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Abstract 

In this work, the Torsional Vibration Damper (TVD) rubber ring viscoelastic-material 

properties are determined based on Dynamical Mechanical Analysis (DMA) measurements 

and master curves reconstructions using thermo-simplicity principle. The elastomeric 

constitutive behavior is then implemented in the torsional vibration damper’s equation of 

motion and the frequency response is simulated so that enhanced physical representation 

of the TVD dynamics can be achieved. Major differences in the TVD frequency response 

are highlighted and analyzed whether or not the viscoelastic material properties (elasticity 

modulus and damping) are considered constant or frequency and temperature dependent. 

1 Introduction 

The Torsional Vibration Damper (TVD) is an essential component of power transmission 

systems such as the Front Engine Accessory Drives (FEAD). The FEAD of a vehicle is a 

system composed of individual accessories such as compressor, alternator, water and 

steering pumps, etc. These accessories are coupled to pulleys which are driven in rotation 

by a poly-V belt driven itself by the crankshaft pulley (Fig.1). This driving pulley is 

commonly used as a torsional vibration damper for the crankshaft since rotational 

vibrations are harmful to the system performance and may cause fatigue. The TVD is 

usually tuned so that to dampen the first torsional mode of the crankshaft and therefore 

provide rotational speed stability. The pulley (outer ring) is used as an inertia (I1, Fig. 2) 

which is coupled to the crankshaft (CS) by a rubber-ring. Hence, TVD is composed of an 

inner ring (hub) mounted on the crankshaft extremity, an intermediate viscoelastic rubber 

ring and an outer ring used as a poly-V pulley (Fig. 1). Generally, in simulation and for 

sake of simplification, the TVD dynamic properties – stiffness and damping – are chosen 

to be constant (Ewins et al., 2001). However, these properties depend on the operating 

temperature, the shear strain amplitude and the frequency to which the TVD is subjected 

since the rubber ring is made of a viscoelastic material (Lakes, 2009). 
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Figure 1. Serpentine poly-v belt of a FEAD with its TVD pulley. 

 

In the literature, most of the works related to the account for rubber viscoelastic behavior 

in structural components (belt, pulley, dampers) of FEAD are about the impact of the poly-

V belt viscoelasticity on its different vibration modes (Zhang and Zu, 1998; Marynowski, 

2002; Marynowski and Kapitaniak, 2007; Chen and Ding, 2010; Ding and Chen, 2011). 

The viscoelasticity of the rubber layer embedded within the vibration dampers such as the 

TVD has rarely been explored. Recently, Bhatti (2012) indirectly compared viscoelastic 

dampers with Magnetorheological dampers. Also, the TVD behavior was investigated by 

Jauregui (1996) through a case study of a complicated model. A particularity of these 

studies is that they consider rheological models such as Maxwell (Bhatti and Varum, 2012), 

Kelvin (Jauregui et al., 1996; Kelly, 1962), etc. Such rheological models significantly 

increase the complexity of the differential equations of motion which are usually solved 

using complex numerical schemes. 

 

Some other authors analyzed the dynamic characteristics of the stiffness and the damping 

from an experimental point of view (Kinoshita, 1989, and Wakabayashi, 1995). However, 

in the Wakabayashi’s work, the results were fitted to a specific engine case. Recently, 

Manin et al. (2013) proposed a methodology to easily characterize the pulley torsional 

vibration damper. 

 

The objectives of this paper are: (1) to propose a methodology based on the master curves 

of the TVD elastomeric layer,  (2) then to simply and directly consider the viscoelastic 

properties of the constituting rubber-ring in the damper’s equation of motion; (3) to 

highlight the influence of taking into consideration the viscoelastic properties of the 

elastomer when computing the TVD dynamic response; (4) to evaluate the coefficients of 

the equation of motion, stiffness and damping, as a function of the operating conditions. 
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This research aims at accurately calculating the viscoelastic TVD response in order to 

provide a realistic representation of the system dynamics, which is in accordance with 

Jauregui (1996)’s work and conclusions. 

2 Torsional Vibration Damper modelling 

2.1 Torsional damper dynamics 

The torsional vibration damper can be modeled by a one degree-of-freedom (DOF) mass-

spring-damper system (Blanc, 2000), it is also similar to the one DOF base excited 

vibrating system (Jazar, 2013), however in this case, the single DOF is the rotation around 

z-axis as shown in Fig. 2. 

 

Figure 2. Torsional vibration damper and its schematic diagrams. 

 

Assuming the engine at idling, the driving torque fluctuation usually contains 2 

harmonics (ω, 2ω). However, in this paper, only the prevailing harmonic (ω) and its 

amplitude (θ�	
) generally represented as θ�� = θ�	
 sin(ω t) is considered to represent 

the acyclism on the crankshaft (θ��, Fig. 2). The difference between the torque experienced 

by the TVD outer-ring and the driving torque imposed by the crankshaft results in an 

angular lag of θ� with respect to the excitation θ��, and is due to the viscoelastic properties 

of the TVD intermediate rubber-ring. 

 

To evaluate the impact of considering the intermediate rubber-ring temperature and 

frequency dependent viscoelastic properties leading to varying TVD stiffness K and 

viscous damping C coefficients, one considers the equation of motion of the system shown 

in Fig. 2, (Eq. 1): 
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I� θ�� + C θ�� + K θ� = C θ�	
 ω cos(ω t) + K θ�	
 sin(ω t) (1) 
 

Where I� is the outer-ring inertia, angle θ� is the DOF considered, θ�	
 and ω are, 

respectively, the amplitude and the excitation pulsation of the fluctuations (engine 

acyclism). 

 

The steady-state response of θ� has an amplitude and phase as detailed in Eq. (2) (Jazar, 

2013). This represents the Frequency Response Function (FRF) of one DOF base excited 

vibrating system with the frequency ratio r, natural frequency ω� and damping ratio ξ as 

in Eq. (3). 

 

FRF ∶  "  θ�θ�� = #1 + (2 ξ r)$
#(1 − r$)$ + (2 ξ r)$  &  φ() = tan+� , 2 ξ r-1 − r$ + (2 ξ r)$.  / (2) 

r = ωω�            ω� = 0KI�           ξ = C2 #K I� (3) 

 

The equations (2) and (3) are considered because they are adapted from a classical 

formulation in the frequency-domain, which is consistent with the TVD elastomer DMA 

characterization presented in 3.1. 

2.2 TVD rubber-ring viscoelastic model 

The TVD intermediate ring is made of rubber which can be described as a viscoelastic 

material. A complex modulus E∗ is usually defined to describe its response to a small strain 

oscillatory loading (Eq. 4). 

 E∗ =   Eʹ + i  E" = f (T78
, f78
, ε78
) (4) 

 

The real part of E∗, the storage modulus Eʹ relates to the elastic behavior of the rubber, it 

defines the capacity to store energy upon deformation. The imaginary part of E∗, the loss 

modulus E"defines the energy dissipative ability of the material. For the problem 

considered, the rubber-ring shall permit dampening the crankshaft torque fluctuations. 

The complex modulus E∗ is determined via DMA characterization and, for polymers, is 

known to vary as a function of the temperature T78
, , the loading frequency f78
 and the 

dynamic strain ε78
 experienced by the rubber. Hence, the TVD intermediate ring material 

properties shall be determined in accordance with the engine-range of operating conditions 

(speed, temperature). Interestingly, for the material considered, the thermo-simplicity 

principle can be used (Silva et al., 2018) to predict the viscoelastic behavior of the rubber-

ring at a given temperature T:7; (Fig. 5), i.e. the temperature in the engine room over a 

broad range of frequencies, which couldn’t be assessed by DMA measurements otherwise. 

Practically, the DMA response curves measured for different temperatures and a limited 

frequency domain are horizontally shifted to form a unique/master curve (the vertical shift 

related to thermal expansion is often neglected). To a given temperature corresponds a shift 

factor  a< (Fig. 5, left). As a result, a master curve is constructed (Fig. 5, right). It will be 
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further fitted (Tab.2) in order to be used in the TVD viscoelastic model as explained in the 

next paragraphs. 

2.3 Viscoelastic torsional damper model 

When the viscoelasticity of the TVD rubber-ring is considered the equation of motion 

Eq.(1) becomes Eq.(5) with stiffness K=�: and damping C=�: which both depend on the 

temperature, the frequency and the dynamic strain similarly to the complex modulus E∗ in 

Eq. (4). 

 I� θ�� + C=�: θ�� + K=�: θ� = C=�: θ�	
 ω cos(ω t) + K=�: θ�	
 sin(ω t) (5) 

 

Indeed, K=�: and C=�: are calculated from E∗. Let us examine the dependency of these 

terms on E∗ and point out the way to determine them. The torsional stiffness K of the 

torsional vibration damper (TVD) in Figs. 1 and 3 can be estimated by Eq. (6) which was 

demonstrated by Blanc (2000). 

 

Figure 3. Geometrical parameters used to calculate the stiffness of the TVD. 

 

K =  2 π R-L  Gʹ
e  

(6) 

 

Where R , L , e are respectively the rubber-ring radius, width and thickness. The rubber-

ring is assumed to be a homogeneous and isotropic material of shear modulus Gʹ. Thus, Eq. 

(7) is valid for calculating Gʹ from  Eʹ obtained via DMA with the Poisson ratio of the 

rubber B� 1 2⁄ . 

 Gʹ =   Eʹ
2 (1 + B) 

(7) 

 

Replacing  Gʹ by Eq. (7) in Eq. (6) the stiffness K=�: can be calculated by Eq. (8). 
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K=�: = π R-L e (1 + B)  Eʹ (8) 

 

As  Eʹ in Eq. (4), K=�: varies as a function of the temperature T78
, the frequency f78
 and 

the strain ε78
 experienced by the TVD rubber-ring. The viscous damping coefficient C can 

be calculated using the third term of Eq. (3) where the only unknown is the damping ratio ξ 

(Eq. (9)). 

 C =  2 #K I� ξ (9) 

 

Moreover, according to several authors (Piersol and Paez, 2010; Hujare and Sahasrabudhe, 

2014) the structural loss factor η can be approximated as twice the damping ratio ξ, i.e. η =2ξ at resonance (Thomas and Laville, 2007) and η =   E"  Eʹ⁄  for viscoelastic materials 

(rubber-ring) leading to Eq. (10). 

C=�: = #K=�: I�  E"
 Eʹ  (10) 

 

Similarly, C=�: depends on the temperature T78
, , the frequency f78
 and the strain ε78
 

experienced by the TVD rubber-ring. 

 

In the next paragraphs, the differences between Eqs. (1) and (5) are evaluated thanks to the 

TVD response (FRFs) for several operating conditions (temperature, frequency). The 

differences between the constant (K, C) and varying (K=�:, C=�:) stiffness and damping are 

also discussed. 

3 Results 

Results are presented for the TVD with the inertia and geometric parameters as detailed in 

Tab. (1). This is the crankshaft TVD used in the FEAD of a six-cylinder truck engine 

(Fig.1). 

 

Table 1. Inertia and geometric parameters of the TVD considered. 

I� (Kg mm$) R (mm) L (mm) e (mm) 31344.2 90 35 7 

3.1 Dynamic Mechanical Analysis 

The two components of the viscoelastic complex modulus E∗, namely the storage Eʹand 

loss E" moduli, are used in Eqs. (7), (8) and (9) and thus need to be determined. To do so, 

Dynamic Mechanical Analysis measurements in tensile mode are performed on samples 

cut out of the TVD rubber-ring (Fig. 4).  
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Figure 4. Experimental setup, principle and rubber-ring samples for the DMA tests. 

 

More precisely, a forced periodic strain profile is imposed and the associated force is 

recorded. It is worth noting that the phase shift between the two time signals (strain and 

force) evidences the viscoelastic behavior of the tested sample. Furthermore, in order to 

explore the time temperature dependence, several frequencies and temperatures are 

considered. Finally, providing thermoreological simplicity of the material, the associated 

master curves can be determined for a given temperature of interest (the engine operating 

temperature). 

 

In this work, three different frequencies (0.2, 2, 20Hz) and testing temperatures ranging 

from -10 to 120°C, were considered as evidenced in Fig. 5 (left). The resulting master curve 

at T:7; = 20°C is plotted in Fig. 5(right), it permits predicting the mechanical behavior of 

the TVD rubber-ring at 20°C over a large frenquency range that can not be experimentally 

measured. In this study, master curves were obtained and fitted (Tab. (2)) for the engine 

operating temperatures of 20, 40, 60, 80 and 100°C. 
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Figure 5. TVD rubber-ring DMA data (left) and correspondent master curve (right). 

Table 2. Empirical equations describing the TVD rubber-ring moduli as F(T:7;, f:7Q, ε =0.002) 

T:7; (°C) Storage 

modulus Eʹ(MPa) 
Loss modulus E" (MPa) 20 6.55 R:7QS.ST�U

 5.79 R:7QS.S�VW − 4.81 40 5.68 R:7QS.ST�V
 5.41 R:7QS.S�W- − 4.58 60 5.02 R:7QS.ST$S
 6.17 R:7QS.S�U� − 5.47 80 4.49 R:7QS.STST
 6.07 R:7QS.S�-X − 5.49 100 4.27 R:7QS.ST-V
 6.34 R:7QS.S�-Y − 5.81 

3.2 Simulations 

Table (3) gives data on stiffness and damping for the TVD which dimensions are given in 

Tab. (1). Both constant values K and C are used to simulate the constant FRF (dashed curves 

in Figs. 6 and 7) resulting in the resonance frequency of 216.5 Hz and damping ratio of 

0.075 (Tab. (3)). 

 

Table 3. TVD constant characteristics at T78
 = 60°C used to determine the FRF 

K (N m rad⁄ ) C (N m s rad⁄ ) Resonance (Hz) Damping ratio ξ 58000 6.4 216.5 0.075 

 

The TVD geometric parameters from Tab. (1) with its rubber-ring material properties 

(stiffness, damping) calculated from DMA characterization (Eqs. (8) and (10)) are then 

used in Eqs. (2) and (3) for several operating conditions of the torsional vibration damper 

producing the FRF plotted in Figs. (6), (7), (8) and (9). 
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Figure 6. TVD amplitude, frequency response for several temperatures. 

 

 

Figure 7. TVD phase, frequency response for several temperatures. 

 

The differences between the FRFs in the Figs. 6 and 7 are proportional to the rubber-ring 

stiffness and damping variations in the Figs. 8 and 9 since the FRFs are generated using K=�: and C=�: in Eqs. (2) and (3). Thus, both the FRFs and the rubber-ring properties from 
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DMA vary with the TVD operating conditions (temperature, frequency) and the empirical 

equations in Tab. (2). In Fig. 6 when the TVD working temperature is changed, e.g. from T78
 = 60°C to 80°C, the maximum amplitude (peak) value of its FRF slightly changes 

(Fig. 10), which means that it changes by a few percent with a maximum of 3.3% at T78
 =20°C when compared to the constant case in Tab. (3) (T78
 = 60°C). 

 

Assuming constant values for K and C (FRF`a�bc��c in Fig. 6) with the same temperature 

(T78
 = 60°C) seems to be good approximations of the realistic K=�: and C=�: (FRFWS d7e 

in Fig. 6) with a maximum relative error of around 12.3 % (Fig. 11). However, throughout 

the engine range of operation, f78
 from 0Hz (engine at rest) to 2 times the TVD resonant 

frequency (~430Hz) in Fig. 11, the relative error increases substantially when the 

temperature is changed. For example, comparing the FRF$S d7e obtained at T78
 = 20°C 

(K=�:  and C=�: as in Eqs. (8, 10)) and FRF`a�bc��c (K and C as in Tab. (3)) at T78
 = 60°C 

the relative error gFRF$S d7e − FRF`a�bc��ch FRF$S d7ei  between these responses can reach 

around one hundred percent, see Fig. 11. 

 

 

Figure 8. TVD rubber-ring stiffness K=�: for several temperatures. 
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Figure 9. TVD rubber-ring damping C=�: for several temperatures. 

 

The range of the testing temperatures is chosen to be representative of the TVD working 

conditions, even in severe conditions of use, and the range of the excitation frequency is 

chosen to be equal in size to two times the TVD resonance frequency. Although, in practice, 

the resonance frequency corresponds to an operating point to be avoided, here, it permits 

analyzing clearly the change (viscoelasticity effects) in the frequency responses of the TVD 

thanks to the symmetry of the FRFs and shifting in relation to each other. The differences 

between the results obtained with constant and varying coefficients for several 

temperatures and the frequency domain equal to two times the TVD resonance frequency 

are also presented in Figs. (10) and (11). 
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Figure 10. FRFs maximum peaks provided by K=�: and C=�:. 

 

 

Figure 11. FRFs (relative) error made when K and C are used instead of K=�: and C=�:. 

These results are summarized, discussed and verified experimentally in the next sections. 

3.3 Experimental analysis 
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After generating numerical results for the case study (Tab. (1)) of the TVD in Fig. 1, one 

aimed at verifying experimentally the effectiveness of the TVD modeling as a single DOF 

system (Fig. 2) with varying stiffness and damping.  

 

3.3.1 Set up description 

An experimental setup has been designed to enable the measurment of the TVD frequency 

response when subjected to a torsional excitation under specific operating conditions, i. e. 

temperatures (Fig. 12). The temperature range was chosen to be representative of the TVD 

working conditions (25°C to 100°C) and according to the heating system capabilities. The 

range of the excitation frequency is chosen so that to be almost centred on the torsional 

resonance frequency (150 Hz – 350 Hz). 

 

 

Figure 12. Experimental set-up used to test the TVD under specific operating conditions. 

The principle of the experiment consists in exciting the TVD outer inertia with constant 

force of 5N applied by a shaker during a frequency sweep from 150Hz to 350 Hz. The 

response to this excitation is measured by accelerometers placed on the outer inertia so that 

to be sensitive to angular acceleration and therefore to permit analysing the torsional 

behavior. The hub of the TVD is bolted to a rigid frame, the outer-ring of the TVD is 

harmonically excited by a shaker through a push-rod system connecting the shaker head 

with the TVD outer ring. Since the excitation force is tangent to the pulley, it is also a 

torque/angular excitation for the outer ring with respect to its center. A hot air blower and 

a temperature controlled box (closed during the tests) are also used to increase the 
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temperature from the ambiant environment to the desired temperature. This testing 

temperature is measured by a thermocouple inserted in the TVD rubber-ring. Once the 

target temperature is reached, a stabilisation time of five minutes is applied before 

performing the frequency sweep. The input force is controlled and measured with a force 

sensor placed between the shaker head and the push-rod. The shaker and the excitation 

force are controlled by an M+P® control and acquisition system. Due to lack of time, the 

measurements have been done once for each temperature, therefore the variability of the 

experimental results are not discussed. The trends, consistency and agreement with 

simulations are analysed in next section. 

 

3.3.2 Experimental results 

 

The FRFs amplitudes and phases represented in Figs. 13 and 14 are obtained from the 

signals of the left accelerometer and the force sensor. As a result of the experiments, the 

stiffness and damping obtained experimentally through the half power bandwidth (3dB) 

method (Hujare and Sahasrabudhe, 2014) (Fig. 15 and Eq. (11)) show good agreement (j 

11% of error) with those obtained via simulations Eqs. (8) and (10) for the temperature of 60°C (Tab. (4)). 

 

Figure 13. Experimental FRF (amplitude) of the TVD for several temperatures. 
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Figure 14. Experimental FRF (phase) of the TVD for several temperatures. 

 

Table 4. Comparison between TVD stiffness and damping, simulated and measured at 60°C  

 Stiffness [Nm/rad] Damping [N ms/rad] Resonance [Hz] Damping ratio 

Simulations 58000 6.4 216.5 0.075 

Experiments 60526 5.8 221.2 0.067 

Rel. error [%] 4.4 9.2 2.2 11.0 
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Figure 15. 3dB method applied to obtain the damping from the experimental FRFs. 

 

ξ = f$ − f�2 f�  (11) 

 

The frequency responses (Figs. 13 and 14), obtained experimentally, confirm some 

interesting points observed in simulations: when the TVD working temperature is increased 

the resonance frequency is decreased and the FRFs are shifted to the left which coresponds 

to a softening behavior(Tab. (5)).  

 

Table 5. Comparison of resonance peaks from simulations and experiments. 

Temperature [°C] Amplification [g] Peak [Hz] 

experiments 
Peak [Hz]  

simulations Relative error [%] 

25/20 1.5 263.6 251.6  4.7  
40 1.5 243.8 233.7 4.2 
60 1.3 221.2 219.5 0.8 
80 1.1 209.2 206.3 1.4 
100 0.6 206.9 202.6 2.1 

 

It is observed that simulations results are in good agreement (j 4.7% of error, Tab. (5)) 

with experimental results for several temperatures. The variability of the experimental 

results being not accessible since the tests were done once, the relative error  has to be 

considered with some criticism even if it is satifactory. The small difference between the 

peaks obtained numerically and experimentally may be due to the 3dB method which 

introduces a constant error. However, the absolute value of the shifts when the temperature 
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is changed are equivalent validating experimentally the results predicted numerically. For 

temperatures up to 80°C the frequency response curves change shape and a secondary peak 

appears (Fig. 13). At 100°C the torsional resonance is observed experimentally for 206,9 

Hz (0,6g) but the peak amplitude is smaller than that at 182 Hz (0,86g). The corresponding 

phase curve shows two inflections at these later frequencies (Fig. 14). This phenomenon 

may be due to the emergence of a structural vibration mode of the test apparatus that is no 

more negligible since the rubber ring becomes softer. This shows the limits of the 

experimental set up for high temperatures. 

 

4 Discussion and Conclusions 

In this paper, the TVD response is analyzed as a function of its operating conditions 

(temperature, frequency) because it is assumed here that the moduli in Eq. (4) and, 

consequently, the torsional stiffness K=�: and damping C=�: depend exclusively on the 

temperature and the frequency (Silva et al., 2018), i.e. no Payne effect. Thus, for the 

constant strain ε78
 = 0.2%, different operating conditions lead to different responses as 

in Figs. 6 and 7. 

 

An interesting point when considering the viscoelasticity of the TVD rubber-ring is the 

different resonant frequencies in Tab. (5) accordingly with the operating conditions. When 

the temperature is increased the TVD resonance peak is shifted to the left. This is because 

the stiffness K in Eq. (6) depends on Gʹ which depends on  Eʹ (Eq. (7)). Thus, as the stiffness K is operating conditions dependent (Eq. (4)), the resonance frequency of the TVD 

calculated by the second term of Eq. (3) also depends on its operating conditions. 

 

Finally, the comparisons between simulations and experiments show good agreement with 

small relative error (Tab. (5)). However, when the temperature is increased the FRFs are 

more dampened (smoothing, Fig. 13) and there are some side-effects (SE, Fig. 14). These 

may be due to the complex viscoelastic material behavior and due to the fact of not being 

able to impose a pure torsional mechanical excitation to the TVD experimentally. It means 

that there are also the response of other modes (directions) in the experimental FRFs. 
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