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Abstract
Matthes and Uustalu (TCS 327(1–2):155–174, 2004) presented a categorical description of sub-
stitution systems capable of capturing syntax involving binding which is independent of whether
the syntax is made up from least or greatest fixed points. We extend this work in two directions:
we continue the analysis by creating more categorical structure, in particular by organizing sub-
stitution systems into a category and studying its properties, and we develop the proofs of the
results of the cited paper and our new ones in UniMath, a recent library of univalent mathematics
formalized in the Coq theorem prover.
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1 Introduction

Given a first-order signature over some supply of variables, substitution is nearly a homo-
morphism: the substitution function commutes with all term-forming operations (however,
at leaf positions, variables may get replaced by terms). But substitution also gives rise
to a monad structure. For this, it is useful to see the variable supply of the terms as a
parameter: writing TA for the set of terms over variable supply A (those variables that
may occur free in the terms), parallel substitution associates with each substitution rule
f , which is a function from A to TB, a substitution function [f ] : TA → TB, and for a
given term t : TA, the term t[f ] : TB (notice the post-fix notation for function [f ]) is the
result of the parallel substitution that replaces each occurrence of a variable x : A in t by
fx : TB. In fact, the function T , the function that injects variables into terms, and the
operation of parallel substitution together form a monad in the format of a Kleisli triple over
the category of sets and functions. Notice that the types serve as a means of tracking the
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(names of) variables that may occur free in a term, the object syntax itself is untyped. The
parameter A plays a more prominent role as soon as variable binding is allowed in the object
syntax: for pure λ-calculus, bound and free variable occurrences have to be distinguished,
and even the constructors of the object language relate terms with different variable supply,
in particular λ-abstraction assumes an argument term where the newly bound variable is
added to the variable supply (this will be seen with more details in Section 8.). Although
parallel substitution t[f ] has to be defined with extra care to avoid capture of free variables
of some fx by binders in t, it is still (modulo α-equivalence) nearly a homomorphism, and it
still yields a monad [9]. However, the monad laws by themselves do not express the (nearly)
“homomorphic nature” of substitution.

In previous work, Matthes and Uustalu [24] define a notion of “heterogeneous substitution
system”, the purpose of which is to axiomatize substitution and its desired properties. Such a
substitution system is given by an algebra of a signature functor, equipped with an operation—
which is to be thought of as substitution—that is compatible with the algebra structure map
in a suitable sense. The term “heterogeneous” refers to the fact that the underlying notion
of signature encompasses variable binding constructions and also explicit substitution a. k. a.
flattening. The authors then prove that any heterogeneous substitution system gives rise to
a monad; multiplication of the monad is derived from the “substitution” operation.

Furthermore, it is shown there that, under some assumptions on the underlying category,
“substitution is for free” for both initial algebras as well as—maybe more surprisingly—for
(the inverse of) final coalgebras: if the initial algebra, resp. terminal coalgebra, of a given
signature functor exists, then it, resp. its inverse, can be augmented to a substitution
system. Indeed, it was one of the design goals of the axiomatic framework of heterogeneous
substitution systems to be applicable to non-wellfounded syntax as well as to wellfounded
syntax, whereas related work (e.g., [15]) frequently only applies to wellfounded syntax.

Examples of substitution systems are thus given by the lambda calculus, with and without
explicit flattening, but also by languages involving typing and infinite terms.

The goal of the present work is twofold:

Firstly, we extend the work by Matthes and Uustalu [24]; in particular, we introduce a
natural notion of morphisms of heterogeneous substitution systems, thus arranging them
into a category. We then show that the construction of a monad from a heterogeneous
substitution system from [24] extends functorially to morphisms. Moreover, we prove that
the substitution system obtained in [24] by equipping the initial algebra with a substitution
operation, is initial in the corresponding category of substitution systems. This makes use of
a general fusion law for generalized iteration [12]. As an example of the usefulness of our
results, we express the resolution of explicit flattening of the lambda calculus as a(n initial)
morphism of substitution systems.

A second part of our work is the formalization of some of our results in univalent
type theory, more specifically, building upon the UniMath library [32]. This basis of our
formalization is suitable in that it provides extensionality in a natural way and hereby avoids
the use of setoids that would otherwise be inevitable; indeed, since our results are not about
categories in abstracto but use general categorical concepts in more concrete instances such
as the endofunctor category over a given category or its extension by a “point”, we need
extensionality axioms for the instantiation. We profit from the existing category theory
library [4] in UniMath.
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1.1 Related work
Related work is extensively discussed in Matthes and Uustalu’s article [24].

In the meantime, monads and modules over monads, have been used by Hirschowitz and
Maggesi [18, 19] to define models of syntax, and to give a categorical characterization thereof.

The notion of signature introduced in [24] and formalized in the present work is similar
to that employed in Hirschowitz and Maggesi’s most recent work [17]. One difference is that
we do not, in the present work, insist on our signature functor to be ω-cocontinuous, since
we do not worry about the existence of initial algebras, but assume them to exist. In our
follow-up work with Mörtberg [6, 5] on the construction of initial algebras in sets, however,
this condition is of the essence.

Voevodsky [31] constructs a C-system from a module over a relative monad on sets, which
in turn can be obtained from a monad on Set2 and a choice of a set. Of particular interest
as input to this construction are “term monads” generated by 2-sorted binding signatures.
The present work does not directly allow for the construction of such monads. The follow-up
work [5] describes a variant (alluded to in Remark 9) of the necessary results formalized in
the current work that can be used for the construction of such monads.

1.2 Synopsis
In Section 2 we first give an overview of the system we work in: UniMath. Afterwards, we
review the definition of categories in UniMath, and finally, we show how the foundations are
realized in the proof assistant Coq.

In Section 3 we define a few basic concepts and introduce notation.
In Section 4 we present “Generalized Iteration in Mendler-style”, and a fusion law satisfied

by this form of iteration. The presented results will be used in Section 7.
In Section 5 we review the notion of heterogeneous substitution system. Afterwards, we

define a category of substitution systems and prove a few properties about that category.
In Section 6 we state one of the main results of [24], the construction of a monad from a

substitution system. We then prove that the map thus constructed extends to morphisms
and yields a faithful functor.

In Section 7 we state another of the important results of [24]: the construction of a
substitution system from an initial algebra via Generalized Iteration in Mendler-style as
presented in Section 4. We show that the obtained substitution system is again initial, using
the fusion law stated in 4.

In Section 8, we construct a particular morphism of substitution systems, the underlying
map of which “computes away” explicit substitution of lambda calculus.

Most of the results presented in this article, both by Matthes and Uustalu [24] and
our new results, have been formalized, based on the UniMath library [32]. More precisely,
all results except for Theorem 22 and Lemmas 25 and 21 are proved in our formalization;
Section 9 provides some technical details about our library.

2 Univalent Mathematics

The original article [24] is written without referring to a specific foundation of mathematics.
Indeed, the authors use purely categorical methods to derive their results.

Our analysis and continuation of that article takes place in a type-theoretic foundation
augmented by Voevodsky’s Univalence Axiom. Specifically, we are working in the UniMath
language and library, based on Voevodsky’s Foundations [30].

TYPES 2015
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2.1 About UniMath

UniMath is based on an intensional type theory augmented by Voevodsky’s univalence axiom.
In the following, we give a brief overview of the type constructors available in UniMath:

For a dependent type B over A there is the dependent pair type
∑
x:AB(x), elements

of which are dependent pairs (a, p) where a : A and p : B(a). The type
∏
x:AB(x) is the

type of dependent functions from A to B, that is, a function f :
∏
x:AB(x) maps a : A into

the type B(a). Special, non-dependent, cases of the aforementioned constructors are the
cartesian product A×B and the function type A→ B.

For any type A and a, b : A elements of A, there is the Martin-Löf identity type a =A b

of “(propositional) equalities” between a and b. We often omit the subscript A and hence
simply write a = b.

The Univalence Axiom identifies identities between types with equivalences between types,
see [29, Axiom 2.10.3]. In this work, we do not use the full strength of the Univalence Axiom,
but only function extensionality, a consequence of the Univalence Axiom.

In UniMath, there is an internal notion of propositions and sets. A type A is called a
proposition if it satisfies the (propositional) “proof irrelevance” principle, that is, if one can
construct a term of type

isProp(A) :=
∏
x,y:A

x = y .

Furthermore, a type A is called a set if all of its identity types are propositions, that is, if
one can construct a term of type

isSet(A) :=
∏
x,y:A

isProp(x = y) .

These two definitions are actually special cases of a more general definition of homotopy
levels of types. However, the general definition will not be of use in this article, and can be
consulted in [29]. We call proposition any type that is a proposition in this sense, that is,
any element of Prop :=

∑
X:U isProp(X), and similarly for sets.

Technically, the UniMath language is a subset of the language of the Coq proof assistant
[13]: In order to simulate working in the theory described above, we do not use the full
language Coq provides, but restrict ourselves to the language constructors mentioned there.
In particular, there is no use of inductive types besides that of the natural numbers, and of
the identity type and the type of dependent pairs, both of which are not primitives in Coq,
but instead implemented via the general Inductive vernacular. Furthermore, record types
are not used in UniMath; bundling of structures is instead implemented via (iterated) Sigma
types.

The proof assistant Coq has recently gained a new form of universe polymorphism
[28]. Unfortunately, this universe management is not powerful enough for our purposes. In
particular, it does not implement a form of resizing rule that is needed for some impredicative
encodings of constructions—propositional truncation in particular, as described by Voevodsky
[30, Section 4]. To implement this resizing rule in Coq, we disable its checking of universes
via a flag -type-in-type passed to the program. We hence work in a formally inconsistent
system, and we have to check manually that we do not actually exploit that inconsistency.

Another difference to standard Coq is our use of the -indices-matter flag. This flag
ensures that the identity type associated to a type A, lives in the same universe as the type
A itself. By default, without that flag, Coq would put the identity type into the universe
Prop (not to be confounded with the homotopy level of propositions).
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“Higher Inductive Types” (HITs), described, e. g., in the HoTT book [29], are not part of
the axiomatically given type constructors of UniMath.

The Univalence Axiom is implemented in UniMath via the Axiom vernacular of Coq.
This leads to potentially non-normalizing terms, when using the axiom or any of its
consequences—such as function extensionality. We do not experience any problems re-
lated to non-normalization, since we only use the univalence axiom (indirectly by using
function extensionality) for proving propositions, not for specifying operations.

2.2 Category Theory in Univalent Type Theory

Category theory in univalent type theory has been developed in [4]. A category C is given by
a type C0 of objects;
for any a, b : C0, a set C(a, b) of morphisms from a to b;
for any a : C0, an identity morphism id(a) : C(a, a);
for any a, b, c : C0, a composition function C(a, b)→ C(b, c)→ C(a, c), written f 7→ g 7→
g ◦ f ;
for any a, b : C0 and f : C(a, b), we have f ◦ id(a) = f and id(b) ◦ f = f ;
for any a, b, c, d : A and f : C(a, b), g : C(b, c), h : C(c, d), we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Note that we ask the hom-types C(a, b) of a category to be sets. This requirement enforces
that the categorical axioms—which talk about equality of arrows—form propositions.

I Nota bene. There is an important difference between categories as usually formalized
in intensional type theory and categories as considered in [4]: in intensional type theory,
categories are usually defined to come with a custom equivalence relation on the types of
morphisms, which is to be read as equality relation on morphisms, specified for each category
individually (see, e. g., [21]). These categories are sometimes referred to as “E-categories”
[27].

In [4], however, the authors consider morphisms of a category modulo equality as given by
the identity type. That this is feasible is due to the extensional features that the univalence
axiom adds to type theory, in particular, function extensionality.

In [4], an additional property of categories is studied: for any category C, define a family
of maps

idtoiso :
∏
a,b:C0

(a = b)→ iso(a, b) .

This family of maps is defined by identity elimination, mapping refla : a = a to the identity
isomorphism on a.

A category C is called univalent, if for any a, b : C0, the map idtoisoa,b is an equivalence.
An important remark about naming: in [4], the univalence condition above is part of

the definition of a category—the term “precategory” is employed for categories that are not
necessarily univalent. That is, the authors of [4] use the terms “precategory” and “category”
for what we call “category” and “univalent category” in the present article, respectively.

For the purposes of the present article, the univalence condition on categories is not
essential. Indeed, no other result depends on Theorem 22. We thus choose to de-emphasize
the importance of the univalence condition for categories by deviating from the naming of
[4], and instead to make it explicit when considering categories that satisfy univalence.

TYPES 2015
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3 Preliminaries

Categories, functors and natural transformations are defined in [4]. Some more concepts and
notation are defined in the following:

For functors F : C → D and G : D → E , we write G ·F : C → E for their composition. We
use the same notation for composition of a functor with a natural transformation (sometimes
called “whiskering”), as in τ · F and G · τ .

I Definition 1 (Pointed functors). Let C be a category. We denote by Ptd(C) the category of
pointed endofunctors on C, an object of which is a pair (X, η) of an endofunctor X on C and
a natural transformation η : Id→ X, called a “point” of X, where Id is the identity functor
on C. Morphisms of pointed functors are natural transformations between the underlying
endofunctors that are compatible with the chosen points. Call U the forgetful functor
from Ptd(C) to the underlying endofunctor category [C, C] (in particular, for a morphism
f , Uf is f , but its compatibility with the points is not taken into account in the type
information—justifying to confuse Uf and f in the rest of the paper).

I Definition 2 (Monoidal structure on functor categories). The monoidal structure on the
endofunctor category [C, C] given by composition extends to Ptd(C). We denote by αX,Y,Z :
X · (Y · Z) ' (X · Y ) · Z, ρX : Id ·X ' X and λX : X · Id ' X the monoidal isomorphisms.

Note that the associator and unitor isomorphisms are given by families of identity
morphisms, and thus do not carry any information at all; they are merely needed to formally
adjust the type of source and target functors of the natural transformations involved.

I Remark 3. In [24], the authors implicitly assume the monoidal structures of composition
on [C, C] and Ptd(C) to be strict. In univalent type theory, we have, e. g., that F · Id is not
convertible to F as a functor, but the two functors are convertible pointwise on objects and
morphisms. This in turn entails that for ρF : Id · F → F , the type ρF = 1F is well-typed.
Note, however, that for an abstract functor on endofunctors H, the type H(ρF ) = H(1F ) is
not well-typed.

In our definition of signatures (Definition 12) the associators and unitors do occur “under
a functor application”, where we cannot pretend (or even state) that they are identity
morphisms. For reasons of symmetry, we hence decide to consider the monoidal structure of
composition as non-strict, inserting the associator and unitors also in cases where this would
not be necessary. In particular, we explicitly insert them in the strength laws of Definition 12
on the right-most position on the right hand side, respectively.

I Definition 4 (Algebras of a functor). For an endofunctor F : C → C, the category Alg(F )
of algebras has, as objects, pairs (X,α) of an object X : C0 and a morphism α : C(FX,X).
For a given algebra (X,α), we call X the (algebra) carrier of the algebra. A morphism
f : Alg(F )

(
(X,α), (X ′, α′)

)
is given by a morphism f : C(X,X ′) such that f ◦ α = α′ ◦ Ff .

I Remark 5. We are using the arrow symbol “→” for three different things:
1. morphisms f : c→ d in a category, as shorthand for f : C(c, d) (hence in particular for

natural transformations as morphisms in functor categories);
2. functors F : C → D between categories; and
3. type-theoretic functions f : A→ B.
Information on what the arrow denotes in each occurrence will be deducible from the context.

I Definition 6 (Monads). For a category C, the category Mon(C) of monads has, as objects,
triples (T, η, µ) of an endofunctor T of C, and natural transformations η : Id → T and
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µ : T · T → T (using our convention on natural transformations), subject to the usual monad
laws. A morphism f : Mon(C)

(
(T, η, µ), (T ′, η′, µ′)

)
is given by a natural transformation

f : T → T ′, subject to the usual compatibility conditions.

Notice that we follow [24] in taking monad multiplication µ as third component of a monad
and not the Kleisli extension operation that is more widespread in computer science literature.

I Definition 7. Given d : D and a category C, we call d : C → D the functor that is constantly
d and idd on objects and morphisms, respectively. This notation hides the category C, which
will usually be deducible from the context. In this article, C will always be D.

4 Generalized Iteration in Mendler-style and Fusion Law

In this section we discuss “generalized iteration in Mendler-style” and a fusion law that one
can prove for this iteration scheme. Both the iteration scheme and the fusion law are used in
Section 7.

I Lemma 8 (Generalized iteration in Mendler-style (Theorem 2 of [12] by Bird and Paterson)).
Let C be a category, and let F : C → C be an endofunctor on C. Suppose (µF, in) is the initial
algebra of F . Let D be another category, and let C : L a R : D be an adjunction. Let X : D0
be an object of D, and let

Ψ : D(L−, X)→ D(L(F−), X)

be a natural transformation. Then there is exactly one morphism h : L(µF )→ X such that
the following diagram commutes:

L(F (µF )) Lin //

ΨµF (h)
&&

L(µF )

h

��
X

We call ItLF ( Ψ ) := h the unique morphism thus specified.

The link with the work by Mendler [25] is not made in the original proof [12, Thm. 2] of
the lemma. The presentation in [12] is very much oriented towards functional programming.
In their notation, the natural transformation Ψ would be typed as

Ψ :: ∀A. (LA→ X)→ (L(FA)→ X) .

I Remark 9. The existence of the right adjoint R for L is rather a matter of technical
convenience: it can be replaced by asking for the preservation of colimits of ω-chains by F
and L and the preservation of initial objects by L [12, Theorem 1]. We do not pursue that
alternative in the present work.

In [24], only a specialized form of generalized iteration in Mendler-style is used that is called
“generalized iteration” (again with no hint to Mendler’s work—see our remarks in Section 7
on the connection). The specialization consists in taking only natural transformations Ψ of a
specific form, so that Ψ disappears from the formulation (as explained in [24]). In fact, we
do not need the fuller generality of generalized iteration in Mendler-style in Sections 7 and 8.
However, the formulation of the fusion law to come next is more natural in the more general
setting. No fusion law was needed in [24] since no morphisms of heterogeneous substitution
systems were considered there.

The next lemma shows a sufficient condition for two applications of the iterator It(− ) to
be related:

TYPES 2015
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I Lemma 10 (Fusion law). Suppose the data as given in Lemma 8. Additionally, let
L′ : C → D be a functor, X ′ : D0 be an object of D, let

Ψ′ : D(L′−, X ′)→ D(L′(F−), X ′)

be a natural transformation with type analogous to that of Ψ, and let

Φ : D(L−, X)→ D(L′−, X ′)

be a natural transformation. Then we have

ΦµF
(
ItLF ( Ψ )

)
= ItL

′

F ( Ψ′ ) if ΦFµF ◦ΨµF = Ψ′µF ◦ ΦµF .

The name “fusion law” is wide-spread in functional programming for means to eliminate the
creation of some extra datastructure. Here, the subsequent calculation of ΦµF for the result
ItLF ( Ψ ) of the iteration over µF is “fused” into one single iteration over µF—the right-hand
side of the conclusion.

The version of this fusion law with X and X ′ the same object of D and instantiated to the
special situation of generalized folds (see Section 7) has been found by Bird and Paterson [12]
(see right before their Theorem 1). While we will only use the fusion law for generalized folds
(in Section 7), it is necessary to have the freedom to choose X and X ′ separately. The proof
itself is a matter of verifying that the left-hand side satisfies the defining equation (embodied
in the commuting diagram in Lemma 8) of the right-hand side. This also settles existence
of the right-hand side—thus avoiding the need for a right adjoint for L′, which would have
allowed us to invoke Lemma 8 also for Ψ′. (In our formalization, we did not implement this
subtlety. Instead, we require a right adjoint for L′, in order to use the definition of the It(− )
operator underlying the formalization of Lemma 8.)

5 The Category of Heterogeneous Substitution Systems

In [24], implicitly there is a notion of signature. Here, we make this definition explicit and
adapt it to the lack of strictness of our monoidal structures on endofunctors (see Definition
2).

I Definition 11 (Relative strength). Let (V,⊗, I) and (W, •, E) be monoidal categories, and
let

(U,ϕ, ϕ0) : (W, •, E)→ (V,⊗, I)

be a strong monoidal functor, that is, ϕw,w′ : Uw ⊗ Uw′ ∼= U(w • w′) and ϕI : I ∼= UE. Let
F : V → V be a functor. A tensorial strength for F relative to (U,ϕ, ϕI) is a natural
transformation

βw,v : Uw ⊗ Fv → F (Uw ⊗ v)

such that the following diagrams commute for any w,w′ :W0 and v : V0:

U(w • w′)⊗ Fv

ϕ−1
w,w′
⊗1Fv

��

βw•w′,v // F (U(w • w′)⊗ v)
F (ϕ−1

w,w′
⊗1v)

// F ((Uw ⊗ Uw′)⊗ v)

F (αUw,Uw′,v)

��

(Uw ⊗ Uw′)⊗ Fv

αUw,Uw′,Fv

��
Uw ⊗ (Uw′ ⊗ Fv)

1Uw⊗βw′,v
// Uw ⊗ F (Uw′ ⊗ v)

βw,Uw′⊗v
// F (Uw ⊗ (Uw′ ⊗ v))
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and

UE ⊗ Fv
βE,v //

ϕ−1
I
⊗1Fv

��

F (UE ⊗ v)

F (ϕ−1
I
⊗1v)

��
I ⊗ Fv

λFv $$

F (I ⊗ v)

F (λv)yy
Fv

This definition is an instance of a broader definition of strength by Fiore [14, I.1.2]. Modulo
order of arguments, our relative strength is a W-strength of type (V,�)→ (V,�), with the
action � induced by U , a construction that is also described by Fiore in the cited section.
I Nota bene. We find it important to mention two possible sources of confusion:
1. The notion of tensorial strength relative to a strong monoidal functor of Definition 11 is

inspired by the notion of monad relative to a functor [7]. However, it is not the same as
the concept of a strength for a monad T relative to a functor J : C → D.

2. Note that the adjective “strong” is used in two different ways in the literature:
A strong functor (or monad) is a functor (or monad) equipped with a strength.
A strong monoidal functor is a monoidal functor for which the commutator morphisms
ϕw,w′ and ϕI are isomorphisms, as recalled above.

We are interested in tensorial strengths for functors H relative to the forgetful functor
U : Ptd(C) → [C, C] of Definition 1 that “forgets” the points of pointed functors. That
particular functor is strict in the sense that ϕ and ϕI are identities. We hence set (Z, e) •
(Z ′, e′) := (Z ′ · Z, e′ · e) and X ⊗X ′ := X ′ ·X for the purpose of the following definition.
Unfortunately, there is a mismatch between the order of the arguments of β in Definition 11
on the one hand—which is the order naturally arising when generalizing the traditional
definition of strength—and the order in which Matthes and Uustalu [24] give the arguments
to their instance of such a relative tensorial strength—called θ—in the following definition.
We choose to retain compatibility with [24]:

I Definition 12 (Signature). Given a category C, a signature with strength is a pair
(H, θ) of an endofunctor H on [C, C] and a tensorial strength for H relative to U : Ptd(C)→
[C, C], that is, a natural transformation θ : (H−) · U∼ → H(− · U∼) between functors
[C, C]× Ptd(C)→ [C, C] such that

θX,id = H(λ−1
X ) ◦ λHX and

θX,(Z′·Z,e′·e) = H(α−1
X,Z′,Z) ◦ θX·Z′,(Z,e) ◦ (θX,(Z′,e′) · Z) ◦ αHX,Z′,Z .

We loosely refer to θ as the strength of the signature (H, θ).

In practice, a signature is given by a family of arities, each arity specifying the type of a
term constructor. The above definition of signature is modular in the sense that building
a signature from arities corresponds to taking an amalgamated sum. This is explained in
detail in Section 8, to which we refer for an example of signature.

Note that while the definition of signature with strength does not require the base category
C to have coproducts, this is a requirement for most signatures with strength that we consider
in practice, and in particular for the example of Section 8. It also is a requirement for the
definition of “models” of signatures with strength, see Definition 15.
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I Convention 13. From now on, we assume the category C to have (specified) coproducts.
We denote by inlA,B : A→ A+B and inrA,B : B → A+B the maps into the coproduct. We
omit the subscripts of inl and inr when possible without ambiguity.

I Remark 14. The notion of signature with strength introduced in Definition 12 encompasses
“polynomial” signatures like the ones described in [15] and [26]. In fact, it is strictly more
general in that it also encompasses the arity of explicit flattening—the Example 35 we discuss
in detail in Section 8—that is not captured by the other works mentioned above.

For a given signature (H, θ), we are interested in (Id +H)-algebras (T, α). For such an
algebra, the natural transformation α : Id +HT → T decomposes into two [C, C]-morphisms
η : Id→ T , τ : HT → T defined by

η = α ◦ inlId,HT and τ = α ◦ inrId,HT . (1)

The pair (T, η) is an object in the category of pointed functors (see Definition 1).
Intuitively, in the case where C = Set, the transformation η corresponds to viewing

variables x : X as “terms”, that is, as elements of TX, whereas τ : HT → T represents the
operations specified by the signature functor H.

I Definition 15 (Def. 5 of [24], Heterogeneous substitution system of a signature). We
call (T, α) a heterogeneous substitution system for (H, θ), if, for every Ptd(C)-morphism
f : (Z, e) → (T, η), there exists a unique [C, C]-morphism h : T · Z → T , denoted {f},
satisfying

Z + (HT ) · Z
id+θT,(Z,e) ��

α·Z // T · Z

h

��

Z +H(T · Z)
id+Hh ��
Z +HT

[ f,τ ] // T

i.e., Z
η·Z //

f

  

T · Z

h

��

(HT ) · Zτ·Zoo

θT,(Z,e)��
H(T · Z)

Hh��
T HT

τoo

For a heterogeneous substitution system (T, α, {−}), we call T its carrier, thus extending
the convention of Definition 4.

Notice that the quantification is implicitly also over all pointed endofunctors (Z, e) on C.
I Nota bene. Having freedom in the choice of parameter f (and its domain) is particularly
important for Theorem 26, see Section 6. In its proof (not shown in this paper), monad
multiplication and one of the monad laws is obtained from the existence of a solution in the
case that f is the identity, while the other monad laws are derived from uniqueness for two
other choices of f .

In the following, we sometimes omit the word “heterogeneous” when talking about
heterogeneous substitution systems. We refer to the operation {−} by “substitution”.

I Remark 16. Being equipped with a substitution operation {−} is a proposition on
(Id +H)-algebras.

The statement of the following lemma is mentioned, but not proven in [24]:

I Lemma 17. The operation {−} is a natural transformation

Ptd(−, (T, η))→ [C, C](T · U−, T ) .
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I Definition 18 (Category of substitution systems). Given (H, θ) as before, the category
hss(H, θ) has, as objects, heterogeneous substitution systems as in Definition 15. A morphism
of substitution systems is an algebra morphism that is compatible with the substitution {−}
on either side. In terms of η and τ as defined in Equation (1), a morphism from (T, η, τ, {})
to (T ′, η′, τ ′, {}′) is a natural transformation β : T → T ′ such that the following diagrams
commute:

Id η //

η′   

T

β

��
T ′

HT
τ //

Hβ

��

T

β

��
HT ′

τ ′
// T ′

T · Z
{f} //

β·Z
��

T

β

��
T ′ · Z

{β◦f}′
// T ′

Here, the first and second diagram express the property of β being an algebra morphism,
and the third diagram expresses compatibility of β with substitution on either side.

Note that the composite β ◦ f in the last diagram is the composite in the category of
pointed endofunctors, that is, the definition of that composite uses commutativity of the
first diagram.

I Remark 19. Similarly to Remark 16, being compatible with the substitution on either
side is a proposition on algebra morphisms.

We now study the category hss(H, θ) of substitution systems associated to a signature
with strength in more detail, in particular with respect to the particular foundations we
are working in. The main objective of the rest of the section is Theorem 22: the category
hss(H, θ) is univalent if the base category C is.

Remarks 16 and 19 together show that the category of hss(H, θ) can be obtained as a
subcategory of the category of (Id +H)-algebras in the following sense:

I Definition 20. A subcategory of a category C is given by a predicate P : C0 → Prop and
a family of predicates Pa,b : P (a)× P (b)× C(a, b)→ Prop that is closed under identity and
composition in the sense that

for any a : C0 satisfying P , we have a proof of Pa,a(id(a)) and
for any a, b, c : C0 satisfying P , and for any f : C(a, b) and g : C(b, c), we have a map
Pa,b(f)→ Pb,c(g)→ Pa,c(g ◦ f).

We suppress the arguments of type P (a) and P (b) when discussing the predicate Pa,b(f),
since those arguments are unique.

A subcategory of C is—better, gives rise to—a category CP ; objects are of the form∑
x:C0

P (x), and morphisms (f, pf ) : CP
(
(a, pa), (b, pb)

)
are pairs of a morphism f : C(a, b) of

C together with a proof p : Pa,b(f).
Given a signature (H, θ), define a subcategory of the category of (Id +H)-algebras via the

predicates of Remarks 16 and 19. The resulting category is clearly isomorphic to hss(H, θ)
in the sense of [4, Definition 6.9].

Note that isomorphic categories are propositionally equal [4, Definition 6.16], and hence
share all properties definable in type theory. We thus give up the distinction between the
category hss(H, θ) and the subcategory of (Id +H)-algebras it is isomorphic to.

A subcategory is called replete, when it is closed under isomorphism, that is, when, for
f : isoC(a, b) and P (a), it follows that P (b) and Pa,b(f).

I Lemma 21. The category hss(H, θ) is a replete subcategory of the category of (Id +H)-
algebras.
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Proof. Given a substitution system (T, α, {−}), an algebra (T ′, α′) and an algebra isomor-
phism β : (T, α) → (T ′, α′), we define substitution {−}′ on (T ′, α′) as follows: for a given
pointed morphism f : (Z, e)→ (T ′, η′), we define {f}′ as the composition

{f}′ := β ◦ {β−1 ◦ f} ◦ β−1 · Z : T ′ ← T ← T · Z ← T ′ · Z

The morphism {f}′ thus defined satisfies the equations of Definition 15,

f = {f}′ ◦ η′ · Z
{f}′ ◦ τ ′ · Z = τ ′ ◦H({f}′) ◦ θT ′,(Z,e) ;

the calculation is routine. Concerning the uniqueness of {f}′, suppose h such that these
equations with h in place of {f}′ are satisfied. We have to show that h = β◦{β−1 ◦ f}◦β−1 ·Z.
Equivalently, one can show that

{β−1 ◦ f} = β−1 ◦ h ◦ β · Z , (2)

which follows from the uniqueness of {−}: it suffices to show that the right-hand side of (2)
satisfies the equations involving η and τ . We thus have equipped (T ′, α′) with a (necessarily
unique) substitution operation.

The fact that β is compatible with {−} and {−}′, and hence in the subcategory, is a
routine calculation. J

I Theorem 22. The category hss(H, θ) is univalent if C is.

Proof. Combine Lemmas 23, 25, 24 below and Lemma 21 above. More precisely, if C is
univalent, so is [C, C], and thus also the category of (Id + H)-algebras on [C, C]. Finally,
the category hss(H, θ) is univalent as a replete subcategory of the category of (Id + H)-
algebras. J

The following lemmas state closure properties of the property of being univalent:

I Lemma 23. The category of algebras of a functor F : C → C is univalent if C is.

Proof. This lemma is proved in the file CategoryTheory/FunctorAlgebras.v of the UniMath
library. J

The next lemma is originally due to Hofmann and Streicher [20]; and is also proved in
Thm. 4.5 of [4]:

I Lemma 24. The category of functors [C,D] is univalent if the target category D is.

The category of substitution systems contains all the isomorphisms of the category of
(Id +H)-algebras, for which source and target are substitution systems.

This is sufficient to inherit univalence from the category of algebras:

I Lemma 25. Let C be a univalent category and let P : C0 → Prop and Pa,b : C(a, b)→ Prop
define a subcategory CP of C. Then CP is univalent if, for any objects (a, pa) and (b, pb) of
CP , and for any isomorphism f : isoC(a, b) from a to b, we have Pa,b(f).

In particular, replete subcategories of univalent categories are univalent.

Proof. For (a, pa) and (b, pb) objects of CP , we have

(a, pa) =CP (b, pb) ' a =C b ' isoC(a, b) ' isoCP ((a, pa), (b, pb))

and this equivalence, from left to right, is equal to idtoiso. J

This concludes our study of the category of substitution systems associated to a signature
with strength.
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6 From Substitution Systems to Monads

One of the most important results of Matthes and Uustalu’s work [24] is the construction of
a monad from any substitution system:

I Theorem 26 ([24], Thm. 10). If an (Id +H)-algebra (T, α) forms a heterogeneous substi-
tution system for (H, θ) for some θ, then (T, η, {id(T,η)}) is a monad.

See Section 9 for some comments on technical challenges we had to overcome for the
formalization of its proof.

It is natural to ask whether this map extends to morphisms, and indeed it does:

I Theorem 27. The map from heterogeneous substitution systems to monads defined in [24,
Thm. 10] is the object map of a functor hss(H, θ)→ Mon(C).

Proof. Given any morphism β : (T, η, τ, {}) → (T ′, η′, τ ′, {}′) of substitution systems, the
underlying natural transformation β : T → T ′ needs to be proven compatible with the
multiplications µT := {id(T,η)} and µT

′ of the monadic structures on T and T ′ defined in
[24, Thm. 10]. This is an easy consequence of the compatibility of β with {} and {}′. J

I Nota bene. Hirschowitz and Maggesi [17] observe that any signature with strength (H, θ)
yields a module transformer: given a module (M,ρ) over a monad R, then HM is again a
module over R. The module multiplication of HM is defined as Hρ ◦ θM,R.

Given a heterogeneous substitution system (T, [η, τ ], {−}), the monad (T, η, {id(T,η)})
(from now on denoted just T ) constructed in Theorem 26 can be viewed as a module over
itself. Applying the aforementioned module transformer yields a module (with underlying
functor) HT over T .

Further along those lines, we note that τ : HT → T is a module morphism in the
sense of [19] between the modules over T thus defined. The equation establishing this is an
instance of the family of equations on heterogeneous substitution systems ruling the case of
constructors—that is, of the family of squares concerning the morphism τ in Definition 15:
the instance where (Z, e) := (T, η) and f := id(T,η).

One might thus say that being a substitution system includes by definition that τ is a
module morphism. However, this only concerns the equation to be fulfilled. It does not
suggest a modification of the notion of substitution systems: when defining substitution
systems, the modules for which τ is a morphism are not available, and thus, it could not even
be stated in the definition of substitution systems that τ ought to be a morphism between
these modules.

The functor from substitution systems to monads is faithful, but not full. Intuitively, the
lack of fullness stems from the fact that the axioms of a monad morphism do not specify
compatibility of the mapping with the “inner nodes” of an expression, but only at the leaves,
that is, in the case of a variable.

I Lemma 28. The functor of Theorem 27 is faithful.

Proof. Two parallel monad morphisms are equal if their underlying natural transformations
are, and the analogous statement is true for morphisms of substitution systems. J

I Remark 29. The functor of Theorem 27 is not full. For instance, choose C = Set, and take
a signature with two copies app and app′ (of the same arity) of an “application” constructor,
see Definition 33 in Section 8. Take the initial substitution system associated to that
signature with strength (as constructed via Theorems 30 and 31 in Section 7), and define
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an endomorphism on it that maps app to app′ recursively, and is the identity on the other
constructors. This yields a monad morphism, but not a morphism of substitution systems;
indeed, the second diagram of Def. 18 does not commute—any endomorphism on that
substitution system must be the identity morphism.

I Nota bene. The question may arise if we could modify our results on the construction
of monads to obtain relative monads [7]. However, non-relativized monads are the more
general outcome, since, by composing the constituents of a monad (in the presentation with
Kleisli extension instead of a monad multiplication) with a given functor J , we would obtain
monads relative to J (called “restriction” [7, Proposition 2.3(1)]).

7 Lifting Initiality Through a Fusion Law

The starting point of this section is a result from [24], which gives one way to define
substitution systems and which comes from a very specific instance of Lemma 8. As a first
instantiation step, take in that lemma [C, C] for C and D and the reduction functor − · Z
for L, for any endofunctor Z of C. This is the general situation of the “gfolds” of Bird and
Paterson [12], and (the carriers of) the corresponding initial F -algebras are called “nested
datatypes” [10]. As Bird and Paterson recall, the assumption of having a right adjoint to
the reduction functor means that right Kan extensions along those Z exist. In the context
of functional programming with impredicative polymorphism, these right Kan extensions
can be defined syntactically: the syntactic right Kan extension of type transformer G along
type transformer Z is defined as λA∀B. (A → ZB) → GB, which is monotone in A for
syntactic reasons regardless of G and Z (A occurs non-strictly positively in the body of the
abstraction). This construction is essential for relating different formulations of iteration
over nested datatypes [3]. However, the full categorical properties of Kan extensions are not
ensured by the computation rules of the polymorphic language. Still, they are satisfied in
parametric models of higher-order polymorphism [16, Thm. 6.10 (i)]. We will not further
develop the categorical semantics of those programming languages. The previous remarks
should make it plausible that the following theorem rests on “reasonable” technical conditions.
If program verification is aimed at in an intensional setting, replacements for the categorical
notions have to be found, and yet different schemes of generalized iteration have to be studied
in order to combine expressivity, termination guarantees and program verification in the
same framework [23] (using Coq very differently from the UniMath approach).

I Theorem 30 ([24], Thm. 15). Let (H, θ) be a signature. If [C, C] has an initial (Id +H)-
algebra and a right adjoint for the functor − ·Z : [C, C]→ [C, C] exists for every Ptd(C)-object
(Z, e), then (T, α) defined by

(T, α) = (µ(Id +H), inId+H)

is a heterogeneous substitution system for (H, θ).

The proof of this theorem is by identifying, for a given f : (Z, e)→ (T, η), the morphism
{f} as an instance of Lemma 8, both for the existence and uniqueness property. The
obvious part of the instantiation is the choice of parameters mentioned above, and by setting
F := Id +H. The essential ingredient for getting a morphism {f} of type µF · Z → T (here,
T is even µF ) is a natural transformation Ψf whose typing could sloppily be written as

Ψf :: ∀X : [C, C]. (X · Z → T )→ (FX · Z → T ) .
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The type of Ψf suggests the following problem-solving method: The original problem is that
of finding a morphism of type µF · Z → T . We abstract away from µF and replace it by
an arbitrary endofunctor X : [C, C]. For this arbitrary X, we have to extend a purported
solution for parameter X, hence of type X · Z → T , to a solution for parameter FX, hence
of type FX · Z → T . Of course, this has to be done naturally in X, as required in Lemma 8.
So, using the construction that extends solutions for parameter X naturally to solutions for
parameter FX, the lemma even yields a (unique) solution for the least fixed-point of F as
parameter. The continuity properties behind this method were deeply explored by Abel [2]
for (co-)inductive types and extended to nested datatypes later [1].

This is the essence of schemes in Mendler’s style [25]: being able to advance from a
solution in parameter X to a solution in parameter FX uniformly (in Mendler’s original work,
this was plainly universal quantification over a type variable X; in the categorical setting,
this is achieved by naturality), one is guaranteed a solution in parameter µF . Lemma 8 is
an instance of that idea, hence the name “generalized iteration in Mendler-style”.

Mendler-style gives great liberty: were are free in choosing Ψf of the required type
(implicitly asking for naturality), but there is little guidance in finding the right one for our
purpose. Guidance would, e. g., come from asking for an algebra structure on the target
endomorphism T . Therefore, we instantiate the lemma further to obtain what is called “a
special case of generalized iteration” by Matthes and Uustalu [24].1 It consists in requiring
an endofunctor F ′ on [C, C], a natural transformation θ′ : (F−) · Z → F ′(− · Z) and an
F ′-algebra ϕ : F ′T → T on T , and in putting them together to obtain

Ψf (X)(h : X · Z → T ) := ϕ ◦ F ′h ◦ θ′X : FX · Z → T .

Its use in our present situation is then with F ′ := Z +H, θ′X := id + θX,(Z,e) and ϕ := [f, τ ],
using the strength θ of the signature and the H-algebra τ that is generically derived from α

(see before Definition 15).

I Nota bene. We remark that all of this is not optimal from a progammer’s point of view,
where the question is not only of soundness but of efficiency of the traversals through the
data structures. There is the more refined notion of “generalized Mendler iteration” [3]
(called GMItω) as an efficient way out. The crucial idea is to generalize the problem further
than finding a solution of X · Z → T for parameter X = µF . An h : X · Z → T consists of
morphisms hA : X(ZA)→ TA for every A : C0, and generalized Mendler iteration asks even
for operations hf : XB → TA for any B : C0 and f : B → ZA. Taking for f the identity
morphism on ZA, one gets the desired components of the solution in the end. The gain in
efficiency comes from the combination of a fold and a map in this scheme—enforced just by
these types in the polymorphic formulation of [3].

Also for generalized Mendler iteration, there is a formulation in more conventional terms
of algebras, called “generalized refined conventional iteration” [3], which captures in particular
the efficient folds of Martin, Gibbons and Bayley [22]. For generalized Mendler iteration,
there is also a means of verification in usual intensional Coq, using category theory only as
a motivation and not as the mathematical framework [23].

We augment the previous theorem by showing that the constructed substitution system
is initial:

1 The instantiation with − · Z for L can also be formulated in a less homogeneous setting where not only
endofunctor categories intervene [24, Section 2.3].
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I Theorem 31. The substitution system (T, α, {}) constructed in Lemma 30 is initial in
hss(H, θ).

In order to prove Theorem 31, it suffices to show that, for any given substitution system
(T ′, α′, {}′), the initial morphism of algebras

! : (T, α)→ (T ′, α′)

is compatible with the operations {} (defined in the proof of Lemma 30) and {}′. That is,
we need to show that, for any f : (Z, e)→ (T, η),

! ◦ {f} = {! ◦ f}′ ◦ (! · Z) . (3)

Using the fusion law (Lemma 10), we show that both sides of (3) are equal to the application
of an iterator. More precisely, we use the fusion law for the left-hand side, knowing the
explicit definition of {f} as an iterator, described above, to establish equality with It−·ZF ( Ψf ),
where we define

Ψf (X)(h : X · Z → T ′) := [! ◦ f, τ ′ ◦Hh ◦ θX,(Z,e)] : FX · Z → T ′ .

Once the premisses of the fusion law established, we can show equality with the right-hand
side of (3) by verifying that the defining equations of It−·ZF ( Ψf ) are fulfilled by the right-hand
side.

8 A Worked Example: Flattening of Explicit Substitution

In practice, a signature is often a family of arities, each arity specifying the type of one term
constructor. A typical example is a typeful version of de Bruijn indices for pure (untyped)
λ-calculus, where, intuitively, the equation

TA = A+ TA× TA+ T (1 +A)

has to be solved, giving in TA the set of λ-terms having free variables among A (cf. the
introduction), where the last summand represents λ-abstraction that abstracts the variable
corresponding to the extra element of 1 +A. This example is developed in [24] but originates
from [8, 11].

We can “glue” signatures with strength together to obtain a new signature with strength:

I Lemma 32 (Sum of signatures). Let (H, θ) and (H ′, θ′) be two signatures. Then (H +
H ′, θ + θ′) is a signature.

This lemma is important for our main example: indeed, we consider two signatures, where
one is obtained from the other by extending the language (better: its signature) by one
additional term constructor (better: arity).

To this end, we need the base category C to come equipped with some extra structure:
for the remainder of this section, we assume C to have (specified) products, coproducts and
a terminal object. An example of such a category is the (univalent) category Set of sets (see
Section 2), which has all limits and colimits.

We continue the case study in [24] on λ-calculus without and with a form of explicit
substitution—“explicit flattening”. In order to do so, we first present the signatures (H, θ)
corresponding to application, abstraction, and explicit flattening, respectively:
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I Definition 33 (Application). The signature of application is given by pointwise product,
inherited from the base category C:

HApp(T ) := T × T .

The strength θApp is given pointwise by the identity,

θApp
X,(Z,e) : (X ×X) · Z → (X · Z)× (X · Z) .

The fact that the identity suffices here corresponds to the triviality of first-order operations
in substitution (which is plainly homomorphic on those operations).

I Definition 34 (Abstraction). Abstraction in our context is defined by precomposition with
a coproduct, corresponding to “context extension”:

HAbs(T ) := T · option ,

where option(X) := 1 +X represents the context X extended by one distinguished element
inl1,X(?). The strength θ is defined as

θAbs
X,(Z,e)(A) := X[ e1+A ◦ inl1,A, Zinr1,A ] : X(1 + ZA)→ X(Z(1 +A)) .

The defined strength embodies the usual lifting needed for substitution in de Bruijn repre-
sentations of λ-abstraction.

I Definition 35 (Explicit flattening). The flattening signature is defined by selfcomposition,

HFlatten(T ) := T · T ,

and the corresponding strength requires the unit e of the pointed endofunctor (Z, e) to be
inserted in the right place:

θFlatten
X,(Z,e) := X · e ·X · Z : X ·X · Z → X · Z ·X · Z .

Note that the flattening signature cannot be dealt with in a framework with a fixed enu-
meration of variable names and shows, already on the syntactic side, the most simple case
of “true nesting” in nested datatypes (see, e. g., [3]). Notice that the highly parameterized
type already suggests the right definition. For its mainly used instance θFlatten

T,(T,η), with T

and η components of the obtained substitution system, its type T 3 → T 4 hardly suggests a
canonical definition.

These signatures are now combined, as per Lemma 32, to obtain the signatures we are
mainly interested in:

I Definition 36 (Signature of λ-calculus). The signature Λ is obtained as the sum of the
signatures of Defs. 33 and 34.

I Definition 37 (Signature of λ-calculus with explicit flattening). The signature Λµ is obtained
as the sum of the signatures of Defs. 36 and 35.

For the purpose of this example, we assume the signatures Λ and Λµ to have initial
substitution systems. By Lemma 30 we get those if we assume that their underlying initial
algebras exist. (For a remark on the construction of initial algebras, see Section 10.) We
denote the initial substitution systems by (Lam, α, {}) and (Lamµ, αµ, {}µ), respectively.

TYPES 2015



2:18 Heterogeneous Substitution Systems Revisited

Intuitively, they solve the equation in T given in the first paragraph of this section, and the
following equation in T ′, respectively:

T ′A = A+ T ′A× T ′A+ T ′(optionA) + T ′(T ′A) .

Why is Lamµ supposed to represent λ-calculus with explicit flattening? Coming back
to parallel substitution on T (= Lam), as mentioned in the introduction, we may study
the substitution rule f := λxTB .x of type TB → TB. Then, µB := [f ] : T (TB) → TB

can be interpreted as doing the following: in a term whose free variables have as names
terms over B, those names are replaced by themselves, but now integrated into the given
term. In other words, µB removes the “cross section” between the trunk of the term and the
term-like variable leaves. Invoking Theorem 26 for (Lam, α, {}), one obtains µ := {id(Lam,η)} :
Lam·Lam→ Lam as monad multiplication on the monad of λ-terms, and the above-mentioned
parallel substitution can then be derived generically, so as to obtain its components µB
with the described behaviour. In other words, the generic notion of monad multiplication
appears to have the behaviour of “flattening” a nested term structure of type T (TB) into
one of type TB (for every B). Now, Lamµ even has a term constructor, corresponding to
the injection of the last summand of the above equation into the left-hand side. Hence, the
constructor is of type Lamµ · Lamµ → Lamµ, which is the same type as monad multiplication.
As a constructor, this operation does not denote the result of the flattening (here, even for
the extended syntax), but is a formal syntactic element and is therefore called an explicit
flattening operation. (Cf. explicit substitution; in fact, explicit flattening is a variant of
explicit substitution.) Already in [24], it was shown that those explicit flattenings can be
resolved by evaluating any term with explicit flattenings (from LamµA for some A) into a
term without explicit flattenings (in LamA). We continue this case study by using our extra
categorical structure on substitution systems.

In the following, our goal is to construct a morphism of substitution systems from
Lamµ to Lam. This is not quite precise and needs refinement, since a priori, those two
substitution systems are not in the same category. More precisely, we are going to build a
substitution system for the signature Λµ, the underlying carrier of which is the carrier Lam.
To this end, we need to construct two ingredients: firstly, we need a natural transformation
µLam : HFlatten(Lam)→ Lam in order to obtain a structure of Id+Λµ-algebra on Lam. Secondly,
we equip this Id + Λµ-algebra with a substitution operation—which, of course, must be shown
compatible with the Id + Λµ-algebra structure in the sense of the diagram of Definition 15.

Once this is done, we obtain, by initiality, a morphism of substitution systems from
the initial substitution system of Λµ to the newly constructed one, the underlying algebra
morphism of which is a morphism from Lamµ to Lam that “does the right thing”: mapping
explicit substitution to substitution.

I Definition 38 (Representation of flattening on Lam). Let µLam : HFlatten(Lam) → Lam be
given by

µLam := {idLam} : Lam · Lam→ Lam .

I Lemma 39 (Substitution system of Λµ on Lam). The pair (Lam, [α, µLam ]) is an Id + Λµ-
algebra. (Here, we have implicitly used associativity of the coproduct.)

We define substitution {}Flatten on this algebra by setting, for (Z, e) and f : (Z, e) →
(Lam, η),

{f}Flatten := {f} .
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This assignment defines substitution on that algebra, and hence a substitution system
(Lam, [α, µLam ], {}Flatten) for the signature Λµ.

Proof. We need to show that {−}Flatten satisfies the equations of substitution, see Definition
15. The diagrams can be checked for any “arity” individually, and for η, App and Abs,
the equations to check are exactly those satisfied by Lam as a substitution system for the
signature Λ. The only non-trivial equation to check states that {−}Flatten is compatible with
µLam; we have to check that

{f}Flatten ◦ µLam · Z = µLam ◦ Lam({f}Flatten) ◦ {f}Flatten · Lam · Z ◦ Lam · e · Lam · Z

We omit the details of this calculation here, and refer instead to the formal proof. J

We thus have two objects in the category hss(Λµ), an initial object with underlying carrier
Lamµ, and the object constructed in Lemma 39, with underlying carrier Lam. By initiality,
we obtain a unique morphism of substitution systems in this category.

I Definition 40. We call eval : Lamµ → Lam the morphism of substitution systems obtained
by initiality. This map sends application and abstraction to themselves, respectively, and it
sends the explicit flattening operator to its “evaluation”, that is, to a “flattened” term.

This morphism of substitution systems gives rise, via functoriality of the monad construc-
tion (Theorem 27), to a monad morphism; it is this morphism that is studied in Example
16 of [24]. Here, we have shown how that monad morphism arises from a morphism of
substitution systems.

9 About the Formalization

Most of the results presented in this article have been formalized, based on the UniMath
library [32]. More precisely, all results except for Theorem 22 and Lemmas 25 and 21 are
proved in our formalization.

Our formalization started out as an independent repository, but has since been integrated
into UniMath, as a package (subdirectory) called SubstitutionSystems. The formalization
can be inspected by cloning the UniMath repository on Github, https://github.com/
UniMath/UniMath, following the installation procedure described there.

The UniMath library being under active development, the organization of the packages is
going to change: some code will be moved to other, more fundamental, packages. For the
purpose of inspection of the package SubstitutionSystems as described here, it is hence
convenient to stick with a particular commit of the git repository, e.g., commit 1ead81a.
The sections of this article roughly correspond to files in the formalization:
GenMendlerIteration.v corresponds to Section 4;
SubstitutionSystems.v corresponds to Section 5;
MonadsFromSubstitutionSystems corresponds to Section 6;
LiftingInitial.v corresponds to Section 7.

The code corresponding to Section 8 is spread over several files:
SumOfSignatures.v corresponds to Lemma 32;
LamSignature.v corresponds to Definitions 33, 34, 35;
Lam.v corresponds to the rest of Section 8.
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Table 1 Lines of code of the library SubstitutionSystems.

spec proof comments
32 59 10 AdjunctionHomTypesWeq.v
90 165 102 Auxiliary.v
28 14 8 EndofunctorsMonoidal.v
70 124 27 FunctorsPointwiseCoproduct.v
70 113 7 FunctorsPointwiseProduct.v
91 116 30 GenMendlerIteration.v
28 21 7 HorizontalComposition.v
79 407 72 LamSignature.v

106 249 57 Lam.v
236 518 61 LiftingInitial.v
123 423 76 MonadsFromSubstitutionSystems.v
26 0 12 Notation.v
15 4 9 PointedFunctorsComposition.v
36 61 11 PointedFunctors.v
42 81 11 ProductPrecategory.v
22 0 10 RightKanExtension.v
82 211 40 Signatures.v

155 326 53 SubstitutionSystems.v
69 170 13 SumOfSignatures.v

1400 3062 616 total

To account for the ongoing work on the UniMath library, we provide an “interface” file
UniMath/SubstitutionSystems/SubstitutionSystems_Summary.v
containing pointers to the most important formalized theorems. So, while this paper is best
studied with an eye on the commit mentioned above, the interface file allows to locate all
the notions, constructions and results in their respective current state of evolution.

9.1 Statistics
Our library consists of a bit more than 4400 loc, plus 600 lines of comments2. Details are
given in Table 1—numbers are taken from commit 1ead81a. For comparison, for the same
commit, the whole of UniMath, including our library, consists of about 37000 lines of code:

spec proof comments
15053 22389 3987 total

9.2 About Performance: Transparency vs. Opacity
One important aspect of computer proof assistants that are based on type theory is com-
putation. Computation enables us to obtain some equalities for free. For instance, in
our formalization of (co)products in a functor category [C,D] from (co)products in the

2 Note that the organization of the files is going to change over time, due to reorganization of the library.
In particular, contents may get moved to other parts of UniMath in the future.
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target category D, the (co)product of two functors F and G computes pointwise to the
(co)product of the images, that is, for instance (F ⊕[C,D] G)(c) ≡ Fc ⊕D Gc. Here, the
notation ≡ denotes definitional equality a.k.a. computation. This is only true for a specific
construction of (co)products in functor categories, of course; in general, one can only expect
(F ⊕[C,D] G)(c) 'D Fc ⊕D Gc. However, in order to keep the complexity of our proofs
manageable for us, having definitional equality instead of isomorphism was crucial. We hence
had to keep many category-theoretic constructions, such as (co)products in functor categories,
transparent. Technically, this amounts to closing a proof using Defined. instead of Qed.
in the Coq proof assistant.

This lack of opacification, however, results in terms getting very large, making type
checking more costly for the machine. The transparency vs. opacity issue can hence be
restated as an issue of human vs. machine friendliness.

Our approach to this issue was to make opaque all the terms that we could afford making
opaque, either by moving them into lemmas by themselves, closing with Qed., or by enclosing
the corresponding sequence of tactics producing that term into an abstract (...) block.
The inconvenience of the latter method is that the block enclosed by abstract must be one
tactic (composed using the semicolon), not a sequence of tactics. This method is hence only
feasible for small subproofs.

Our library is quite slow to compile, due to the rather large proof terms arising when
working with multiple stacked constructions in category theory: some Qed. take very long to
check. A significant speedup was obtained in the file MonadsFromSubstitutionSystems.v
by setting the option Unset Kernel Term Sharing., the workings of which are unknown
to us. However, this option proved useless or even increased compile time in other files, and
is hence only used in that one file. It is unclear to us why this option is beneficial in that file
and only there, and whether there is a guiding principle saying when this option is useful.

In our library, there is a slight duplication of code: the UniMath library contains a proof
that colimits lift to functor categories from the target category, formalized by Ahrens and
Mörtberg [6]. This result could in principle be applied to lift coproducts and products,
both of which are formalized as specific colimits. However, it turned out that this approach
made typechecking unfeasibly slow: indeed, the first files making use of coproducts in
functor categories would stop compiling when that construction of coproducts in functor
categories was plugged in. Instead, we provide a manual lifting of (co)products into functor
categories in the files FunctorsPointwiseProduct.v and FunctorsPointwiseCoproduct.v,
with which typechecking is reasonably fast. The latter construction applies similar principles
of opacification as the general lifting of colimits; it is hence unclear to us why the latter does
perform so much better than the former.

Added in print: the use of primitive projections in Coq, via the option Set Primitive
Projections, reduced the compilation time for our project dramatically (much better than
the 56% drop in time that were observed for the whole UniMath library on average). This
was adopted for the Σ-types used in UniMath in commit 6b044cc.

10 Conclusions

We presented, in univalent type theory, some new results about the heterogeneous substitution
systems introduced by Matthes and Uustalu [24], and showed how to obtain initial substitution
systems (such as lambda calculi) from initial algebras using generalized iteration in Mendler-
style.

We have not studied, in the present work, the construction of initial algebras in univalent
type theory; this is the subject of joint work with Mörtberg [6, 5].
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