma 1717, for each vertex u of H the number
of normal functions on Πu is at most (δ−1r)2 · 2O(δ−1L) =
nO(ε−2r). Observe that Πt is the union of at most 6 sets of
the form Πu, for vertices u that are endpoints of edges dual
to the arcs β(t). Hence every normal function on Πt can be
described by a 6-tuple of such functions on sets of the form
Πu for u as above. Thus, we have |Nt| 6 nO(ε−2r) as well.
Moreover, since normal functions on Πu can be enumerated in
time nO(ε−2r) for each vertex u, to enumerate Nt it suffices to
enumerate all 6-tuples of functions as above, and filter out those
6-tuples whose union is either ill-defined or is not Lipschitz
with slack δ. This takes time nO(ε−2r). �

Now, for every t ∈ V (T ) and pair η = (pred, req) ∈ Ñt×Ñt,
we define the instance Kt(η) of the generalized problem as
follows:

Kt(η) = (C�t ,Πt, pred, req).

Before the explaining how these instances are going to be
solved using dynamic programming, let us verify that the
subproblem at the root of T corresponds to the instance Jj
that we are trying to (approximately) solve.

Lemma 24. Suppose t0 is the root of T and, noting that Πt0 =
∅, we let K = Kt0((∅, ∅)). Then, for any λ > 0, every λ-near
feasible solution R to K satisfies

cost(R; Jj) = cost(R;K).

In particular, we have

OPT(Jj) = OPT(K).

PROOF. The first assertion follows immediately by observing
that the formulas for cost(R; Jj) and cost(R;K) are the same,
because there are no portals in K. The second assertion follows
immediately from the first by observing that every solution R
to K is λ-near feasible for any λ > 0, because in K there are
no portals. �



Computing transitions: We first show that the subproblems
in the leaves of T can be solved in polynomial time. For this,
we use the following lemma.

Lemma 25. There is an algorithm that given an instance K =
(C�,Π, pred, req) of the generalized problem and λ > 0, finds
the least expensive λ-near feasible solution to K in time 3|Π|+k·
nO(1), where k is the total number of distinct vertices on which
the clients of C� are placed.

PROOF. Let W be the set of distinct vertices on which C�

are placed, and for u ∈W let γ(u) be the number of clients
placed at vertex u. We perform standard dynamic programming
over subsets of Π and of W , where we keep track of the
cost of connecting any subset of portals and any subset of
vertices of W , while introducing candidate facilities one by
one. Precisely, let f1, . . . , fp be the facilities of F �, enumerated
in any order. Then for every i ∈ {0, 1, . . . , p}, A ⊆ Π, and
B ⊆W , define value dp[i, A,B] to be the smallest cost of a
λ-near feasible solution contained in {f1, f2, . . . , fi}, where in
the near-feasibility check we consider only requests of portals
from A, and in the connection cost computation we consider
only clients placed at vertices from B. Then it is easy to
see that the function dp[·, ·, ·] satisfies the following recursive
formula.

dp[0, A,B] =

{
0 if A = B = ∅,
+∞ otherwise;

dp[i, A,B] = min( dp[i− 1, A,B],

open(fi)

+ min
A′⊆A,B′⊆B : ∀π∈A\A′

dist(π,fi)6req(π)+λ

dp[i− 1, A′, B′]

+
∑

u∈B\B′
γ(u) · dist(u, fi) ).

Using the above formula, we can in time 3|Π|+k ·nO(1) compute
all the 2|Π|+k ·(p+1) values of the function dp[·, ·, ·], and return
dp[p,Π,W ] as the sought minimum cost. A λ-near feasible
solution attaining this cost can be retrieved from dynamic
programming tables by standard means within the same running
time. �

Corollary 26. Suppose t is a leaf of T and λ > 0 is a given
real. Then, in total time nO(ε−2r) one can compute, for each
η ∈ Nt × Nt, the least expensive λ-near feasible solution
Rt,η ⊆ F � to Kt(η).

PROOF. To compute each solution Rt,η , we apply the algorithm
of Lemma 2525 to instance Kt(η) for η ∈ Nt×Nt and λ. Since
t is a leaf of T , all clients in Kt(η) lie on the unique face
of L(β(t)) (Lemma 2020, condition (T4)(T4)), hence they are all
place on distinct three vertices. Therefore, the running time
used by each application of the algorithm of Lemma 2525 is
3|Πt|+3 · nO(1) = nO(ε−2r). Since the number of pairs η ∈
Nt×Nt is |Nt|2 6 nO(ε−2r), the total running time follows.�

We now proceed to the main point: how to compute values
for a node of T based on values for its children. We first
introduce even more helpful notation. For a non-leaf node t of
T , let Ωt =

⋃
t′∈chld(t) Πt; then Πt ⊆ Ωt.

For a non-leaf node t of T , define

M̃t =
∏

t′∈chld(t)

Ñt.

For each t′ ∈ chld(t) we have a natural restriction operator
restrictt,t′ : M̃t → Ñt′ that maps every tuple from M̃t to its
t′-component. Next, define

Ũt = Ñt × Ñt and W̃t = M̃t × M̃t.

Operator restrictt,t′(·) can be then regarded as an operator
from W̃t to Ũt′ by considering acting coordinate-wise.

Having defined sets M̃t, Ũt, and W̃t, we define setsMt, Ut,
andWt by replacing Ñt with Nt in the definitions. Since every
node of T has at most 7 children (Lemma 2020, condition (T5)(T5)),
by Lemma 2323 we have that |Mt| 6 nO(ε−2r) and all sets Mt

can be computed in time nO(ε−2r). Then we also have that

|Ut|, |Wt| 6 nO(ε−2r) for each node t of T,

and all the sets Ut,Wt can be computed in time nO(ε−2r).
We now describe tuples from W̃t that may be used in the

dynamic programming to combine solutions from smaller sub-
problems into a solution to a larger subproblem. The intuition
here is that when breaking a subproblem into smaller ones, we
have to ensure that requests and predictions appropriately match
so that solutions to smaller subproblems can be combined to a
solution to the original subproblem.

Definition 27. Consider a non-leaf node t of T . We shall
say that a pair η = (req, pred) ∈ Ũt and a pair ϕ =

((reqt′)t′∈chld(t), (predt′)t′∈chld(t)) ∈ W̃t are compatible (de-
noted η ∼ ϕ) if the following two conditions hold:

(C1) For every π ∈ Πt with req(π) 6= +∞ there exists t′ ∈
chld(t) and ρ ∈ Πt′ such that reqt′(ρ) + dist(π, ρ) 6
req(π).

(C2) For every t′ ∈ chld(t) and ρ ∈ Πt′ with predt′(ρ) 6= +∞,
there either exists π ∈ Πt with pred(π) + dist(π, ρ) 6
predt′(ρ), or there exists t′′ ∈ chld(t) and ρ′ ∈ Πt′′ with
reqt′′(ρ

′) + dist(ρ′, ρ) 6 predt′(ρ).

Observe that given η ∈ Ũt and ϕ ∈ W̃t, it can be verified
in polynomial time whether η ∼ ϕ.

Finally, we formulate and prove two lemmas that will imply
the correctness of our dynamic programming. The first one
concerns combining solutions to smaller subproblems into
solutions to larger subproblems. The second one concerns
projecting solutions to larger subproblems to solutions to
smaller subproblems.

Lemma 28. Suppose t is a non-leaf node of T and let η ∈ Ũt
and ϕ ∈ W̃t be compatible. Suppose further that, for all



t′ ∈ chld(t), Rt′,ηt′ is a feasible solution to the instance
Kt′(ηt′), where ηt′ = restrictt,t′(ϕ). Then

R =
⋃

t′∈chld(t)

Rt′,ηt′

is a feasible solution to the instance Kt(η) and, moreover,

cost(R;Kt(η)) 6
∑

t′∈chld(t)

cost(Rt′,ηt′ ;Kt′(ηt′)).

PROOF. For brevity, we shall denote Rt′ = Rt′,ηt′ and Kt′ =
Kt′(ηt′). Also, let η = (pred, req) and Kt = Kt(η).

We first verify that R is a feasible solution to Kt. Take any
portal π ∈ Πt with req(π) 6= +∞. Since η ∼ ϕ, by (C1)(C1) there
exists t′ ∈ chld(t) and ρ ∈ Πt′ such that reqt′(ρ)+dist(π, ρ) 6
req(π). As Rt′ is a feasible solution to Kt′ , there exists f ∈ Rt′
such that dist(ρ, f) 6 reqt′(ρ). Then f ∈ R as well and

dist(π, f) 6 dist(π, ρ) + dist(ρ, f)

6 dist(π, ρ) + reqt′(ρ) 6 req(π),

which certifies that the request of π is satisfied by R. Hence,
R is indeed a feasible solution to Kt.

We are left with proving the postulated upper bound on
cost(R;Kt). Take any client c ∈ C�t . As (C�t′)t′∈chld(t) form
a partition of C�t , there exists a unique node t′ ∈ chld(t)
satisfying c ∈ C�t′ . Then there either exists a facility f ∈ Rt′
satisfying

dist(c, f) = connKt′ (c;Rt′)

or there exists a portal ρ ∈ Πt′ satisfying

dist(c, ρ) + predt′(ρ) = connKt′ (c;Rt′).

In the former case, since Rt′ ⊆ R we can conclude that

connK(c;R) 6 connKt′ (c;Rt′). (18)

In the latter case, by (C2)(C2) either exists π ∈ Πt with
pred(π) + dist(π, ρ) 6 predt′(ρ), or there exists t′′ ∈ chld(t)
and ρ′ ∈ Πt′′ with reqt′′(ρ

′) + dist(ρ′, ρ) 6 predt′(ρ). In the
first subcase we conclude that

connK(c;R) 6 dist(c, π) + pred(π)

6 dist(c, ρ) + dist(π, ρ) + pred(π)

6 dist(c, ρ) + predt′(ρ) = connKt′ (c;Rt′),

which again establish inequality (1818) in this subcase. On the
other hand, in the second subcase there exists a facility f ∈ Rt′′
with dist(ρ′, f) 6 reqt′′(ρ

′). As f ∈ R as well, we infer that

connK(c;R) 6 dist(c, f)

6 dist(c, ρ) + dist(ρ, ρ′) + dist(ρ′, f)

6 dist(c, ρ) + dist(ρ, ρ′) + reqt′′(ρ
′)

6 dist(c, ρ) + predt′(ρ) = connKt′ (c;Rt′).

Hence, again inequality (1818) is satisfied.
We conclude that in every case, inequality (1818) holds.

Summing this inequality through all clients c ∈ C�t and

adding open(R) to both sides yields yields that cost(R;Kt) 6∑
t′∈chld(t) cost(Rt′ ;Kt′), as required. �

Lemma 29. Suppose t is a non-leaf node of T . Suppose further
that η ∈ Ũt is such that all predictions involved in η are
nonnegative, and R is a λ-near feasible γ-close solution to
Kt(η), for some reals λ, γ > 0. Then there exist ϕ ∈ W̃t that
is compatible with η and (λ+ 5δ)-near feasible (γ+ 5δ)-close
solutions Rt′,ηt′ ⊆ R to instances Kt′(ηt′) for t′ ∈ chld(t),
where ηt′ = restrictt,t′(ϕ), such that

cost(R;Kt(η)) >
∑

t′∈chld(t)

cost(Rt′,ηt′ ;Kt′(ηt′))− 5δ|C�t |.

Moreover, all request and prediction functions involved in ϕ
are (δ,−λ−5δ, γ+4δ, δ)-normal, and all predictions involved
in ϕ are nonnegative.

PROOF. Denote Kt = Kt(η) and η = (pred, req). For each
t′ ∈ chld(t), let

Rt′ = ξ−1(L(β(t′))) ∩R.

Then (Rt′)t′∈chld(t) form a partition of R.
For any t′ ∈ chld(t) and ρ ∈ Πt′ , we shall say that ρ is

facility-important if

• there exists a facility f ∈ Rt′ and a client c ∈ C� served
by f in R such that dist(c, ρ) + dist(ρ, f) 6 dist(c, f) +
4δ; or

• there exists a facility f ∈ Rt′ and portal π ∈ Πt with
req(π) 6= +∞ served by f in R such that dist(π, ρ) +
dist(ρ, f) 6 dist(π, f) + 2δ.

Further, ρ is client-important if

• there exists a client c ∈ C�t′ and a facility f ∈ R that serves
c in R such that dist(c, ρ) + dist(ρ, f) 6 dist(c, f) + 2δ;
or

• there exists a client c ∈ C�t′ and a portal π ∈ Πt that serves
c in R such that dist(c, ρ) + dist(ρ, π) 6 dist(c, π) + 2δ.

We observe the following.

Claim 3. Let ρ ∈ Πt′ for some t′ ∈ chld(t). If ρ is facility-
important, then

min
f∈Rt′

dist(ρ, f) 6 γ + 4δ.

If ρ is client-important, then

min(min
f∈R

dist(ρ, f), min
π∈Πt

dist(ρ, π) + pred(π)) 6 γ + 2δ

PROOF. Recall that R is γ-close in Kt. When ρ is facility-
important due to the first alternative in the definition, we have

dist(ρ, f) 6 dist(c, f) + 4δ 6 γ + 4δ;

here and in the following, we assume notation from the
definition. Also, when ρ is facility-important due to the second
alternative, we have

dist(ρ, f) 6 dist(π, f) + 2δ 6 γ + 2δ.



Now, if ρ is client-important due to the first alternative in the
definition, then we have

dist(ρ, f) 6 dist(c, f) + 2δ 6 γ + 2δ.

Also, when ρ is facility-important due to the second alternative,
we have

dist(ρ, π) + pred(π) 6 dist(c, π) + pred(π) + 2δ 6 γ + 2δ.

This concludes the proof. y

For a real x, let round↓(x) be the largest integer multiple
of δ that is not larger than x, and round↑(x) be the smallest
integer multiple of δ that not smaller than x. That is,

round↓(x) = δ · bx/δc and round↑(x) = δ · dx/δe.

We now define ϕ = (predt′ , reqt′)t′∈chld(t). Consider any
t′ ∈ chld(t) and ρ ∈ Πt′ . We put
• reqt′(ρ) = +∞ if ρ is not facility-important, and

otherwise

reqt′(ρ) = −4δ + round↓
(

min
f∈Rt′

dist(ρ, f)− λ
)

;

• predt′(ρ) = +∞ if ρ is not client-important, and other-
wise

predt′(ρ) = 2δ + round↑
(

min
(

min
f∈R

dist(ρ, f),

min
π∈Πt

dist(ρ, π) + pred(π)
))
.

Clearly, functions reqt′(·) and predt′(·) are δ-discrete and, as
functions of ρ under rounding are Lipschitz, they are also
Lipschitz with slack δ. We are left with verifying that these
functions are also [−λ − 5δ, γ + 4δ]-bounded, η and ϕ are
compatible, Rt′ is a (λ + 5δ)-near feasible (γ + 5δ)-close
solution to Kt′ for each t′ ∈ chld(t), where Kt′ = Kt′(ηt′),
and that the postulated lower bound on cost(R;Kt) holds. We
prove these properties in the following claims.

Claim 4. For each t′ ∈ chld(t), the function reqt′(·) is [−λ−
5δ, γ]-bounded and the function predt′(·) is [0, γ+4δ]-bounded.

PROOF. First, take any ρ ∈ Πt′ that is facility-important (as
otherwise reqt′(ρ) = +∞ anyway). Then reqt′(ρ) > −λ− 5δ
by definition and reqt′(ρ) 6 γ by Claim 33. Next, take any
ρ ∈ Πt′ that is client-important (as otherwise predt′(ρ) = +∞
anyway). Then predt′(ρ) > 2δ by definition and predt′(ρ) 6
γ + 4δ by Claim 33. y

Claim 5. It holds that η and ϕ are compatible.

PROOF. We first verify condition (C1)(C1). Take any π ∈ Πt with
req(π) 6= +∞. Since R is a λ-near feasible solution to instance
Kt, there exists f ∈ R such that

dist(π, f) 6 req(π) + λ.

Then f ∈ Rt′ for some t′ ∈ chld(t), and in particular ξ(f) ∈
L(β(t′)). By Lemma 2222, there exists a portal ρ ∈ Πt′ such
that

dist(π, f) > dist(π, ρ) + dist(ρ, f)− 2δ. (19)

In particular ρ is facility-important, so combining the above
with the definition of reqt′(ρ) we obtain

reqt′(ρ) 6 dist(ρ, f)− λ− 4δ

6 dist(π, f)− dist(π, ρ) + 2δ − λ− 4δ

6 req(π)− dist(π, ρ)− 2δ;

this directly implies (C1)(C1).
We now verify condition (C2)(C2). Take any ρ ∈ Πt′ for any

t′ ∈ chld(t) with predt′(ρ) 6= +∞. Then ρ is client-important,
so there exists a client c ∈ C�t′ and either a facility f ∈ R
serving c and satisfying dist(c, ρ)+dist(ρ, f) 6 dist(c, f)+2δ,
or a portal π ∈ Πt serving c such that dist(c, ρ)+dist(ρ, π) 6
dist(c, π) + 2δ. We consider these two cases separately.

Suppose the first case holds. Since f serves c in R, for any
π′ ∈ Πt and f ′ ∈ R, we have

dist(c, f) 6 dist(c, π′) + pred(π′)

and
dist(c, f) 6 dist(c, f ′).

Then we also have

dist(ρ, f) 6 dist(c, f)− dist(c, ρ) + 2δ

6 dist(c, π′) + pred(π′)− dist(c, ρ) + 2δ

6 dist(ρ, π′) + pred(π′) + 2δ,

and similarly

dist(ρ, f) 6 dist(c, f)− dist(c, ρ) + 2δ

6 dist(c, f ′)− dist(c, ρ) + 2δ

6 dist(ρ, f ′) + 2δ.

Therefore, by the definition of predt′(ρ), we have

predt′(ρ) > dist(ρ, f).

As f ∈ R, there exists t′′ ∈ chld(t) such that f ∈ Rt′′ . Then,
by Lemma 2222, there is a portal ρ′ ∈ Πt′′ such that

dist(ρ, f) > dist(ρ, ρ′) + dist(ρ′, f)− 2δ.

We note that

dist(c, f) > dist(c, ρ) + dist(ρ, f)− 2δ

> dist(c, ρ) + dist(ρ, ρ′) + dist(ρ′, f)− 4δ

> dist(c, ρ′) + dist(ρ′, f)− 4δ,

implying that ρ′ is facility-important. Therefore, by the defini-
tion of reqt′′(ρ

′) we infer that

reqt′′(ρ
′) 6 dist(ρ′, f)− λ− 4δ 6 dist(ρ′, f)− 4δ.

Combining all the above we infer that

predt′(ρ) > dist(ρ, f)

> dist(ρ, ρ′) + dist(ρ′, f)− 4δ

> dist(ρ, ρ′) + reqt′′(ρ
′),

which establishes (C2)(C2) in this case.



Suppose now the second case holds. Since π serves c in R,
for any π′ ∈ Πt and f ′ ∈ R, we have

dist(c, π) + pred(π) 6 dist(c, π′) + pred(π′)

and
dist(c, π) + pred(π) 6 dist(c, f ′).

Using the same reasoning as in the first case, but considering
expression dist(c, π) + pred(π) instead of dist(c, f), we infer
that

predt′(ρ) > dist(ρ, π) + pred(π),

which establishes (C2)(C2) in this case as well. y

For the next claim, recall that (C�t′)t′∈chld(t) form a partition
of C�t .

Claim 6. Let c ∈ C�t and let t′ ∈ chld(t) be the unique node
satisfying c ∈ C�t′ . Then the following holds.

connKt′ (c,Rt′) 6 connKt
(c,R) + 5δ. (20)

PROOF. By the definition of connKt(c,R), there either exists
a portal π ∈ Πt such that

connKt
(c,R) = dist(c, π) + pred(π),

or there exists a facility f ∈ R such that

connKt
(c,R) = dist(c, f).

Suppose the first case holds. By Lemma 2222, there exists a
portal ρ ∈ Πt′ such that

dist(c, π) > dist(c, ρ) + dist(ρ, π)− 2δ.

In particular, ρ is facility-important. By the definition of
predt′(ρ), we have

predt′(ρ) 6 dist(ρ, π) + pred(π) + 3δ.

By combining the above we conclude that

connKt′ (c,Rt′) 6 dist(c, ρ) + predt′(ρ)

6 dist(c, ρ) + dist(ρ, π) + pred(π) + 3δ

6 dist(c, π) + pred(π) + 5δ

= connKt(c,R) + 5δ;

This establishes (2020) in this case.
Now suppose the second case holds. Since (Rt′)t′∈chld(t) is

a partition of R, there exists t′′ ∈ chld(t) such that f ∈ Rt′′ .
If t′′ = t′, then we have

connKt′ (c,Rt′) 6 dist(c, f) = connKt
(c,R),

so (2020) indeed holds in this situation. Assume then that t′′ 6= t′.
By Lemma 2222, there exists a portal ρ ∈ Πt′ such that

dist(c, f) > dist(c, ρ) + dist(ρ, f)− 2δ.

In particular, ρ is facility-important. By the definition of
predt′(ρ), we have

predt′(ρ) 6 dist(ρ, f) + 3δ

By combining the above we conclude that

connKt′ (c,Rt′) 6 dist(c, ρ) + predt′(ρ)

6 dist(c, ρ) + dist(ρ, f) + 3δ

6 dist(c, f) + 5δ = connKt
(c,R) + 5δ.

Hence, again (2020) holds in this case. y

Claim 7. It holds that

cost(R;Kt) >
∑

t′∈chld(t)

cost(Rt′ ;Kt′)− 5δ|C�t |.

PROOF. The claimed upper bound on cost(R;Kt) follows by
adding the thesis of Claim 66 through all clients c ∈ C�t , and
adding the opening costs of facilities of R to both sides. y

Claim 8. For each t′ ∈ chld(t), Rt′ is a (λ+5δ)-near feasible
(γ + 5δ)-close solution to Kt′ .

PROOF. We first verify the (λ+ 5δ)-near feasibility. Take any
ρ ∈ Πt′ with reqt′(ρ) 6= +∞; then ρ is facility-important. By
the definition of reqt′(ρ), there exists a facility f ∈ Rt′ such
that

reqt′(ρ) > dist(ρ, f)− λ− 5δ,

implying

dist(ρ, f) 6 reqt′(ρ) + λ+ 5δ,

as required.
We now verify the (γ + 5δ)-closeness. Claim 66 asserts that

for each c ∈ C�t′ we have

connKt′ (c,Rt′) 6 connKt(c,R) + 5δ,

which by γ-closeness of R implies that

connKt′ (c,Rt′) 6 γ + 5δ.

This is the first condition of the (γ + 5δ)-closeness. For the
second condition, consider any ρ ∈ Πt′ with reqt′(ρ) 6= +∞.
In particular, ρ is facility-important, so there exists a facility
f ∈ Rt′ and either a client c ∈ C� served by f such that
dist(c, ρ) + dist(ρ, f) 6 dist(c, f) + 4δ, or a portals π ∈ Πt

served by f such that dist(π, ρ)+dist(ρ, f) 6 dist(π, f)+2δ.
By γ-closeness of R in K, in the first case we have

dist(ρ, f) 6 dist(c, f)− dist(c, ρ) + 4δ 6 γ + 4δ,

while in the second case we have

dist(ρ, f) 6 dist(π, f)− dist(π, ρ) + 2δ 6 γ + 2δ.

In both cases, we conclude that dist(ρ, f) 6 γ + 5δ, as
required. y

Claims 44, 55, 77, and 88 conclude the proof. �



The algorithm: We are finally ready to present the
whole algorithm. First, using the algorithm of Lemma 2020 in
polynomial time we compute the tree T together with sets β(t)
for nodes t of T . For each node t we compute the portal set
Πt and the set of functions Nt, as explained before; this takes
total time nO(ε−2r), since T is of size nO(1). Sets Nt give rise
to sets Ut and Wt as defined before.

The remaining, main part of the algorithm is summarized
using pseudo-code as Algorithm Solve. We process the nodes
of T in a bottom-up manner. For each node t, say at depth i,
and each η ∈ Ut, we construct the instance Kt(η) and compute
an 5ε-near feasible solution Rt,η to it as follows. If t is a leaf,
we use the algorithm of Corollary 2626 to compute the least
expensive 5ε-near feasible solution Rt,η . Otherwise, we iterate
over all ϕ ∈ Wt such that η and ϕ are compatible, and consider
all candidate solutions R(ϕ) defined as

R =
⋃

t′∈chld(t)

Rt′,restrictt,t′ (ϕ).

Here, Rt′,restrictt,t′ (ϕ) is the pre-computed soluton to the
instance Kt′(restrictt,t′(ϕ)). Out of these candidate solutions
we take the least expensive one and we declare it as Rt,η .

Finally, we return R = Rt0,(∅,∅) as computed solution, where
t0 is the root of T . This concludes the description of the
algorithm and we are left with analyzing its running time and
approximation guarantee.

Algorithm 1: Algorithm Solve

Input: Instance Jj , tree T , sets Ut,Wt for nodes t of T
Output: Solution R to Jj

for each node t of T in bottom-up order do
for each η ∈ Ut do

if t is a leaf then
Rt,η ← minimum-cost 5ε-near feasible

solution to Kt,η , computed using
Corollary 2626

else
Rt,η ← ⊥
for each ϕ ∈ Wt such that η ∼ ϕ do

S ←
⋃
t′∈chld(t)Rt′,restrictt,t′ (ϕ)

if Rt,η = ⊥ or
cost(S,Kt,η) < cost(Rt,η,Kt,η)
then
Rt,η ← S

R← Rt0,(∅,∅), where t0 is the root of T
return R

Lemma 30. Algorithm Solve runs in time nO(ε−2r).

PROOF. It suffices to observe that, by Corollary 2626 and
Lemma 2828, the time spent on processing every node of T
is bounded by nO(ε−2r). Since the number of nodes of T is
nO(1), the total running time follows. �

Lemma 31. Algorithm Solve returns a solution R to the
instance Jj satisfying

cost(R; Jj) 6 OPT(Jj) + 10ε|Cj |.

PROOF. Let D ⊆ Fj be an optimum solution to the instance
Jj . By Lemma 2424, D is also an optimum feasible solution
to the instance K = Kt0((∅, ∅)), where t0 is the root of T ,
Furthermore, by Lemma 1919 we infer that D is 3r-close in K.

By applying Lemma 2929 in a top-down manner along the tree
T , we obtain, for every node t of T , an element ηt ∈ Ũt and
a solution Dt to the instance Kt(ηt) such that the following
holds:
• whenever t is not a leaf, we have that ϕt = (ηt′)t′∈chld(t)

is compatible with ηt;
• Dt is a (5iδ)-near feasible (3r + 5iδ)-close solution in
Kt(ηt), where i is the depth of t in T ;

• all request and prediction functions involved in ηt are
(δ,−5iδ, 3r + 5iδ, δ)-normal, and all prediction functions
are nonnegative;

• whenever t is not a leaf, it holds that

cost(Dt;Kt(ηt)) >∑
t′∈chld(t)

cost(Dt′ ,Kt′(ηt′))− 5δ|C�t |. (21)

Recall that T has depth at most log n. Therefore, 5iδ 6 5ε
whenever i is the depth of a node in t, implying that all
request and prediction functions involved in elements ηt are
(δ,−5ε, 3r + 5ε, δ)-normal. We infer that

ηt ∈ Ut for each node t. (22)

Recall also that for each non-leaf node t of T , we have
that {C�t′ : t′ ∈ chld(t)} form a partition of C�t . Therefore, by
combining inequalities (2121) in a bottom-up manner along T
we infer that

cost(D;K)

>
∑

t : leaf of T

cost(Dt,Kt(ηt))− 5δ log n|Cj |

=
∑

t : leaf of T

cost(Dt,Kt(ηt))− 5ε|Cj |. (23)

Again, as iδ 6 ε whenever i 6 log n, for each leaf t of T the
solution Dt is 5ε-near feasible in Kt(ηt). Hence, due to (2222)
for each leaf t the algorithm computes an 5ε-near feasible
solution Rt to Kt(ηt) satisfying

cost(Rt;Kt(ηt)) 6 cost(Dt;Kt(ηt)). (24)

For each non-leaf node t of T , define solution Rt to instance
Kt(ηt) by a bottom-up induction: Rt =

⋃
t′∈chld(t)Rt′ . Then

by (2222) and the fact that ηt ∼ ϕt for every non-leaf t, we
have that for each node t, the algorithm computes a solution
to ηt of cost at most cost(Rt;Kt(ηt)). In particular, if we
denote R = Rt0 , where t0 is the root of T , then the solution
returned by the algorithm has cost at most cost(R;K). Hence,
we proceed with upper bounding cost(R;K).



For each node t of T let us define tuples of functions η′t
and ϕ′t (here, only when t is not a leaf) as follows:

η′t = ηt + 5ε and ϕ′t = ϕt + 5ε.

That is, η′t is obtained from ηt by adding 5ε to all requests and
all predictions on all portals of Πt, and similarly for ϕt. Note
that for each non-leaf node t of T , we still have the following
properties:
• η′t′ = restrictt,t′(ϕ

′
t) for each t′ ∈ chld(t), and

• η′t and ϕ′t are compatible.
However, the 5ε shift in requests and predictions makes the
following assertion hold for each leaf t of T :

Rt is a feasible solution to Kt(η
′
t) with

cost(Rt;Kt(η
′
t)) 6 cost(Rt;Kt(ηt)) + 5ε|C�t |. (25)

That is, we obtained feasibility instead of 5ε-near feasibility
at the cost of increasing the cost of the solution.

Denoting desc(t) the set of leaves of T that are descendants
of t, we may now apply Lemma 2828 through a bottom-up
induction along the tree T to infer the following for each node
t of T :

Rt is a feasible solution to Kt(η
′
t) with

cost(Rt;Kt(η
′
t)) 6

∑
t′∈desc(t)

cost(Rt′ ;Kt′(η
′
t′)). (26)

In particular, assertion (2626) holds for the root t0 of T . Then, we
may use assertions (2323), (2424), and (2525) to infer the following:

cost(R;K) 6
∑

t : leaf of T

cost(Rt;Kt(η
′
t))

6
∑

t : leaf of T

cost(Rt;Kt(ηt)) + 5ε|Cj |

6
∑

t : leaf of T

cost(Dt;Kt(ηt)) + 5ε|Cj |

6 cost(D;K) + 10ε|Cj |.

It now suffices to use Lemma 2424 to infer that cost(R;K) =
cost(R; Jj) and cost(D;K) = cost(D; Jj); this combined
with the above concludes the proof. �

We now conclude the proof of Lemma 99. Apply Algo-
rithm Solve to each instance Jj for which Cj is non-empty,
yielding a solution Rj . As the number of such instances is at
most n, by Lemma 3030 this takes total time nO(ε−2r). As the
final solution return R = S ∪

⋃
j∈NRj , where we set Rj = ∅

whenever Cj = ∅. Then, by Lemmas 1818 and 3131 we have

cost(R; J ′) 6 ε ·M +
∑
j∈N

cost(Rj ; Jj)

6 ε ·M + 10ε · |C|+
∑
j∈N

OPT(Jj)

6 OPT(J ′) + ε ·M + 10ε · |C|.

Finally, we observe that since dist(c, f) > 1 for each client
c ∈ cluster(f), we have

|C| 6
∑
f∈D◦

∑
c∈cluster(f)

dist(c, f) 6M.

Therefore, we conclude that

cost(R; J ′) 6 OPT(J ′) + 11ε ·M.

It now remains to apply Corollary 1414 to infer the same
inequality for instance J instead of J ′, and to rescale ε by a
multiplicative factor of 11.
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