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Abstract

Proving hardness of approximation for min-sum objectives is an infamous chal-
lenge. For classic problems such as the Traveling Salesman problem, the Steiner tree
problem, or the k-means and k-median problems, the best known inapproximability
bounds for `p-metrics of dimension O(log n) remain well below 1.01.

In this paper, we take a significant step to improve the hardness of approxima-
tion of the k-means problem in various `p-metrics, and more particularly on `1, `2,
Hamming and `∞ metrics of dimension Ω(log n).

We show that it is hard to approximate the k-means objective in O(log n)-dimensional
space:

(1) To a factor of 3.94 in the `∞-metric when centers have to be chosen from a dis-
crete set of locations (i.e., the discrete case). This improves upon the result of
Guruswami and Indyk (SODA’03) who proved hardness of approximation for
a factor less than 1.01.

(2) To a factor of 1.56 in the `1-metric and to a factor of 1.17 in the `2-metric, both
in the discrete case. This improves upon the result of Trevisan (SICOMP’00)
who proved hardness of approximation for a factor less than 1.01 in both the
metrics.

(3) To a factor of 1.07 in the `2-metric, when centers can be placed at arbitrary
locations, (i.e., the continuous case). This improves on a result of Lee-Schmidt-
Wright (IPL’17) who proved hardness of approximation for a factor of 1.0013.

We also obtain similar improvements over the state-of-the-art hardness of ap-
proximation results for the k-median objective in various `p-metrics.

Our hardness result given in (1) above, is under the standard NP 6= P assumption,
whereas all the remaining results given above are under the Unique Games Conjecture
(UGC). We can remove our reliance on UGC and prove standard NP-hardness for the
above problems but for smaller approximation factors.

Finally, we note that in order to obtain our result for the `1 and `∞-metrics in
O(log n)-dimensional space we introduce an embedding technique which combines
the transcripts of certain communication protocols with the geometric realization of
certain graphs.

∗Ce projet a bénéficié d’une aide de l’État gérée par l’Agence Nationale de la Recherche au titre du Pro-
gramme Appel à projets générique JCJC 2018 portant la référence suivante : ANR-18-CE40-0004-01.
†This work was supported by ERC-CoG grant 772839, the Israel Science Foundation (grant number

552/16), and from the Len Blavatnik and the Blavatnik Family foundation.

1



1 Introduction

Clustering is a classic, routinely-used process, to solve a large variety of problems. Case
in point, it is used to carryout unsupervised learning, or to analyze large amount of data,
or to solve information retrieval problems, or to detect communities in social networks.
Given a dataset and a metric defined over the data elements, a clustering is a partition of
the data such that similar data elements are in the same part. Hence, clustering allows
to extract information from the data by identifying data elements that share common
features. Clustering problems have thus become of fundamental importance and have
received a considerable amount of attention through the years.

Arguably, the k-means and k-median objectives are the most successful models for
clustering problems. They have been studied since the sixties and the most popular al-
gorithms used in practice, such as the famous KMEANS++ algorithm [AV07] or Lloyd’s
method, are designed so as to optimize the classic k-means objective: given a set of points
P in a metric space, find a set of k points, called centers, in the metric space so as to min-
imize the sum of squared distances from each point to its closest center (see Section 1.1
for a slightly more formal definition). Similarly, the k-median objective asks to minimize
the sum of distances from each point to its closest center.

Therefore, the question of designing algorithms for optimizing the k-means and k-
median objectives has taken a preponderant role in both theory and practice. From a
theory perspective, both problems are unfortunately NP-Hard, even when the under-
lying metric space is the Euclidean plane [MS84] but admits a PTAS when d is a fixed
constant [CAKM16, FRS16, KR07, Coh18, CFS18]. Nonetheless, for several applications
arising in machine learning and data analysis, the dimension of the point set corresponds
to the number of features of the datasets, which is large for many datasets. Thus, re-
searchers have considered the k-median and k-means in Euclidean space of arbitrary di-
mension, and also in more general metric spaces, or through the lenses of parameterized
complexity. For general metric spaces, both problems are known to be hard to approx-
imate within respectively a 1 + 2/e ≈ 1.73 and 1 + 8/e ≈ 3.94 factor since the late
90’s [GK99]. After a long line of work, the best known approximation algorithms for
general metric spaces achieve 2.67 and 9 approximation factors for k-median and k-means

respectively [BPR+15, ANSW16]. Then it becomes natural and of practical significance
to ask whether there exist better approximation algorithms for the Euclidean metric.

However, our understanding of the Euclidean clustering inputs is pretty limited.
The best known hardness of approximation for O(log n)-dimensional `p metrics, where p
is finite, is due to the celebrated result of Trevisan [Tre00] and remains below 1.01. While
this result was later extended to `∞ metrics by Guruswami and Indyk [GI03] who ob-
tained comparable hardness bounds, little progress has been made over the last 15 years
and the hardness of approximation for these problems remains below 1.01, even for the
`∞ metric1. In fact, showing hardness of approximation in Euclidean space for min-sum
objectives is a fundamental challenge. For most of the classic optimization problems in
metric spaces such as the traveling salesman problem (TSP), Steiner tree (ST), or k-median

1Note that `∞-metric of large dimensions are not of high interest since hardness of approximation for
general metric space directly implies hardness of approximation for the same factor in `∞-metric of high
dimension by applying the Fréchet embedding.
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and k-means, the best known hardness of approximation are also obtained through the
work of Trevisan [Tre00] and Guruswami and Indyk [GI03], and also remain below 1.01.
Even after the advances on hardness of approximation based on the unique games con-
jecture, no better hardness has been established for these problems in `p-metrics.

This stands in sharp contrast to the best known approximation ratios for the k-means

and k-median problems and creates a somewhat frustrating situation: for example, the
current approximation ratio for the k-median in any `p metric is the same as that for a gen-
eral metric space (i.e., we are not able to leverage the geometry/topology of the `p-metric
space, for any p), while the hardness of approximation in the `p-metrics is below 1.01
which is in contrast to the 1 + 2/e inapproximability for general metric spaces. A some-
what less frustrating case is the k-means problem, for which Ahmadian et al. [ANSW16]
have recently shown how to use the structure of the `2-metric to obtain an approxima-
tion ratio of 6.47 improving upon the approximation ratio of 9 for general metric space.
Yet, the best known hardness of approximation for the k-means problem in the `2-metric
remains below 1.01.

This also stands in contrast with the problem of showing NP-hardness for comput-
ing exact solutions to clustering problems in `p-metrics, a question which is much bet-
ter understood. For example, when parameterized by the number of centers, k, both
the k-median and k-means problems are known to be W[1]-Hard, even in R4, and to
not admit a better than no(k) exact algorithm assuming the Exponential Time Hypoth-
esis [CADMRR18]. However, and perhaps surprisingly, a (1 + ε)-approximation algo-
rithm running in time 2k/εO(1)

nd [dlVKKR03, KSS04] is known for the `2-metric of ar-
bitrary dimension d, while there is no better than 1 + 2/e-factor approximation (for k-
median) and 1 + 8/e-factor approximation (for k-means) algorithms, for general metrics,
running in time f (k, ε)no(k) for any arbitrary computable function f , assuming the Gap
Exponential Time Hypothesis [CAGK+19].

Yet, in terms of hardness of approximation, no significant progress has been made.
Bridging the gap between upper and lower bound on the approximability of the k-means

and k-median problems in Euclidean instances is thus an important open problem.

“Discrete” vs “Continuous”. Unfortunately, our poor understanding of the k-means

and k-median problems does not stop here. To explain this we need to distinguish be-
tween two variants of the k-median and k-means problems: the discrete and the continuous.
In the discrete case, centers have to be chosen from a specific set of so-called candidate
centers that is part of the input, while in the continuous case, centers can be chosen arbi-
trarily in the `p-metric space.

While hardness of approximation for the discrete variant has been known since the
work of Trevisan [Tre00] and Guruswami and Indyk [GI03] as mentioned earlier, the
hardness of the continuous version had remained an open problem for a while. Das-
gupta first showed that the problem is NP-Hard in large dimensions [Das08]. A recent
work of Awasthi et al. [ACKS15] showed the APX-Hardness of the k-means problem in
the Euclidean metric and the inapproximability bound was recently improved to 1.0013
by Lee et al. [LSW17]. Yet, we do not know of a better approximation algorithm for
the continuous version and so the best known approximation algorithm achieves a 6.47-
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approximation.

Previous Approaches. One of the main roadblock for obtaining higher hardness of ap-
proximation is perhaps the “degree constraint”. More concretely, the embedding tech-
nique that is used by Trevisan [Tre00] for `p-metrics, where p is finite, and by Guruswami
and Indyk [GI03] for the `∞-metric requires to reduce from a “bounded degree” instance
of a covering problem, such as vertex cover on bounded degree graphs. However, the
hardness of approximation for these problems is very close to 1 and, combined with the
loss induced by the embedding, this cannot lead to a hardness greater than 1.01. For
example, the recent approach of Awasthi et al. [ACKS15] and Lee et al. [LSW17] is a re-
duction from vertex cover on triangle-free graphs which introduces a direct embedding
for the k-means problem. Unfortunately, the gap of the reduction is also a function of the
degree of the input graph, and so requires that the instance of vertex cover has bounded
degree.

We bypass the above barriers in two ways. We first provide better reductions, based
on the vertex coverage problem (maximization variant of the vertex cover problem),
which through a careful analysis leads to a higher gap in O(n) dimensions. While these
reductions are satisfactory for the `2-metric, since they imply hardness of approxima-
tion for the problems in O(log n)-dimensional space using the Johnson-Lindenstrauss
lemma [JL84], they only lead to hardness of approximation for the problems in `1− and
`∞−metrics of dimension Ω(n). We then use a interesting, and perhaps surprising, blend
of communication protocol and embedding techniques to extend the result to O(log n)-
dimensional space. We discuss these ideas further in Section 1.2.

1.1 Our Results

Given two sets of points P and C in a metric space, we define the k-means cost of P for C

as the ∑
p∈P

(
min
c∈C

(dist(p, c))2
)

and the k-median cost as the ∑
p∈P

(
min
c∈C

dist(p, c)
)

. Given

a set of points P, the k-means (respectively k-median) objective is the minimum over all
C of cardinality k of the k-means (respectively k-median) cost of P for C. Given a point
p ∈ P, the contribution to the k-means (respectively k-median) cost of p is min

c∈C
(dist(p, c))2

(respectively min
c∈C

dist(p, c)).

For every p ∈ R≥1 ∪{∞}, we define two quantities ζ1(p) and ζ2(p) (see Section 3 for
details). The behavior of these quantities is quite intricate, but for our purpose it suffices
to know their values for p = 1, 2, and ∞. We show that ζ1(1) = 1.1416, ζ2(1) = 1.5664,
ζ1(2) ≈ 1.06, ζ2(2) ≈ 1.1709, and as p → ∞, we have ζ1(p) → ζ1(∞) = ζ1(1) and
ζ2(p)→ ζ2(∞) = ζ2(1).

1.1.1 Inapproximability Results with Candidate Centers

We start by presenting our results on the “discrete” k-median and k-means problems. In
these versions, the centers must be chosen from a specific set of points of the metric. We
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start with an informal statement below and note that some of the results are under the
unique games conjecture (UGC).

Theorem 1.1 (Informal statement). Given n points and poly(n) candidate centers in O(log n)-
dimensional space it is NP-hard to approximate

• the k-means objective within a 1.17 factor in `2-metric (under UGC), 1.56 factor in `1-
metric (under UGC), and 1 + 8/e ≈ 3.94 in `∞-metric.

• the k-median objective within a 1.06 factor in `2-metric (under UGC), 1.14 factor in `1-
metric (under UGC), and 1 + 2/e ≈ 1.73 in `∞-metric.

Our above results generalizes to any `p-metric, with a bound which depends on the
underlying metric and on the problem.

Theorem 1.2 (Informal statement of Theorems 7.1 and 7.2). Let p ∈ R≥1 ∪{∞}. Assuming
UGC, given n points and poly(n) candidate centers in O(log n) dimensional `p-metric space it
is NP-hard to distinguish between the following two cases:

• Completeness: The k-means objective (resp. k-median objective) is at most β (resp. β′),

• Soundness: The k-means objective (resp. k-median objective) is at least ζ2(p) · β (resp.
ζ1(p) · β′),

where β (resp. β′) is some positive real number depending only on n.

Note that the hardness of approximation factor for the `∞-metric, given in Theo-
rem 1.2 is worse than the one stated in Theorem 1.1. This is because, the result in The-
orem 1.2 follows from combining the hardness of approximation of the vertex coverage
problem (under UGC) with certain graph embeddings into `p-metrics, whereas, the result
in Theorem 1.1 for the `∞-metric follows from combining the hardness of approximation
of the hypergraph vertex coverage problem with certain hypergraph embeddings, which
currently yield meaningful results only for the `∞-metric.

1.1.2 Inapproximability Results without Candidate Centers

We then move to the “continuous” version of the problems. Here, centers can be placed
anywhere in the metric space.

Theorem 1.3 (k-means in Euclidean metric; Informal statement of Theorem 7.4). Assum-
ing UGC, given n points in O(log n) dimensional Euclidean space it is NP-hard to distinguish
between the following two cases:

• Completeness: The k-means objective is at most β,

• Soundness: The k-means objective is at least 1.07 · β,

where β is some positive real number depending only on n. Moreover, the above hardness holds
even when the n points have all their coordinate entries in {0, 1}.
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For the k-median problem without candidate centers, it is in fact more natural to con-
sider the `1-metric. Indeed, given a set of points in the `2-metric, computing the median
of this set of points is hard, even in the Euclidean plane and no exact algorithm is known.
However, in the case of the `1-metric, it follows easily, it is as simple as computing the
location of the mean of a set of points in the `2-metric. We thus show the following:

Theorem 1.4 (k-median in `1-metric; Informal statement of Theorem 7.3). Assuming UGC,
given n points in O(log n) dimensional `1-metric space it is NP-hard to distinguish between the
following two cases:

• Completeness: The k-median objective is at most β,

• Soundness: The k-median objective is at least 1.07 · β,

where β is some positive real number depending only on n. Moreover, the above hardness holds
even when the n points have all their coordinate entries in {0, 1}.

The above theorem is obtained through an intermediate hardness of approxima-
tion proof for k-median in the Hamming metric (see Theorem 5.2). Also, Theorem 1.3
can be extended to the Hamming metric so as to obtain a slightly higher inapproxima-
bility gap of 1.21 (see Theorem 5.1). Typically, it is possible to extend hardness in the
Hamming metric to hardness in the edit metric for similarity search type problems. We
formalize this intuition and extend Theorem 1.2 to the edit metric as well (see Theo-
rems B.2 and B.3).

Next, we discuss about the hardness results that we can obtain under the more stan-
dard NP 6= P assumption. From the exciting progress on the unique games conjecture
[KMS17, DKK+18b, DKK+18a, BKS19, KMS18, BK19], we can get the following uncondi-
tional NP-hardness for approximate vertex coverage problem.

Theorem 1.5 (Essentially combining [BK19] and [AS19]). There is some ε > 0 and d0 ∈ N,
such that for all dmin > d0, deciding an instance (G, k) of (0.9807− ε)-vertex coverage problem
on minimum degree dmin graphs is NP-hard.

Now we may define for every p ∈ R≥1 ∪ {∞}, ζ ′1(p) and ζ ′2(p). Again for our
purpose we only define them for p = 1, 2, and ∞: ζ1(1) = 1.04, ζ2(1) = 1.15, ζ1(2) ≈
1.02, ζ2(2) ≈ 1.05, and as p→ ∞, we have ζ1(p)→ ζ1(∞) = ζ1(1) and ζ2(p)→ ζ2(∞) =

ζ2(1).

We can then combine Theorem 1.5 with the embedding given in the proof of Theo-
rem 1.2 to get the hardness of approximation results of Theorem 1.2 where ζi(p) is now
replaced by ζ ′i(p) for i ∈ {1, 2}, and we are no longer reliant on UGC. Similarly, we also
get NP-hardness (without UGC) as in Theorems 1.3 and 1.4, but for approximation factors
roughly equal to 1.02.

Finally, we summarize in Table 1, the state-of-the-art inapproximability factors for
the discrete and continuous cases of the k-means and k-median problems in various metric
spaces.
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Metric

Problem Discrete
k-means

Discrete
k-median

Continuous
k-means

Continuous
k-median

General 1 + 8
e ≈ 3.94

[GK99]
1 + 2

e ≈ 1.73
[GK99]

Not Determined† Not Determined†

`0 1.56∗ 1.14∗ 1.21∗ 1.07∗

`1 1.56∗ 1.14∗ Not Determined 1.07∗

`2 1.17∗ 1.06∗ 1.07∗ Not Determined

`∞ 1 + 8
e ≈ 3.94 1 + 2

e ≈ 1.73 Not Determined Not Determined

Table 1: In this table we summarize the state-of-the-art inapproximability for k-means and
k-median clustering objectives in various metric spaces for both the discrete and contin-
uous versions of the problem. If a citation is not provided for an entry in the table then
it implies that the result was obtained in this paper. Also, hardness of approximation
factors obtained under the stronger assumption of the unique games conjecture are star
marked. Finally, the two entries which are dagger marked, i.e., the inapproximability
for k-means and k-median for the general metric in the continuous case, is not explicitly
determined in literature, but it might be possible to extend Feige’s hard instances of the
max-coverage problem [Fei98, GK99] to obtain 1 + 8

e and 1 + 2
e for k-means and k-median

respectively for the general metric in the continuous case as well.

1.2 Proof Overview

We now give an overview of our techniques.

1.2.1 Warm up

To better understand the state of the art for the hardness of approximation for clustering
problems and the different barriers to obtain hardness of approximation for k-median

and k-means, let us recall the result of Guha and Khuller [GK99] who showed the 1+2/e
hardness of approximation for k-median in general metric spaces.

Given an instance of the set cover problem, where S denote the sets and U denote the
universe, create an instance of the k-median (or k-means) instance by creating a candidate
center cS for each set S ∈ S and a point pu to be clustered for each element u ∈ U . Then,
set the distances from pu to each cS such that u ∈ S to be 1 and from pu to each cS such that
u /∈ S to be 3. Other distances are set so as to satisfy the triangle inequality. It is then easy
to see that the instance generated is a metric. Now, standard inapproximability result for
set cover or for variants such as set coverage imply that it is hard to distinguish between
an instance where there is a set of size k covering the universe, and an instance where
no set of size k covers more than a (1− 1/e) of the universe. Thus, this implies that it is
hard to distinguish between an instance of the k-median problem where all points are at
distance exactly 1 from their center, and so of cost |U | and an instance where for any set
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of k centers, the number of points at distance 1 is at most (1− 1/e)|U | (and the remaining
ones are at distance 3). Hence, hard to distinguish between an instance of cost |U | and
an instance of cost (1 + 2/e)|U |.

While this reduction yields high inapproximability results in general metric spaces,
and so in `∞-metrics of dimension Ω(n) through the Fréchet embedding of general met-
ric spaces to `∞, it seems unrealistic that it can be adapted to `1- or `2-metrics, or even
O(log n)-dimensional `∞-metrics.

This is mainly due to the high degree of the hard set cover instances. Indeed, let
d ∈ N and δ ∈ (0, 1) be such that d > 1

1−δ2 . Then it seems unlikely that we can embed
(in any dimension) every d-regular graph into `2 metric space such that every pair of
vertices which had an edge are at distance δ and every non-adjacent pair are at distance
1. The intuition for the previous statement stems from Theorem 5 in [Mae91], which is
a special case of the above claim. In other words, the above claim basically says that the
maximum gap one can hope for is poly(1/d). This is a constant only when d is a constant.

Another argument for this to be an important roadblock is given recent advances
on the parameterized complexity of the problem (parameterized by k), we observe that
high dimensional Euclidean space admits a PTAS for k-median and k-means, while ar-
bitrary metric spaces don’t (assuming Gap-ETH). The proof that general metric spaces
don’t admit a fixed-parameter approximation schemes is very similar and so, having an
embedding to high dimensional Euclidean space of the above type of instances would
contradict Gap-ETH.

1.2.2 Inapproximability in High Dimensions

To obtain our hardness results in high dimensions we will start from the α-vertex cov-
erage problem: given a graph G(V, E) and a parameter k as input, the goal is to dis-
tinguish between the following two cases. The Completeness case: There exists S :=
{v1, . . . , vk} ⊆ V such that each edge of E is adjacent to at least one vertex of S, and the
Soundness case: For every S := {v1, . . . , vk} ⊆ V at most an α fraction of the edges are
adjacent to a vertex of S.

This problem will serve for both the discrete and continuous cases (namely the prob-
lem where centers have to be picked at specific location and the problem where centers
can be picked arbitrarily). We have that the (0.9292− ε)-vertex coverage problem is NP-
hard (under unique games conjecture).

Our way of circumventing the problems with embedding the set cover instance (dis-
cussed in previous subsubsection) is to reduce from the maximization variant instead of
the covering variant as done in previous works [Tre00, GI03, ACKS15, LSW17]. The ob-
servation is the that a clustering problems are not covering problems therefore all previ-
ous works implicitly paid a factor equal to the degree of the graph in the approximation
factor while moving from the vertex cover problem to the clustering problem. By di-
rectly using results on the vertex coverage problem, we avoid this. It allows us to look at
embeddings where the degree does not inhibit, on the contrary we use the fact that the
degree is large to our benefit in some of of our results.
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Also, there was no techniques developed in previous works to address all `p-metrics
for the clustering problems. We make an interesting connection to contact dimension
of a graph, motivated by recent advances in hardness of approximation in fine-grained
complexity [DKL19, KM19]. Elaborating, from the vertex coverage instance G = (V, E)
we create the bipartite graph on partite sets V and E where we have an edge (i, {j, j′}) ∈
V × E if and only if i = j or i = j′ . Then, we show that embedding this graph so that
adjacent vertices are at distance at most β and non-adjacent vertices are at distance at
least λβ. From there our inapproximability result follows.

1.2.3 Dimension Reduction

Extending our result to O(log n)-dimensional space while preserving the gap is a chal-
lenge for `1- and `∞-metric since dimension reduction is very limited for these metrics.

Before we dive into this, let us make the following observation. For the `2-metric and
the k-means objective, the cost of the k-means objective can be expressed as the sum over
all clusters of the sum of pairwise distances of points in the cluster divided by the size of
the cluster (see Fact 5.6). Thus, it has long been known that dimension reduction using
the Johnson-Lindenstrauss lemma preserve the cost of the solutions by a (1 + ε)2 factor.
Hence, we will simply use this to obtain a hardness of approximation for the Euclidean
k-means problem in O(log n) dimension.

Inspired by the recent connections between communication complexity and the hard-
ness of approximation for (geometric) fine-grained and parameterized problems [ARW17,
KLM18, Che18] we develop a O(log n) dimensional embedding technique for all `p-
metrics. An appealing feature of this embedding is that it arises naturally out of the
transcript of a (one-way) communication protocol for two-players, where one player is
given a vertex of the graph and the other player is given an edge in the graph and the
goal is to determine if the vertex covers the edge. We develop non-trivial randomized
protocols using algebraic-geometric codes for the aforementioned communication prob-
lem, and show how to interpret the transcript to obtain an embedding for both inputs
(i.e., the vertex and the edge).

1.3 Organization of the Paper

Section 2 introduces some notations and relevant coding theory concepts and results that
will be used throughout the paper. Section 3 discusses graph embedding in `p-metrics,
which form a critical gadget for our hardness results. Section 4 shows our result for the
“discrete case”, namely when centers have to be picked from a prescribed set. Our results
of this section apply to high dimensional spaces, namely when the dimension of the
input points is Θ(n). Section 5 presents our proofs for the “continuous” versions, where
centers can be placed at arbitrary locations, also in the case of high dimensional inputs.
Sections 6 and 7 presents our dimensionality reduction framework. Finally, Section 8
presents some interesting open problems.
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2 Preliminaries

Notations. For any two points a, b ∈ Rd, the distance between them in the `p-metric is

denoted by ‖a− b‖p =
(

∑d
i=1 |ai − bi|p

)1/p
. Their distance in the `∞-metric is denoted

by ‖a− b‖∞ = max
i∈[d]
{|ai − bi|}, and in the `0-metric is denoted by ‖a− b‖0 = |{i ∈ [d] :

ai 6= bi}|, i.e., the number of coordinates on which a and b differ. For every n ∈ N, we
denote by [n] the set of first n natural numbers, i.e., {1, . . . , n}. We denote by ([n]r ), the
set of all subsets of [n] of size r. Let ei denote the vector which is 1 on coordinate i and 0
everywhere else. We denote by

(
~1
2

)
, the vector that is 1/2 on all coordinates.

2.1 Error Correcting Codes

We recall here a few coding theoretic notations. An error correcting code of block length
` over alphabet set Σ is simply a collection of codewords C ⊆ Σ`. The relative distance
between any two points is the fraction of coordinates on which they are different. The
relative distance of the code C is defined to be the smallest relative distance between any
pair of distinct codewords in C. The message length of C is defined to be log|Σ| |C|. The
rate of C is defined as the ratio of its message length and block length.

Theorem 2.1 ([GS96, SAK+01]). For every prime square q greater than 49, there is a code
family over alphabet of size q of positive constant (depending on q) rate and relative distance at
least 1− 3√

q . Moreover, the encoding time of any code in the family is polynomial in the message
length.

The following is an informal argument justifying the existence of the above code
family. Fix q a prime square greater than 49.

The authors in [GS96] provide us with a family of curves C = {Ci}i∈N over Fq such
that for every ` ∈ N, we have that C` has at least ` rational points and genus at most
g := 2`/√q. Fix ` ∈ N. Let P be a rational point on C`. Consider the Riemann-Roch
space L (m · P) where m = 3√̀

q . This has dimension at least m + 1− g = `/√q + 1. Also,
any two elements have at most m common zeroes among the rational points of C`. Pick
any set S of ` Fq-rational points of C` that does not contain P. Then the code is given by
the evaluations of elements of L (m · P) at the points of S. The dimension of the code is
greater than `/√q. Therefore the rate is greater than 1/√q. Also the relative distance of the
code is at least 1− m/` = 1− 3/√q as any two codewords agree on at most m coordinates.
Finally, the efficient encoding of such a code was given in [SAK+01].

In fact, random codes obtaining weaker parameters than the parameters stated above
(see Gilbert-Varshamov bound [Gil52, Var57]) suffice for us2, but there is no known ex-
plicit efficient construction of such codes to the best of our knowledge. It may be pos-
sible to use concatenated codes (arising from Reed-Solomon codes) which approach the

2To be precise, we need for some infinite increasing sequence (qi)i∈N and some increasing function f :
N → N, a code family over alphabet of size qi of positive constant (depending on q) rate, relative distance
at least 1− 1

f (qi)
, and efficient encoding.
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Gilbert-Varshamov bound in the proofs in this paper instead of the aforementioned alge-
braic geometric codes.

3 Gadget Constructions via Graph Embeddings

In this section, we first introduce the notion of graph embedding that is of interest to this
paper. And then we prove some bounds on the embedding for important `p-metrics.

Let Kr
t denote the complete r-uniform hypergraph on t vertices (i.e., has all (t

r) pos-
sible hyperedges). Let I be an operator on hypergraphs which maps every hypergraph
to its incidence graph. More formally, for any hypergraph H(V, E) we define I(H) to
be the bipartite graph on partite sets V and E where we have an edge (i, J) ∈ V × E in
I(G) (i.e., J ⊆ V) if and only if i ∈ J. For every t, r ∈ N, consider the incidence bi-
partite graph of the complete hypergraph on t vertices of uniformity (arity) r, which we
denote by H∗(t, r) := I(Kr

t ). The vertex set of H∗(t, r) is the partite sets A∗(t) := [t] and
B∗(t, r) := ([t]r ) and (i, J) is an edge in H∗(t, r) if and only if i ∈ J.

We would like to analyze the embedding of H∗(t, r) into `p-metric spaces for all
p ∈ R≥1 ∪ {∞}.

Definition 3.1 (Gap Realization of a Bipartite graph). Let p ∈ R≥1 ∪{∞}. For any bipartite
graph G = (A∪̇B, E) and λ ≥ 1, a mapping τ : V → Rd is said to λ-gap-realize G (in the
`p-metric) if for some β > 0, the following holds:

(i) For all (u, v) ∈ E, ‖τ(u)− τ(v)‖p = β.

(ii) For all (u, v) ∈ (A× B) \ E, we have ‖τ(u)− τ(v)‖p ≥ λ · β.

Moreover, we require that τ λ-gap-realize G in the `p-metric efficiently, i.e., there is a polynomial
time algorithm (in the size of G) which can compute τ.

We remark here that the above definition is a variant of the notion gap contact di-
mension introduced in [KM19] in the sense that the authors in [KM19] required that
for all distinct u, v both from A or both from B, ‖τ(u) − τ(v)‖p ≥ λ · β and for all
(u, v) ∈ (A × B) \ E, we have ‖τ(u) − τ(v)‖p > β. They were also interested in the
size of the dimension on to which the graph was embedded. Finally, we note that the no-
tion of contact dimension (i.e., with any gap greater than 1) has been studied in literature
since the early eighties [Pac80, Mae85, FM86, FM88, Mae91, DKL19].

Definition 3.2 (Gap number). Let p ∈ R≥1 ∪ {∞}. For any bipartite graph G = (A∪̇B, E),
its gap number in the `p-metric gp(G) is the largest λ for which there exists a mapping τ that
λ-gap-realizes G in a d-dimensional `p-metric space3 where d ≤ |A|+ |B|.

In this paper, we are interested in analyzing gp(H∗(t, r)) for all t, r ∈ N and p ∈
R≥1 ∪ {∞}. We prove the following upper bound4:

3For all the main results of this paper to hold, we do not require the specified upper bound on the
dimension of the mapping realizing the gap number; any finite dimensional realization suffices.

4More generally this upper bound holds for any metric (and not necessarily just the `p-metrics).
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Proposition 3.3. Let t ≥ 3, r ≥ 2, and p ∈ R≥1 ∪ {∞}. If r < t then gp(H∗(t, r)) ≤ 3.

Proof. Let S = [r− 1]. Let T = S ∪ {r} and T′ = S ∪ {r + 1}. Let τ be a λ-gap-realization
of H∗(t, r) in the `p-metric. Then, we have for some β > 0, that

‖τ(r)− τ(T)‖p = ‖τ(r− 1)− τ(T)‖p = ‖τ(r− 1)− τ(T′)‖p = β.

But we also have have that ‖τ(r)− τ(T′)‖p ≥ λβ. From triangle inequality this implies
λ ≤ 3.

We can meet the above bound in the `∞-metric as shown below.

Lemma 3.4. For all t ≥ 3 and r ≥ 2, we have g∞(H∗(t, r)) = 3.

Proof. For the `∞-metric consider the mapping τ : A∗(t) ∪ B∗(t, r) → Rt defined as fol-
lows. For every u ∈ A∗(t), we define

τ(u) = eu +

(
~1
2

)
,

and for every J ∈ B∗(t, r) (i.e., J ∈ ([n]r )), we define

τ(J) = ∑
i∈J

ei.

Fix some u ∈ A∗(t) and J ∈ B∗(t, r) such that u ∈ J. Then we have that

η := τ(J)− τ(u) =

(
∑

i∈J\{u}
ei

)
−
(
~1
2

)
.

Since η ∈ {−1/2, 1/2}t, we have that ‖η‖∞ = ‖τ(J)− τ(u)‖∞ = 1/2.

On the other hand if we fix some u ∈ A∗(t) and J ∈ B∗(t, r) such that u /∈ J then we
have that

‖τ(J)− τ(u)‖∞ ≥ |(τ(J))u − (τ(u))u| =
3
2

.

Thus we have that τ, 3-gap-realizes H∗(t, r) in the `∞-metric. Finally, the equality on
the gap number follows from Proposition 3.3.

Next, we consider the `1-metric and show that we can meet Proposition 3.3 for r = 2.

Lemma 3.5. For all t ≥ 3 and r ≥ 2, we have g1(H∗(t, r)) ≥ r+1
r−1 .

Proof. For the `1-metric consider the mapping τ : A∗(t) ∪ B∗(t, r) → {0, 1}t defined as
follows. For every u ∈ A∗(t), we define

τ(u) = eu,
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and for every J ∈ B∗(t, r) (i.e., J ∈ ([n]r )), we define

τ(J) = ∑
i∈J

ei.

Fix some u ∈ A∗(t) and J ∈ B∗(t, r) such that u ∈ J. Then we have that

τ(J)− τ(u) = ∑
i∈J\{u}

ei ⇒ ‖τ(J)− τ(u)‖1 = |J| − 1 = r− 1.

On the other hand if we fix some u ∈ A∗(t) and J ∈ B∗(t, r) such that u /∈ J then we
have that

‖τ(J)− τ(u)‖1 =

∥∥∥∥∥
(

∑
i∈J

ei

)
− eu

∥∥∥∥∥
1

= |J|+ 1 = r + 1.

Thus we have that τ,
( r+1

r−1

)
-gap-realizes H∗(t, r) in the `1-metric.

Now we focus our attention to bounding the gap number in the Euclidean metric.
We focus on bounding the gap number of H∗(t, r) where r = 2, as we only use it later for
this fixing of r.

Lemma 3.6. For all t ≥ 3, we have g2(H∗(t, 2)) ≥ 2√
(
√

2−1)2+1
≈ 1.848.

Proof. Consider the mapping τ : A∗(t) ∪ B∗(t) → {0, 1}t defined as follows. For every
u ∈ A∗(t), we define

τ(u) =
√

2 · eu,

and for every {u, v} ∈ B∗(t), we define

τ({u, v}) = eu + ev.

Let i, j, j′ ∈ [t] be three distinct numbers. We have

‖τ(i)− τ({i, j})‖2 = ‖ei(
√

2− 1) + ej‖2 =

√
(
√

2− 1)2 + 1, and

‖τ(i)− τ({j′, j})‖2 = ‖
√

2 · ei + ej + ej′‖2 = 2.

This implies τ,
(

2√
(
√

2−1)2+1

)
-gap realizes H∗(t, 2) in the `2-metric.

We wrap up our computation of gap numbers by showing that as p grows the gap
number of H∗(t, r) in the `p-metric approaches 3. The proof of the below lemma is very
similar to the proof of Lemma 3.4 but we provide it nonetheless for the sake of complete-
ness.

Lemma 3.7. For all t ≥ 3 and r ≥ 2, we have that for every ε > 0 there exists p ∈ N such that
gp(H∗(t, r)) > 3− ε.
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Proof. Fix t ≥ 3, r ≥ 2, and ε > 0. Let p ∈ N such that t1/p < 1 + ε/3. Consider the
mapping τ : A∗(t) ∪ B∗(t, r)→ Rt defined as follows. For every u ∈ A∗(t), we define

τ(u) = eu +

(
~1
2

)
.

and for every J ∈ B∗(t, r) (i.e., J ∈ ([n]r )), we define

τ(J) = ∑
i∈J

ei.

Fix some u ∈ A∗(t) and J ∈ B∗(t, r) such that u ∈ J. Then we have that

η := τ(J)− τ(u) =

(
∑

i∈J\{u}
ei

)
−
(
~1
2

)
.

Since η ∈ {−1/2, 1/2}t, we have that ‖η‖p = ‖τ(J)− τ(u)‖p = t1/p/2.

On the other hand if we fix some u ∈ A∗(t) and J ∈ B∗(t, r) such that u /∈ J then we
have that

‖τ(J)− τ(u)‖p ≥ |(τ(J))u − (τ(u))u| =
3
2

.

Thus we have that τ,
(

3
t1/p

)
-gap-realizes H∗(t, r) in the `p-metric. Finally note that

3
t1/p > 9

3+ε = 3− 3ε
3+ε > 3− ε.

For most of the results in this paper, we will only use the gap numbers of H∗(t, r)
when r = 2, and therefore for compactness of statements in the future, we introduce the
following.

Definition 3.8. For all p ∈ R≥1 ∪ {∞}, we define γp = min
t≥3

gp(H∗(t, 2)).

Finally, we conclude this section by showing a ‘hereditary’ property of our embed-
ding which will be invoked for all applications.

Proposition 3.9. Let G be a r-uniform hypergraph on t ≥ 3 vertices and let H := I(G). Let
τ be a λ-gap realization of H∗(t, r) in the `p-metric. Then τ restricted to the vertices of H is a
λ-gap realization of H in the `p-metric. In particular, for r = 2, there exists a mapping τ∗ which
is a γp-gap realization of H in the `p-metric.

We skip the proof of the above proposition as it follows in a straightforward manner
from Definition 3.1.

4 Inapproximability of k-means and k-median with Candidate Cen-
ters in High Dimensions

In this section, we prove Theorem 1.2 but in high dimensions by a reduction from the
gap vertex coverage problem. First, we define the gap vertex coverage problem.
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Let G(V, E) be a graph. Let S ⊆ V. We define the cover of S, denoted by cov(S) as
follows:

cov(S) = {e ∈ E | ∃v ∈ S such that v ∈ e}.

Definition 4.1 (α-vertex coverage). In the α-vertex coverage problem, we are given a graph
G(V, E) and a parameter k as input. We would like to distinguish between the following two
cases:

• Completeness: There exists S := {v1, . . . , vk} ⊆ V such that cov(S) = E.

• Soundness: For every S := {v1, . . . , vk} ⊆ V we have |cov(S)| ≤ α · |E|.

We recall that the minimum degree of a graph is said to be dmin ∈ N if every vertex
in the graph has degree at least dmin. Strong inapproximability results were given for
the vertex coverage problem in5 [AKS11]. Recently, Austrin and Stanković provided the
tight inapproximability result, which is stated below.

Theorem 4.2 (Austrin and Stanković [AS19]). There is some ε > 0 and d0 ∈N, such that for
all dmin > d0, assuming the unique games conjecture, deciding an instance (G, k) of (0.9292−
ε)-vertex coverage problem on minimum degree dmin graphs is NP-hard.

We remark here that [AS19] computed the inapproximability factor up to 3 decimal
places, and the above hardness of approximation factor follows from additional com-
putation. Also note that in [AS19] the hardness is not shown for minimum degree dmin

graphs6 but if we look at the removal of vertex weights step in Section 4 of [AKS11] then
we can take large enough number of copies (> dmin) of each vertex (proportional to its
weight) and this will ensure the theorem as stated above.

Another important remark is that the hardness results of [AKS11, AS19] are for
multigraph instances of the vertex coverage problem. However, in this paper, we treat
that the hard instances of Theorem 4.2 are simple graphs for the sake of brevity. This
assumption is reasonable, because in all our reductions, we realize every edge of the
graph as a point in space, and in the case of a multigraph, we realize two edges with the
same pair of end points, as two distinct points, where one of the points is just a slightly
perturbed version of the other point. It is then clear that all points which correspond
to edges with the same pair of end points, will be in the same cluster, in the optimal
solution.

Next we define for every p ∈ R≥1 ∪ {∞},the quantities ζ1(p) and ζ2(p) as follows:

ζ1(p) := 0.9292 + (γp · 0.0708) and ζ2(p) := 0.9292 + (γ2
p · 0.0708).

Again notice that ζ1(1) = 1.1416, ζ2(1) = 1.5664, ζ1(2) ≈ 1.06, ζ2(2) ≈ 1.1709, and
as p→ ∞, we have ζ1(p)→ ζ1(∞) = ζ1(1) and ζ2(p)→ ζ2(∞) = ζ2(1).

5The result is implicit in [AKS11], and is explicitly written in [Man19].
6We require the hard instances of gap vertex coverage problem to have this additional minimum degree

requirement only for proving our inapproximability results of clustering objectives in the continuous case
(i.e., Theorems 1.3 and1.4), and do not need it to prove our hardness of approximation results in the discrete
case (i.e., Theorem 1.2).
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Now, we state our inapproximability results for k-means and k-median in high di-
mensions.

Theorem 4.3 (k-means with candidate centers in nO(1) dimensional `p-metric space). Let
p ∈ R≥1 ∪ {∞}. Assuming the unique games conjecture, given a point-set P ⊂ Rm of size n
(and m = poly(n)), a collection C of m candidate centers in Rm, and a parameter k as input, it is
NP-hard to distinguish between the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

p ≤ β2n,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

p ≥ ζ2(p) · β2n,

for some constant β > 0.

Theorem 4.4 (k-median with candidate centers in nO(1) dimensional `p-metric space). Let
p ∈ R≥1 ∪ {∞}. Assuming the unique games conjecture, given a point-set P ⊂ Rm of size n
(and m = poly(n)), a collection C of m candidate centers in Rm, and a parameter k as input, it is
NP-hard to distinguish between the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖p ≤ βn,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖p ≥ ζ1(p) · βn,

for some constant β > 0.

Proof of Theorems 4.3 and 4.4 . Starting from a hard instance of (0.9292− ε)-vertex cover-
age problem G = (V, E) which is guaranteed by Theorem 4.2, we create an instance of
the k-means, or of the k-median problem using the embedding given in Proposition 3.9
as follows. Let τ be the embedding of G̃ := I(G) prescribed by Proposition 3.9. We
think of G̃ as G̃(V ∪ B, E) where V is simply the vertex set of the (0.9292− ε)-vertex cov-
erage instance, and B is obtained by defining a vertex bi,j for each edge (ui, uj) of the
(0.9292− ε)-vertex coverage instance, and E is obtained by defining an edge from each
vertex ui ∈ V to each vertex bi,j ∈ B.

The k-median or k-means instance consists of the set of candidate centers C and the
set of points to be clustered P defined as follows:

P = {τ(v) | v ∈ B} and C = {τ(u) | u ∈ V}.
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We now analyze the k-means and k-median cost of the instance. Consider the complete-
ness case first.

Completeness. In this case, we know that there is a set S ⊂ V such that |S| = k and S
covers all the edges of the (0.9292− ε)-vertex coverage instance G. We focus on the set
of centers C ′ induced by S, namely

C ′ = {τ(ui) | ui ∈ S} ⊆ C.

Since each edge (ui, uj) is adjacent to at least one element of S, we have that for every
τ(bi,j), the following holds:

min
c∈C ′
‖τ(bi,j)− c‖2

p = β2 and min
c∈C ′
‖τ(bi,j)− c‖p = β,

for some β > 0. The k-means cost of the overall instance is thus β2 · |P|, while the k-median

cost is β · |P|. Finally, we turn to the soundness analysis.

Soundness. Consider any set of centers C ′ = {c1, . . . , ck} ⊂ C that is optimal for the
k-median or k-means objective. Let S := {v1, . . . , vk} be the set of vertices corresponding
to the centers of C ′, namely

S = {v ∈ V | τ(v) ∈ C ′}.

By the assumptions of the soundness case, S covers at most (0.9292− ε)|E| number of
edges of G. For each such edge, e = (ui, uj), we have that the contribution of τ(e) to
the k-means cost is exactly β2, and to the k-median cost is exactly β. By the definition
of the gadget τ, we have that for any other edge e = (ui, uj) that is not covered by S,
the contribution of τ(e) to the k-median and k-means cost is respectively γp · β and γ2

p · β2.
Therefore, the optimal solution w.r.t. k-median objective has cost at least ζ1(p) · β · |P|, and
optimal solution w.r.t. k-means objective has cost at least ζ2(p) · β2 · |P|, as claimed.

We would like to conclude this section by remarking that the hardness of approxi-
mation results for the `∞-metric given above are strictly weaker than the known hardness
of approximation factors for this metric [GK99]. By a straightforward application of the
Fréchet embedding7 to the constructions in [GK99], we obtain the NP-hardness of ap-
proximating k-means (resp. k-median) to a factor better than 1 + 8/e (resp. 1 + 2/e). These
inapproximability factors are much higher than the ones given in Theorems 4.3 and 4.4.
However, our main contribution as far as the `∞-metric is concerned is to obtain the same
inapproximability factor as [GK99] but in low dimensions (i.e., O(log n) dimensions).
This result is proven in Section 7.3.

7The Fréchet embedding maps n points in any metric into the `∞-metric with polynomial in n blowup in
the dimension such that all pairwise distances are preserved.
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5 Inapproximability of k-median and k-means without Candidate
Centers in High Dimensions

In this section, we prove Theorems 1.3 and 1.4 but in high dimensions. In particular,
in Section 5.1 we show our inapproximability results for the k-median and k-means ob-
jectives without candidate centers in the Hamming metric. In Section 5.2, we show our
inapproximability result for the k-median objective without candidate centers in the `1-
metric. Finally, in Section 5.3, we show our inapproximability result for the k-means

objective without candidate centers in the `2-metric.

5.1 Inapproximability in Hamming metric

In this subsection, we prove our inapproximability results for the k-median and k-means

objectives without candidate centers in the Hamming metric. Our proof considers the
same reduction from the gap vertex coverage problem as described in the proofs of The-
orem 4.3 and 4.4, but performs the completeness and soundness analysis for the case
where there is no candidate centers set given as part of the input.

Theorem 5.1 (k-means without candidate centers in nO(1) dimensional Hamming metric
space). Assuming the unique games conjecture, given a point-set P ⊂ {0, 1}m of size n (and
m = poly(n)) and a parameter k as input, it is NP-hard to distinguish between the following two
cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ {0, 1}m and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

0 ≤ n,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ {0, 1}m and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

0 ≥ 1.21 · n.

Theorem 5.2 (k-median without candidate centers in nO(1) dimensional Hamming metric
space). Assuming the unique games conjecture, given a point-set P ⊂ {0, 1}m of size n (and
m = poly(n)) and a parameter k as input, it is NP-hard to distinguish between the following two
cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ {0, 1}m and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖0 ≤ n,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ {0, 1}m and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖0 ≥ 1.07 · n.
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Proof of Theorems 5.1 and 5.2. Starting from an instance of (0.9292 − ε)-vertex coverage
problem G = (V, E), we create an instance of the k-means, or of the k-median problem
using the 3-gap realization mapping τ for the `1-metric given in Lemma 3.5 (by setting
r = 2) as follows. First note that τ maps points to the Boolean hypercube and for a pair
of points on the Boolean hypercube the distances in the Hamming and `1-metric are the
same. Let τ be the embedding of G̃ := I(G) prescribed by Lemma 3.5. We think of G̃
as G̃(V ∪ B, E) where V is simply the same set of vertices as the vertex set of vertices of
the vertex coverage instance, B is obtained by defining a vertex bi,j for each edge (ui, uj)

of the vertex coverage instance, and E is obtained by defining an edge from each vertex
ui ∈ V to each vertex bi,j ∈ B.

The k-median or k-means instance without candidate centers is just the set of points
P := {τ(v) | v ∈ B} that we would like to cluster. In particular notice that for all v ∈ B
we have ‖τ(v)‖0 = 2. We now analyse the k-means and k-median cost of the instance.
Consider the completeness case first.

Completeness. In that scenario, pick a vertex coverage V∗ of the instance and focus on
the set of centers C∗ induced by V∗, namely C∗ = {τ(ui) | ui ∈ V∗}. Since by definition
of vertex coverage, each edge (ui, uj) is adjacent to at least one element of V∗ and so for
each point τ(bi,j) we have that minc∈C∗ ‖τ(bi,j)− c‖2

0 = 1 = minc∈C∗ ‖τ(bi,j)− c‖0. The
k-means and k-median cost of the overall instance is at most |E|. Thus, let’s turn to the
soundness case.

Soundness. Consider any set of centers C∗ = {c1, . . . , ck} ⊆ {0, 1}|V| that is optimal
for the k-median or k-means objective. Fix some arbitrary i ∈ [k]. Note that if ‖ci‖0 ≥ 4
then, ‖ci − τ(u)‖ ≥ 2 for any u ∈ B, and thus we could replace ci by the all zeroes vector
and the cost of k-means or k-median would not increase. Therefore we assume all the
centers have Hamming weight at most 3. We partition C∗ into C0, C1, C2, and C3 where
c ∈ C∗ belongs to Cj if the Hamming weight of c is j. Consider an optimal classification
σ : P → C∗. For every point c ∈ C∗ let Tσ

c ⊆ B be defined as follows:

Tσ
c = {u ∈ B | σ(τ(u)) = c}.

We propose the following claim.

Claim 5.3. Given an optimal classification σ we can construct an optimal classification σ∗ (which
might be same as σ) such that for any c ∈ C3 we have |Tσ∗

c | ≤ 3 and for any c ∈ C2 we have
|Tσ∗

c | ≤ 1.

Before we prove the above claim, we see how it completes the proof. For every
c ∈ C1 if its 1 is on coordinate i we associate it with the vertex i in G. Now we partition
Tσ∗

c into Yσ∗
c and Nσ∗

c where for any u ∈ B such that σ∗(τ(u)) = c we have that u ∈ Yσ∗
c

if c ∈ u (think of c as the vertex in G) and u ∈ Nσ∗
c otherwise. By definition of the

soundness case, we have that ∑c∈C1
|Yσ∗

c | is at most (0.9292 − ε)|E|. Notice that there
are at most 3|C3|+ |C2| edges which are not assigned to a center in C1 ∪ C0. We upper
bound |C3|, |C2 by |V| and thus we have that there are at most 4|V| edges which are not
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assigned to a center in C1 ∪ C0. If an edge is assigned a center in C0 then its distance
from the center is 2. If an edge is assigned a center in c ∈ C1 and it is contained in
Yσ∗

c then its distance from the center is 1; but if it is contained in Nσ∗
c then its distance

from the center is 3. Therefore we have that there are at least (0.0708 + ε)|E| − 4|V|
edges that are distance at least 2 from their allocated center according to the clustering
σ∗. Notice that in Theorem 4.2 we can choose the minimum degree of G to be as large
a constant as we want. We choose it to be greater than 8/ε. In this case we have that
|E| ≥ 4|V|/ε. Therefore, the optimal solution w.r.t. k-median objective has cost at least
(2(0.0708) + 0.9292) · |E| = 1.0708 · |E|, and optimal solution w.r.t. k-means objective has
cost at least (4(0.0708) + 0.9292) · |E| = 1.2124 · |E|, as claimed.

We can thus conclude the proof of the above theorem by proving Claim 5.3.

Proof of Claim 5.3. Now we show how to construct σ∗ from σ. Consider c ∈ C3. Let
the three coordinates where c is 1 be i, j, j′. We think of i, j, j′ as vertices in G. Let F =

{(i, j), (i, j′), (j, j′)}. For any edge not in F its distance to C3 is 3 from c. If any of the points
corresponding to i, j, j′ under τ was picked in our set of centers then, we could replace
c by another point in τ(i), τ(j), τ(k). If this is not the case then only the edges in E ∩ F
would be at distance 1 from c, and for the rest we could choose some point in C1 or C0.
Thus we would obtain a new optimal classification in which points assigned to c would
be at most 3. Similar (and simpler) argument holds for c ∈ C2 as any two edges under τ

are at distance 2.

5.2 Inapproximability of k-median in `1-metric

In this subsection, we prove Theorem 1.4 but in high dimensions. At a high level, our
proof simply considers the hard instances built in the Hamming metric in Theorem 5.2,
and notes that the optimum cluster centers for those instances in the `1-metric must have
coordinate entries in {0, 1}.

Theorem 5.4 (k-median without candidate centers in nO(1) dimensional `1-metric space).
Assuming the unique games conjecture, given a point-set P ⊂ {0, 1}m of size n (and m =

poly(n)) and a parameter k as input, it is NP-hard to distinguish between the following two
cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ Rd and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖1 ≤ n,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ Rd and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖1 ≥ 1.07 · n.

Proof. The proof follows from a simple observation and mimicking the proof of Theo-
rem 5.2. Recall first that given a set of z integers X = {x1, . . . , xz}, we have that a median
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of X is a point x∗ that minimizes ∑z
i=1 |x∗ − xi|. Note that if X contains an even number

of points, then the median is not unique, nonetheless, there is always at least one point
of X minimizing ∑z

i=1 |x∗ − xi|. We refer to these points as the discrete medians.

Thus, consider a set of points P in a dimensional `1-metric space. The points p∗ that
minimizes ∑p∈P ‖p− p∗‖1 is therefore the point p∗ whose ith coordinate is the median of
the ith coordinates of the points in P.

Hence, consider an instance of the k-median problem in Hamming metric as defined
in the proof of Theorem 5.2 and apply the same construction to obtain an instance in
`1. We have that for this instance all the coordinates of the points to be clustered are in
{0, 1}. Thus, for any subset (i.e. cluster) of the points of the instance, an optimal center
of the set is such that its ith coordinate is the median of a set of values in {0, 1}. From
the above discussion, we conclude that assuming that the ith coordinate is also in {0, 1}
is without loss of generality. It follows that for any clustering, we can assume that the
centers induced by the partition have coordinates in {0, 1}.

Therefore, the rest of the proof follows by applying the same reasonning than in the
proof of Theorem 5.2 since the instance created behaves in `1 metric like the instance
described in the proof of Theorem 5.2 in Hamming metric.

5.3 Inapproximability of k-means in Euclidean metric

In this section, we prove Theorem 1.3 but in high dimensions.

Theorem 5.5 (k-means without candidate centers in nO(1) dimensional `2-metric space).
Assuming the unique games conjecture, given a point-set P ⊂ {0, 1}m of size n (and m =

poly(n)) and a parameter k as input, it is NP-hard to distinguish between the following two
cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ Rd and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

2 ≤ βn,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ Rd and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

2 ≥ 1.07 · βn,

for some constant β > 0.

Proof. Let ε > 0 and (G = (V, E), k) be an instance of the (0.9292− ε)-vertex coverage
problem on graph of minimum degree at least ε−1

0 := 20
ε4 . By Theorem 4.2, for some

ε > 0, we have that deciding such an instance is NP-hard, assuming the unique games
conjecture.

We build a set of points P as follows8: for each edge eui ,uj , we create a point pi,j

8The construction described here is equivalent to using the 1.848-gap realization mapping τ for the `2-
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whose ith and jth coordinates are both 1 and whose remaining coordinates are all 0. We
say that pi,j is the point corresponding to edge eui ,uj . We thus have the following fact:

Fact 5.6. Consider two edges e, f . If e = (ui, uj) and f = (ui, u`) then ‖pi,j − pi,`‖2
2 = 2. If

e = (ui, uj) and f = (ur, u`), where r, ` /∈ {i, j} then ‖pi,j − pr,`‖2
2 = 4.

We now prove the completeness and soundness cases.

Completeness. In the completeness case, we show that the cost of the optimal solution
is at most |E| − |V|/2. By definition, there exists a vertex cover S of size k = n/2 of the
instance. Define a partition of the edge set into k parts by assigning each edge it to one
of its extremity that is in S, let {C1, . . . , Ck} be the partition induced by the assignment.
Note that since there exists such a vertex cover, such a partition is indeed possible. We
now bound the k-means cost of solution {C1, . . . , Ck}. We claim that for each cluster Ci,
cost(Ci) = mi − 1, where mi = |Ci|.

Indeed, let vj be the vertex covering all edges of Ci. Observe first that the jth coordi-
nate of the centroid of Ci is 1. The remaining coordinates of the centroid of Ci are 0 except
for mi of them which are 1/mi.

Then, for a given edge (vj, v`), the k-means cost of the corresponding point is (1−
1/mi)

2 + (mi − 1)(1/mi)
2 = 1− 2/mi + m2

i + 1/mi − 1/m2
i which is 1− 1/mi. Summing

up over all the mi edges of Ci yields that cost(Ci) = mi − 1. Therefore, the total k-means
cost of the clustering is m− n/2.

Soundness In the soundness case, we show that the optimal k-means cost is at least
(1.114− 2ε)|E| − |V|. We will use the following classic fact about the k-means objective.

Fact 5.7. Given a clustering {C1, . . . , Ck}, the k-means cost is exactly

k

∑
i=1

1
2|Ci| ∑

p∈Ci

∑
q∈Ci

‖p− q‖2
2

Now, consider an optimal clustering {C1, . . . , Ck} of the instance in the soundness
case. For each cluster Ci, we define the graph Gi to be the subgraph of the graph G
induced by the edges whose corresponding points are in Ci. We let ∆i be the maximum
degree in Gi. We have the following claim.

Claim 5.8. For any cluster Ci such that |Ci| ≥ 10/ε3, we have cost(Ci) ≥ 2(1− ε)|Ci| − (1 +
ε)∆i.

Assume Claim 5.8 is true for a moment. Then, the proof of the lemma can be com-
pleted as follows. First, observe that since the number of clusters is k = n/2 and the
graph G has at least 10n/ε4, the total number of edges in clusters Ci such that |Ci| < 10/ε3

is at most εm/2. Let’s assume the cost for these edges is 0 and let’s focus on the cost of

metric given in Lemma 3.6 in the following way. The k-median or k-means instance without candidate centers
is just the set of points P := {τ(e) | e ∈ E} that we would like to classify. In particular notice that for all
e ∈ E we have ‖τ(e)‖2

2 = 2.
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clusters of size at least 10/ε3, let k′ be the number of such clusters. Summing up over all
such clusters we have that the total k-means cost is at least ∑k′

i=1 2(1− ε)|Ci| − (1+ ε)∆i ≥
(2− 3ε)m − (1 + ε)∑k′

i=1 ∆i. Then, to provide a lower bound on ∆i, consider the set S
obtained by picking a vertex of degree ∆i from each Gi. This set has size at most n/2
and so by definition of the soundness case the sum of the degrees of the vertices in S
in G is at most (0.9292− ε)m. It follows that the cost of the optimal solution is at least
2m− ((1 + ε)0.9292− 4ε)m which is at least (1.0708−O(ε)) ·m as stated.

We can thus conclude the proof of the above theorem by proving Claim 5.8.

Proof of Claim 5.8. Consider a cluster Ci such that |Ci| ≥ 10/ε3. Consider an edge e =

(u`, uj) whose corresponding point p is in Ci. By Facts 5.7 and 5.6 we have that

1
2|Ci| ∑

q∈Ci

‖p− q‖2
2 =

1
2|Ci|

(
2(di,` + di,j − 2) + 4(|Ci| − di,` − di,j + 2)

)
,

where di,`, di,j are the degrees of vertices u`, uj respectively in Gi. Now, summing up over
all edges in Ci this gives a total cost for the cluster Ci of

|Ci|
2|Ci|

(4|Ci|)−
2

2|Ci| ∑
e=(u`,uj)∈Ci

(di,` + di,j − 2)

which is
2|Ci|+ 2− 1

|Ci|∑uj

d2
i,j.

We now need to provide an upper bound on 1
|Ci | ∑uj

d2
i,j. First, consider the set S of

vertices uj such that di,j < ε|Ci| and let m0
i be the number of edges with at least one

extremity in S. We have that

1
|Ci| ∑

uj∈S
d2

i,j ≤
ε|Ci|
|Ci| ∑

uj∈S
di,j ≤ 2εm0

i . (1)

We then bound ∑uj /∈S d2
i,j. Let S′ be the set of vertices with degree larger than ε|Ci| in

Gi. Moreover, let m1
i be the set of edges with both extremities in S′. We start by arguing

that m1
i < εm.

We have that ∑uj∈S′ di,j ≤ m1
i + |Ci| and so, there exists a vertex uj in S′ such that

di,j ≤ (m1
i + |Ci|)/|S′|. Thus, since di,j ∈ S′, we have that di,j > ε|Ci| and so (m1

i +

|Ci|)/|S′| ≥ ε|Ci| ≥ εm1
i . This implies that |S′|m1

i ≤ (m1
i + |Ci|)ε−1. Now, assume to-

wards contradiction that m1
i > ε|Ci|. Then |S′| < ε−1(ε−1 + 1). Combining this with the

fact that ε|Ci| ≤ (m1
i + |Ci|)/|S′|, we have that |Ci|(|S′| − 1) ≤ m1

i ≤
|S′|(|S′|−1)

2 . Hence,
|Ci| ≤ |S′|/2 ≤ ε−1(ε−1 + 1) and so |Ci| ≤ 10ε−3, a contradiction. Therefore m1

i ≤ ε|Ci|.

We can now bound ∑uj /∈S d2
i,j. We have

∑
uj /∈S

d2
i,j ≤ ∆i ∑

uj /∈S
di,j ≤ ∆i(1 + ε)|Ci|. (2)
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Finally, combining Equations 1 and 2 we deduce that 1
|Ci | ∑uj

d2
i,j ≤ 2ε|Ci|+ (1+ ε)∆i.

Therefore, cost(Ci) ≥ 2(1− ε)|Ci| − (1 + ε)∆i.

5.3.1 k-means in Euclidean Metric over Reals in Low Dimensions

In this subsection, we prove Theorem 1.3 albeit over real vectors.

Theorem 5.9 (k-means in Euclidean metric in O(log n) dimensions without Candidate
Centers over Reals). Let ε be an arbitrarily small constant. Assuming the unique games con-
jecture, given a point-set P ⊂ Rd of size n (and d = O(log n)) and a parameter k as input, it is
NP-hard to distinguish between the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ Rd and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

2 ≤ βn,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ Rd and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

2 ≥ (1.07− ε) · βn,

for some constant β > 0.

Proof. By Theorem 5.5, we have that given a set of points P ∈ RO(n), it is hard to distin-
guish between the following cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ Rd and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

2 ≤ βn,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ Rd and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

2 ≥ 1.07 · βn,

The proof of Theorem 5.9 follows from the Johnson-Lindenstrauss lemma and the
following well-known observation. Given a set of n points in Rd, we have that by Fact 5.7
the k-means cost of a given partition {C1, . . . , Ck} can be expressed as ∑k

i=1
1

2|Ci | ∑x,y∈Ci
‖x−

y‖2
2. Thus, applying the Johnson-Lindenstrauss lemma with target dimension O(log n/ε5)

for small enough ε, yields an instance where the k-means cost of any clustering C is within
a factor (1 + ε) of the k-means cost of C in the original d-dimensional instance. It follows
that the gap is preserved up to a (1 + ε) factor and the theorem follows.

Note that this can be made deterministic (for example, see the result of Engebretsen
et al. [EIO02]).
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6 Embedding via Communication Protocols

In this section, we introduce our (hyper)graph embedding technique, which will enable
us to prove the same hardness results as in Sections 4 and 5 but for point-sets in O(log n)
dimensions.

6.1 One-Way Communication Model and Protocols

In this subsection, we first introduce a communication model known in literature as the
one-way communication model.

The two-player One-Way Communication (OWC) model was introduced by Yao
[Yao79] and has been extensively studied in literature [KN97].

One-Way Communication Model. Let X and Y be two finite sets. Let f : X × Y →
{0, 1}. In the two-player one-way communication model, we have Alice and Bob each
with an input x ∈ X and y ∈ Y respectively, and the communication task is for Bob to
determine if f (x, y) = 1. In this model, only Alice is allowed to send messages to Bob.
In the randomized setting, we allow the players to jointly toss some random coins before
sending messages, i.e., we allow public randomness. Moreover, we assume that the sets
X ,Y are public knowledge.

Next, we introduce the notion of OWC protocols, which are in a nutshell one-round
randomized protocols where the players are in a computationally bounded setting.

OWC Protocols. Let π be a communication protocol for a problem in the OWC model.
We say that π is a (r, µ, α, s)-OWC protocol if the following holds:

• The protocol is one-round with public randomness, i.e., the following actions hap-
pen sequentially:

1. The players receive their inputs.

2. The players jointly toss r random coins.

3. Alice on seeing the randomness (i.e. results of r coin tosses) deterministically
sends an µ-bit message to Bob.

4. Based on the µ bits sent from Alice and randomness r, Bob outputs accept or
reject.

• The protocol has completeness 1 and soundness s, i.e.,

– If f (x, y) = 1, then Bob always accepts.

– If f (x, y) = 0, then Bob accepts with probability at most s.

• We have that the expected number of distinct messages that Alice could send (on
randomness r) which Bob would accept is α, where the expectation is over the
randomness r.

• The players are computationally bounded, i.e., all of them perform all their com-
putations in poly(|X |+ |Y|)-time.
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In a (r, µ, α, s)-OWC protocol, we refer to r as the randomness complexity of the
protocol, µ as the message complexity of the protocol, α as the acceptance complexity
of the protocol, and s as the soundness of the protocol. We note here that while the
randomness complexity and message complexity are standard measures of interest in
literature, the acceptance complexity is non-standard but the measure is important for
our embedding later. We note here that the acceptance complexity is closely related to
the free bit complexity measure studied in PCP literature [BGS98].

Definition 6.1 (c-left bounded functions). Let X and Y be two finite sets and c ∈ N. Let
f : X × Y → {0, 1}. For every y ∈ Y , let Sy = {a ∈ X | f (a, y) = 1}. Then f is said to be
c-left bounded if for every y ∈ Y , we have |Sy| = c.

For every c-left bounded f , there is a trivial (deterministic) (0, log |X |, c, 0)-OWC

protocol. We would like to use randomness to do better on the message complexity.

Theorem 6.2. Let X and Y be sets of size m and n respectively. Let f : X ×Y → {0, 1} be a c-
left bounded function. For every prime square q� c4, there is a (Oq(1)+ log log m, dlog2 qe, α, c(3/√q))-
OWC protocol for f , where

c
(

1−
(

c
2

)(
3
√

q

))
≤ α ≤ c.

Proof. Let C be the code guaranteed by Theorem 2.1 over alphabet of size q of message
length β := logq m, block length ` := Oq(β), and relative distance at least 1− 3/√q.

The protocol. Alice on receiving input x ∈ X and Bob on receiving input y ∈ Y follow
the below protocol.

1. Alice and Bob pick a uniformly random r ∈ [`].

2. Alice sends Bob s := C(x)r, i.e., the rth coordinate of the encoding of x.

3. Bob computes the set of field elements, S := {C(a)r}a∈Sy , i.e., the rth coordinate of
the encoding of all a ∈ Sy.

4. Bob accepts if and only if s ∈ S.

Parameters. It is clear that the above protocol adheres to the structure of an OWC pro-
tocol. We now show the specific parameters of the protocol claimed in the theorem state-
ment hold. Alice’s message is a field element and thus sends dlog2 qe bits. The ran-
domness complexity is clearly dlog2 `e = Oq(1) + dlog2 βe. Bob accepts only if Alice’s
message (a field element) is in S, but since f is c-left bounded, we have |Sy| = c and
thus |S| ≤ c. The acceptance complexity of the protocol is clearly the expected size of S
over the randomness. Consider the set Cy = {C(a) | a ∈ Sy}. Since any two codewords
of C agree on at most 3/

√
q fraction of coordinates, we have by union bound that there

are at least 1− (c
2)(3/

√
q) fraction of coordinates of [`] on which all codewords in Cy are

distinct. For such coordinates we have |S| = c. Therefore the acceptance complexity is at
least c(1− (c

2)(3/
√

q)) and at most c.
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Completeness. Suppose that f (x, y) = 1 then x ∈ Sy and Bob always accepts.

Soundness. Suppose that f (x, y) = 0. This implies that x /∈ Sy. This implies that for
any a ∈ Sy, we have that C(a) and C(x) agree on at most `(3/

√
q) coordinates. As before,

by taking a union bound we have that there are at most c`(3/
√

q) coordinates of [`] on
which C(x) agrees with C(a) for some a ∈ Sy. Therefore for the remaining coordinates
Bob would reject. This implies that Bob rejects with probability at least 1− c(3/

√
q).

By Theorem 2.1, the computation time for Alice and Bob is polynomial time.

Informally, for large enough q the above theorem gives a (log log m, O(1), c(1 − o(1)), o(1))-
OWC protocol for f . This should be compared with the trivial (0, log m, c, 0)-OWC deter-
ministic protocol for f that was mentioned earlier.

6.2 Connecting OWC protocol to Hardness of Approximating k-median and k-
means

Definition 6.3 (Membership function). Let X and Y be sets of size m and n respectively,
where each element in X is a subset of Y . Then Memm,n : X ×Y → {0, 1} is defined by

Memm,n(x, y) =

{
1 if y ∈ x,

0 otherwise,
.

We rewrite the vertex coverage problem that we had introduced in Section 4 as a
special case of the more general max coverage problem. This is done so as to enable us
to prove stronger hardness of approximation factors for the `∞-metric.

Definition 6.4 ((freq, gap)-max coverage). In the (freq, gap)-max coverage problem, we are
given a universe U of size n, a collection S of m subsets of U where each element in U appears
in exactly freq number of subsets in S , and a parameter k as input. We would like to distinguish
between the following two cases:

• Completeness: There exists S1, . . . , Sk ∈ S such that
⋃

i∈[k]
Si = U .

• Soundness: For every S1, . . . , Sk ∈ S we have

∣∣∣∣∣ ⋃i∈[k]Si

∣∣∣∣∣ ≤ gap · |U |.

We can now rewrite our Theorem 4.2 as follows:

Theorem 6.5 (Austrin and Stanković [AS19]). There is some ε > 0 and d0 ∈ N, such that
for all dmin > d0, assuming the unique games conjecture, deciding an instance (U ,S , k) of
(2, 0.9292− ε)-max coverage problem where |U | = n and |S| = poly(n), and each set in S is of
cardinality at least dmin is NP-hard.

We are now ready to state our main connection between OWC-protocols and k-means

and k-median inapproximability.
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Theorem 6.6. Let p ∈ R≥1 ∪ {∞}. Let Π be a (r, µ, α, s)-OWC protocol for Memm,n. Let τ be
a λ-gap realization of H∗(2µ, α) in the d-dimensional `p-metric. There is a polynomial time (in
input size) algorithmAwhich takes as input an instance (U ,S , k) of the (freq, gap)-max coverage
problem where |U | = n and |S| = m and outputs an instance (P , C, k) of the k-median/k-means

problem where we are given a point-set P ⊂ R2rd of size n, a collection C of m candidate centers
in R2rd such that the following holds:

• Completeness: If there exists S1, . . . , Sk ∈ S such that
⋃

i∈[k]
Si = U then there exists

C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that for all a ∈ P we have

‖a− σ(a)‖p = 2r/p · β,

• Soundness: If for every S1, . . . , Sk ∈ S we have

∣∣∣∣∣ ⋃i∈[k]Si

∣∣∣∣∣ ≤ gap · |U | then for every

C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have that there exists P ′ ⊆ P such that
|P ′| ≥ gap · |P| and for all a ∈ P ′ we have

‖a− σ(a)‖p ≥ 2r/p · λ · (α + 1− freq− s)1/p · β,

and for all a ∈ P \ P ′ we have

‖a− σ(a)‖p = 2r/p · β,

for some β > 0.

Proof. Recall from Section 3 that A∗(t) and B∗(t, r) are the partite vertex sets of H∗(t, r).
Here we use the short hand A∗ := A∗(2µ) and B∗ := B∗(2µ, freq). Also let τ : A∗ ∪ B∗ →
Rd and let β > 0 be the constant from Definition 3.1. We define functions TU : U ×
{0, 1}r → B∗ ∪ {⊥} and TS : S × {0, 1}r → A∗ below. Then, we will construct functions
T̃U : U → Rd·2r

and TS : S → Rd·2r
. Given T̃U and T̃S the point-set P is just defined to be

{T̃U (u) | u ∈ U} and the set of candidate centers C is just {T̃S (S) | S ∈ S}.

For every γ ∈ {0, 1}r and every q ∈ {0, 1}µ we define TS (S, γ) = q if in the OWC

model where Alice and Bob are trying to compute Memm,n : S × U → {0, 1}, Alice given
input S, following the protocol Π would send q on randomness γ. Similarly, we define
Ru,γ ⊆ {0, 1}µ, where q ∈ {0, 1}µ is contained in Ru,γ if and only if Bob given input u,
following the protocol Π would accept the message q sent by Alice on randomness γ.
Then, we define TU (u, γ) = Ru,γ if |Ru,γ| = freq and TU (u, γ) =⊥ otherwise.

For every possible randomness γ ∈ {0, 1}r let cγ be the number of distinct messages
that Bob would accept on input u and randomness γ. Note that E

γ∈{0,1}r
[cγ] = α. Let

δ := α + 1− freq. From a standard averaging argument, it is easy to see that for every
u ∈ U there is a subset Lu of {0, 1}r of size 2r · δ such that for all γ ∈ Lu we have
TU (u, γ) 6=⊥.
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Now we can construct functions T̃U : U → Rd·2r
and T̃S : S → Rd·2r

as follows:

∀γ ∈ {0, 1}r, T̃U (u)|γ=
{

τ(TU (u, γ)) if TU (u, γ) 6=⊥
τ(ũ) otherwise

and T̃S (S)|γ= τ(TS (S, γ)),

where ũ is any arbitrary element in B∗ such that ũ is a superset of Ru,γ.

Completeness. Suppose there exist S1, . . . , Sk ∈ S such that
⋃

i∈[k]
Si = U . Then, we

define C ′ = {T̃S (Si) | i ∈ [k]}. We define σ : P → C ′ as follows: for every a ∈ P ,
where a := T̃U (u) for some u ∈ U , let σ(a) be equal to T̃S (Si) such that u ∈ Si (if there
is more than one i ∈ [k] for which Si contains u then we choose one arbitrarily). Fix
a := T̃U (u) in P . Let c := σ(a) be the image of Si under T̃S . By definition of σ we have
that u ∈ Si. Therefore, Memm,n(Si, u) = 1, and Bob would accept Alice’s message for
every randomness if both of them follow Π.

Fix the randomness γ. Since Memm,n(Si, u) = 1 we have that TS (Si, γ) ∈ Ru,γ and
thus we have

‖τ(TS (Si, γ))− τ(TU (u, γ))‖p
p = βp.

Summing over all the blocks of coordinates we have:

‖T̃U (u)− T̃S (Si)‖p =

(
∑

γ∈Lu

(
‖τ(TS (Si, γ))− τ(TU (u, γ))‖p

p
))1/p

= 2r/p · β (3)

Soundness. Suppose for every S1, . . . , Sk ∈ S we have

∣∣∣∣∣ ⋃i∈[k]Si

∣∣∣∣∣ ≤ gap · |U |. Fix some

subset C ′ ⊆ C of size k. Let σ : P → C ′ be some mapping. Consider the mapping ξ : U →
S defined by σ as follows. For every u ∈ U fix some S ∈ S such that T̃S (S) = σ(T̃U (u))
(in case there are more than one S satisfying T̃S (S) = σ(T̃U (u)), pick one arbitrarily). Set
ξ(u) = S. Clearly the range of ξ is of size at most k. Let S ′ = {S1, . . . , Sk′} be the range
of ξ where k′ ≤ k. We know that there are at least (1− gap) · |U | elements of U that are
not contained in

⋃
i∈[k′]

Si. Let’s call this set U ′. Therefore for any (S, u) ∈ S ′ × U ′ we have

Memm,n(S, u) = 0 and Bob would accept Alice’s message with probability at most s over
the randomness, if both of them follow Π.

Fix some u ∈ U ′. Let Bad ⊆ {0, 1}r such that for all γ ∈ Bad Bob would reject Alice’s
message, if both of them follow Π. Similarly, let Good ⊆ {0, 1}r such that for all γ ∈ Good

Bob would accept Alice’s message, if both of them follow Π. We have |Good| ≤ s · 2r and
|Bad| ≥ (1− s) · 2r.

Fix γ ∈ Bad∩ Lu. Since Memm,n(S, u) = 0 we have that TS (S, γ) /∈ Ru,γ and thus we
have

‖τ(TS (Si, γ))− τ(TU (u, γ))‖p
p ≥ λpβp.
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Summing over all the blocks of coordinates we have:

‖T̃U (u)− T̃S (Si)‖p ≥
(

∑
γ∈Bad∩Lu

(
‖τ(TS (Si, γ))− τ(TU (u, γ))‖p

p
))1/p

= 2r/p · λ · β · (δ− s)1/p· (4)

On the other hand, if we fix some u ∈ U \ U ′ then, we have that (3) holds.

Finally, it is easy to see that T̃U and T̃S can be computed in polynomial time as Π is
a OWC protocol where the players are bounded to run in poly(|U |, |S|) time.

7 Inapproximability of k-median and k-means in O(log n) dimen-
sions

In this section, we finally prove Theorems 1.2, 1.3, and 1.4.

7.1 k-means and k-median in `p-metric with Candidate Centers

In this subsection, we prove Theorem 1.2.

Theorem 7.1 (k-means with candidate centers in O(log n) dimensional `p-metric space).
Let p ∈ R≥1 ∪ {∞}. Assuming the unique games conjecture, given a point-set P ⊂ Rd of size
n (and d = O(log n)), a collection C of m candidate centers in Rd (where m = poly(n)), and a
parameter k as input, it is NP-hard to distinguish between the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

p ≤ βn · (log n)2/p,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

p ≥ ζ2(p) · βn · (log n)2/p,

for some constant β > 0.

Theorem 7.2 (k-median with candidate centers in O(log n) dimensional `p-metric space).
Let p ∈ R≥1 ∪ {∞}. Assuming the unique games conjecture, given a point-set P ⊂ Rd of size
n (and d = O(log n)), a collection C of m candidate centers in Rd (where m = poly(n)), and a
parameter k as input, it is NP-hard to distinguish between the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖p ≤ βn(log n)1/p,
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• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖p ≥ ζ1(p) · βn(log n)1/p,

for some constant β > 0.

Proof of Theorems 7.1 and 7.2. At a high level, we use the embedding developed in Propo-
sition 3.9 on the instances built in Theorem 6.6 with the protocol of Theorem 6.2 (setting
q to be a super large constant and noting freq to be 2), and then finally use the inap-
proximability given in Theorem 6.5 to prove the theorems. We provide some additional
details below.

Consider the (r, µ, α, s) protocol given in Theorem 6.2. Fix some δ > 0 and c = 2.
For large enough q we have that s < δ and α ∈ (2− δ, 2]. It is clear that the point-sets P
and candidate centers C are in dimension 2Oq(1)+log log m = Oq(1) · log m = Oq(log n).

Fix p ∈ R≥1 ∪ {∞}. Plugging the above calculation into Theorem 6.6, for some fixed
constant β > 0 we have that in the completeness case that the k-median cost in `p-metric is
at most β · n(log n)1/p (and the k-means cost in `1-metric would be at most nβ2(log n)2/p).
In the soundness case we have that the k-median cost in `p-metric is at least

β · n · (log n)1/p · (0.0708 · γp · (1− 2δ)1/p + 0.9292) = β · n · (log n)1/p · ζ1(p).

Similarly from a simple computation of the k-means cost in (4) we have the k-means

cost in `p-metric would be at least

β · n · (log n)2/p · (0.0708 · γ2
p · (1− 2δ)2/p + 0.9292) = β · n · (log n)2/p · ζ2(p).

Note that we can choose δ to be as small as we want.

7.2 k-median in `1-metric without Candidate Centers

In this subsection, we prove Theorem 1.4. We also show Theorem 1.3 (now over Boolean
vectors).

Theorem 7.3 (k-median in `1-metric in O(log n) dimensions without Candidate Centers).
Assuming the unique games conjecture, given a point-set P ⊂ {0, 1}d of size n (and d =

O(log n)) and a parameter k as input, it is NP-hard to distinguish between the following two
cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ Rd and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

2 ≤ βn log n,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ Rd and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

2 ≥ 1.07 · βn log n,
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for some constant β > 0.

Proof. Simply note that after fixing the randomness, the problem on most blocks looks
exactly like the instances considered in Theorem 5.2, so the same arguments go through
with arbitrarily small loss in approximation factor, in case we restricted our centers to be
Boolean valued. Then notice that the translation of the hardness from Hamming metric
to `1-metric as in Theorem 5.4 also holds here.

Theorem 7.4 (k-means in Euclidean metric in O(log n) dimensions without Candidate
Centers). Assuming the unique games conjecture, given a point-set P ⊂ {0, 1}d of size n (and
d = O(log n)) and a parameter k as input, it is NP-hard to distinguish between the following
two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ Rd and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

2 ≤ βn log n,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ Rd and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

2 ≥ 1.07 · βn log n,

for some constant β > 0.

Proof. Simply note that after fixing the randomness, the problem on most blocks looks
exactly like the instances considered in Theorem 5.5, so the same arguments go through
with arbitrarily small loss in approximation factor.

7.3 Stronger Inapproximability of k-means and k-median in `∞-metric

In this section, we prove the result for the `∞-metric given in Theorem 1.1 by a reduc-
tion from the gap hypergraph coverage problem. First, we define the gap hypergraph
coverage problem.

Let G(V, E) be a hypergraph. Let S ⊆ V. We define the cover of S, denoted by cov(S)
as follows:

cov(S) = {e ∈ E | ∃v ∈ S such that v ∈ e}.

Definition 7.5 (α-hypergraph coverage). In the α-hypergraph coverage problem, we are given
a hypergraph G(V, E) and a parameter k as input. We would like to distinguish between the
following two cases:

• Completeness: There exists S := {v1, . . . , vk} ⊆ V such that cov(S) = E.

• Soundness: For every S := {v1, . . . , vk} ⊆ V we have |cov(S)| ≤ α · |E|.

We remark here that the hardness of approximation of the minimization version of
the hypergraph coverage problem was already shown by Trevisan nearly two decades
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ago [Tre01], but standard techniques to convert inapproximability results for optimiza-
tion problems from minimization instances to maximization instances does not yield
the requisite (or even any meaningful) hardness of approximation result that is stated
in Theorem 7.6. Nonetheless a careful analysis of the original inapproximability of the
max-coverage problem by Feige [Fei98] yields the following.

Theorem 7.6 (Hypergraph Coverage Inapproximability; Essentially [Fei98]). For every
δ > 0 there is some h ∈ N such that deciding an instance of (1− 1/e− ε)-hypergraph vertex
coverage problem on h-uniform hypergraphs is NP-hard.

We defer the proof of the above theorem to Appendix A. Below are the results in
focus of this subsection.

Theorem 7.7 (k-means with candidate centers in O(log n) dimensional `∞-metric space).
Let ε > 0. Given a point-set P ⊂ Rd of size n (and d = O(log n)), a collection C of m candidate
centers in Rd (where m = poly(n)), and a parameter k as input, it is NP-hard to distinguish
between the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

∞ ≤ βn,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

∞ ≥
(

1 +
8
e
− ε

)
· βn,

for some constant β > 0.

Theorem 7.8 (k-median with candidate centers in O(log n) dimensional `∞-metric space).
Let ε > 0. Given a point-set P ⊂ Rd of size n (and d = O(log n)), a collection C of m candidate
centers in Rd (where m = poly(n)), and a parameter k as input, it is NP-hard to distinguish
between the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖∞ ≤ βn,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖∞ ≥

(
1 +

2
e
− ε

)
· βn,

for some constant β > 0.

Proof of Theorems 7.7 and 7.8. At a high level, we use the hypergraph embedding devel-
oped in Lemma 3.4 on the instances built in Theorem 6.6 with the protocol of Theorem 6.2
(setting q to be a super large constant and noting freq to be some large h ∈ N), and then
finally use the inapproximability given in Theorem 7.6 to prove the theorems.
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8 Open Problems

It remains an important open question to improve upon any of the hardness of approxi-
mation results given in Table 1, and in particular to improve upon the inapproximability
results of this paper. In this regard, a direction worth pursuing is to design suitable OWC-
protcols (for example with acceptance complexity close to 2, arbitrarily small constant
soundness, and not too high randomness) for the membership function corresponding to
the hypergraph coverage problem. Combining such a protocol with Theorems 6.6 and 7.6
would enable us to prove close to (1 + 8/e) ≈ 3.94 inapproximability for k-means in the
`1-metric and roughly 1.88 inapproximability for k-means in the Euclidean metric (we
refer to both the problems in the discrete case here).

Another interesting open question is to improve upon the (1 + 8/e) inapproxima-
bility of k-means or the (1 + 2/e) inapproximability of k-median for any metric space. An
obvious barrier to getting such an improvement by starting from the max coverage prob-
lem is the triangle inequality.

Finally, we raise the following combinatorial geometry question: can we improve
the lower bound given in Lemma 3.6? In particular, can we show that g2(H∗(t, 2)) ≥ 2
for large enough t? Notice that when t = 3, we have g2(H∗(2, 2)) ≥ 2 by placing the six
points on the vertices of a regular hexagon in the plane. On the other hand, we suspect
that g2(H∗(t, 2)) ≤ 2, and confirming such a claim would also be interesting.
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A Inapproximability of Hypergraph Vertex Coverage

In this section, we show Theorem 7.6 which essentially follows from Feige’s proof [Fei98]
of the hardness of approximation of max-coverage problem. However, we present the
proof below in terms of label cover (as in [Mos15, DS14]) instead of multi-prover proof
systems (as in [LY94, Fei98]).

Before we delve into the proof of Theorem 7.6, we formally define the label cover
problem and state its hardness of approximation result that follows from the application
of the parallel repetition theorem [Raz98, DS14] to the PCP theorem [AS98, ALM+98].
Below we state a restricted bounded degree and bounded alphabet size version of gap
label cover problem.

Definition A.1 (Label Cover problem9). Let ε > 0, d, α ∈ N. Let ΣU , ΣV be two finite
sets. The input to a (ε, d, α)-label cover problem Π is a bipartite graph G(U ∪V, E) and a set of
projection functions π = {πe : ΣU → ΣV | e ∈ E} such that the following holds:

• |ΣU |, |ΣV | ≤ α.

• for all u ∈ U ∪V, we have degree of u is at most d.

For every assignment σ := (σU : U → ΣU , σV : V → ΣV) to Π, we define sat(Π, σ) as follows:

sat(Π, σ) := E
e:=(u,v)∼E

[πe(σU(u)) = σV(v)].

The goal of the (ε, d, α)-label cover problem is to distinguish between the following two cases.

• Completeness: There exists an assignment σ to Π such that sat(Π, σ) = 1.

• Soundness: For every assignment σ to Π we have that sat(Π, σ) ≤ ε.
9The label cover problem as defined here is known in literature as the label cover problem with projection

property or as the projection game problem, but we drop the word ‘projection’ here for brevity.
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An immediate consequence of the PCP theorem is that it is NP-hard to decide an
instance Π(G, π) of (ε, d, α)-label cover problem for some constants ε > 0, d, α ∈ N.
By applying the parallel repetition theorem to the gap instances arising from the PCP
theorem, we get the following.

Theorem A.2 (Bounded Label Cover Inapproximability [AS98, ALM+98, Raz98]). For
every constant ε > 0, there exist constants d := d(ε) ∈ N and α := α(ε) ∈ N such that it is
NP-hard to decide an instance Π(G, π) of (ε, d, α)-label cover problem.

Before we proceed to the hardness of approximation of Hypergraph Vertex Coverage
problem, we do the following preprocessing step on the label cover instances.

Theorem A.3 (Label Cover Inapproximability with total disagreement [Mos15]). For ev-
ery constant ε > 0, there exist constants d := d(ε) ∈ N and α := α(ε) ∈ N such that given
as input a instance Π(G, π) of (ε, d, α)-label cover problem, it is NP-hard to distinguish between
the following two cases.

• Completeness: There exists an assignment σ to Π such that sat(Π, σ) = 1.

• Soundness: For every assignment σ to Π we have that sat(Π, σ) ≤ ε.

Proof.

Theorem A.4 (Essentially Feige [Fei98]). For every δ > 0 there is some h ∈ N such that
deciding an instance of (1 − 1/e − δ)-hypergraph vertex coverage problem on hypergraphs of
arity at most h is NP-hard.

Proof. Fix δ > 0. We define ε :=. We reduce an instance Π(G(U ∪ V, E), π) of (ε, d, α)-
label cover problem to an instance of (1− 1/e− δ)-hypergraph vertex coverage problem
on hypergraphs of arity at most h, where d and α are constants depending only on ε as
set by Theorem A.4 and h :=. The theorem statement then follows from Theorem A.4.

We now build a hypergraph H = (V , E) which is an instance of the (1− 1/e − δ)-
hypergraph vertex coverage problem. We define V := U × ΣU . For every v ∈ V, we
build a set of hyperedges Ev over V as follows:

Ev = {}.

say universe element

B Inapproximability of Clustering in Edit Metric

In this section, we show how our inapproximability results for k-median and k-means can
be extended to the edit metric. First, we recall the following technical tool established in
[Rub18].
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Lemma B.1 (Rubinstein [Rub18]). For large enough d ∈ N, there is a function η : {0, 1}d →
{0, 1}d′ , where d′ = O(d log d), such that for all a, b ∈ {0, 1}d the following holds for some
constant λ > 0:

|ed(η(a), η(b))− λ · log d · ‖a− b‖0| = o(d′).

Moreover, for any a ∈ {0, 1}d, η(a) can be computed in 2o(d) time.

We state our hardness of approximation result for the edit metric below.

Theorem B.2 (k-means with candidate centers in O(log n · log log n) dimensional Ed-
it-metric space). Assuming the unique games conjecture, given a point-set P ⊂ {0, 1}d of
size n (and d = O(log n log log n)), a collection C of m candidate centers in {0, 1}d (where
m = poly(n)), and a parameter k as input, it is NP-hard to distinguish between the following
two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that

∑
a∈P

ed(a, σ(a))2 ≤ n · β(n),

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P

ed(a, σ(a))2 ≥ 1.56 · n · β(n),

for some fixed β : N→N such that β(n) = polylog(n).

Theorem B.3 (k-median with candidate centers in O(log n · log log n) dimensional Ed-
it-metric space). Assuming the unique games conjecture, given a point-set P ⊂ {0, 1}d of
size n (and d = O(log n log log n)), a collection C of m candidate centers in {0, 1}d (where
m = poly(n)), and a parameter k as input, it is NP-hard to distinguish between the following
two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that

∑
a∈P

ed(a, σ(a)) ≤ n · β(n),

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P

ed(a, σ(a)) ≥ 1.14 · n · β(n),

for some fixed β : N→N such that β(n) = polylog(n).

Proof of Theorems B.2 and B.3. The proof follows from the hard instances constructed in
the proof of Theorem 7.1 for the Hamming metric. More precisely, in the proof of Theo-
rem 7.1, we reduce to the following problem: given a point-set P ⊂ {0, 1}d of size n (and
d = O(log n)), a collection C of m candidate centers in {0, 1}d (where m = poly(n)), and
a parameter k as input, it is NP-hard to distinguish between the following two cases:
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• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that for all
a ∈ P , we have

‖a− σ(a)‖0 = β log n, (5)

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have that
there exists Pσ ⊆ P such that |Pσ| ≥ (0.0708 + ε) · |P|, for some small ε > 0, we
have

∀a ∈ Pσ, ‖a− σ(a)‖0 ≥ (3− δ) · β log n, (6)

∀a ∈ P \ Pσ, ‖a− σ(a)‖0 = β log n, (7)

for some constant β > 0 and any δ > 0.

We consider the above given point-set P ⊂ {0, 1}d and the collection C of candidate
centers in {0, 1}d, and construct the input point-set P∗ ⊂ {0, 1}d′ and the collection C∗ of
candidate centers in {0, 1}d′ for the edit-metric, where d′ = O(d log d). We define P∗ and
C∗ as follows:

P∗ = {η(a) | a ∈ P}, C∗ = {η(c) | c ∈ C},

where η was as given in Lemma B.1.

Let us suppose that (5) holds. Consider C ′′ ⊆ C∗ defined as

C ′′ := {η(ci)|ci ∈ C ′}.

Then, we have that for all a∗ ∈ P∗,

ed(a∗, η(σ(η−1(a∗))) ≤ λ · log d · ‖a− σ(a)‖0 + o(d′)

= β · λ · log n · log log n · (1 + o(1)).

Now, let us suppose that (6) and (7) holds. Consider any C ′′ ⊆ C∗ such that |C ′′| = k
and any σ′ : P∗ → C ′′. We now define C ′ ⊆ C and σ : P → C ′ as follows

C ′ := {η−1(c)|c ∈ C ′′}, and ∀a ∈ P , σ(a) = σ′(η(a)).

Define P∗σ′ := {η(a) | a ∈ Pσ}. Then, we have,

∀a∗ ∈ P∗σ′ , ed(a∗, σ′(a∗)) ≥ λ · log d · ‖η−1(a∗)− σ(η−1(a∗))‖0 − o(d′),

≥ β · λ · log n · log log n · (3− δ− o(1)),

∀a ∈ P∗ \ P∗σ′ , ed(a∗, σ′(a∗)) ≥ λ · log d · ‖η−1(a∗)− σ(η−1(a∗))‖0 − o(d′)

= β · λ · log n · log log n · (1− o(1)).

The proof of the theorem statements then follows by noting that |P∗σ′ | = |Pσ| ≥ (0.0708+
ε) · |P| ≥ (0.0708 + ε) · |P∗|.
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