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The two-phase mixing layer formed between parallel gas and liquid streams is an im-
portant fundamental problem in turbulent multiphase flows. The problem is relevant
to many industrial applications and natural phenomena, such as air-blast atomizers in
fuel injection systems and breaking waves in the ocean. The velocity di↵erence between
the gas and liquid streams triggers an interfacial instability which can be convective or
absolute depending on the stream properties and injection parameters. In the present
study, a direct numerical simulation of a two-phase gas-liquid mixing layer that lie
in the absolute instability regime is conducted. A dominant frequency is observed in
the simulation and the numerical result agrees well with the prediction from viscous
stability theory. As the interfacial wave plays a critical role in turbulence transition and
development, the temporal evolution of turbulent fluctuations (such as the enstrophy)
also exhibits a similar frequency. In order to investigate the statistical response of the
multiphase turbulence flow, the simulation has been run for a long physical time so that
time-averaging can be performed to yield the statistically converged results for Reynolds
stresses and the turbulent kinetic energy (TKE) budget. An extensive mesh refinement
study using from 8 million to about 4 billions cells has been carried out. The turbulent
dissipation is shown to be highly demanding on mesh resolution compared to other terms
in TKE budget. The results obtained with the finest mesh are shown to be not far from
converged results of turbulent dissipation which allow us to obtain estimations of the
Kolmogorov and Hinze scales. The estimated Kolmogorov scale is found to be similar
to the cell size of the finest mesh used here. The computed Hinze scale is significantly
larger than the size of droplets observed and does not seem to be a relevant length scale
to describe the smallest size of droplets formed in atomization.

Key words: DNS, two-phase flows, mixing layer, turbulence, atomization

1. Introduction

Mixing layers formed between parallel gas and liquid streams are commonly seen in
nature and industrial applications, e.g. , breaking ocean waves and injection of liquid
fuels in engines. Typically a velocity di↵erence exists between the two streams, which
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Figure 1. A two-phase mixing layer between parallel gas and liquid streams. The grey surface
is the liquid-gas interface and the background is the z-component of vorticity.

triggers a shear instability on the gas-liquid interface. The interfacial instability grows
and eventually causes the bulk liquid to break into small droplets, forming a two-phase
mixing layer between the two streams. At the continuum level, the gas and liquid streams
are immiscible, so the “mixing” layer here indeed refers to a layer consisting of a mixture
of gas and a dispersion of droplets generated from the bulk liquid disintegration. The
process where the bulk liquid stream breaks into a large number of small droplets is often
referred to as “atomization” and the resulting gas-droplets mixture as a spray. Since the
breakup of the liquid stream can be significantly enhanced by the parallel fast gas stream,
this co-flowing configuration (also known as air-blast atomization) is widely used in fuel
injectors (Lefebvre & McDonell 2017).

1.1. Problem description

In the present study we focus on modeling the wall-bounded two-phase mixing layer
experiment by Matas et al. (2011), which is illustrated in figure 1 by a snapshot of present
simulation results (details of simulation are to be presented later). The grey surface is
the liquid-gas interface and the background is the z-component (in spanwise direction) of
vorticity. The parallel gas and liquid streams, separated by a small separator plate, enter
the domain from the left. The thicknesses of the two streams at the inlet are the same.
A mixing layer is formed between the gas stream and the stagnant gas, as indicated by
purple dashed lines. Similarly, a two-phase mixing layer is formed between the gas and
liquid streams, between the two green dashed lines. The two-phase mixing layer near
the inlet is nothing but a downstream propagating interfacial wave, strictly speaking
there is no “mixing”. The mixing between the two immiscible phases only occur further
downstream when the liquid stream breaks up, forming a mixture of gas and droplets.

As indicated in this figure, the two-phase mixing layer is a phenomenon of enormous
complexity that involves interfacial instability, two-phase turbulence, and topological
changes due to liquid breakups occurring at a wide variety of spatial and temporal scales.
Due to its important application to fuel injection, the problem has attracted increasing
attention in recent years and extensive theoretical, experimental, and numerical investi-
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gations have be performed. Some of the important previous works in the literature are
discussed in the next sections.

1.2. Shear-induced interfacial instability

The destabilization of the liquid stream in the present problem is initiated by the
instability at the gas-liquid interface, which is in turn induced by the velocity di↵er-
ence between parallel streams and the resulting shear on the interface near the nozzle
(Taylor 1963; Renardy 1985; Rangel & Sirignano 1988; Lasheras et al. 1998; Lasheras
& Hopfinger 2000; Matas et al. 2011; Matas 2015). Di↵erent mechanisms that drive the
interfacial instability, including the classic Kelvin-Helmholtz instability (Helmholtz 1868;
Thomson 1871), the instability due to viscosity contrast (Yih 1967), the inviscid Rayleigh
(inflection-point) and viscous Tollmien-Schlichting mechanisms, have been addressed in
previous works (Ozgen et al. 1998; Otto et al. 2013). Stability analysis at the interface
between two immiscible fluids of di↵erent densities and viscosities has been conducted
for both planar (Renardy 1985; Rangel & Sirignano 1988, 1991; Matas et al. 2011) and
cylindrical geometries (Raynal 1997; Lasheras et al. 1998; Marmottant & Villermaux
2004).

Conventionally, the development of the interfacial wave is investigated through a linear
analysis of small perturbations of the two-dimensional base flow (with no variation in
the transverse direction) and studies focus on predicting the most unstable wavelength
and frequency. The linear instability studies that yield theoretical prediction of the
most unstable frequency were first carried out assuming inviscid flows (Marmottant &
Villermaux 2004; Eggers & Villermaux 2008; Matas et al. 2011), and extensions to viscous
regime have been made in recent years (Boeck & Zaleski 2005; Sahu et al. 2007; Fuster
et al. 2013; Otto et al. 2013; O’Naraigh et al. 2013, 2014; Matas et al. 2015). Research
e↵orts have also been made to investigate the e↵ect of confinement on the instability of
mixing layers (Juniper & Candel 2003; Juniper 2006; Juniper et al. 2011; Matas 2015).

While the inviscid stability theory has been shown to well predict the scaling relation
of the most unstable wavelength and frequencies (Rangel & Sirignano 1988, 1991; Raynal
1997; Marmottant & Villermaux 2004; Eggers & Villermaux 2008), the viscous stability
analysis is required in general to yield accurate prediction of the magnitudes of the most
unstable frequency and wavelength (Fuster et al. 2013; Otto et al. 2013; O’Naraigh et al.
2013; Matas et al. 2015). The linear stability analysis in both inviscid and viscous regime
confirms that the vorticity layer thickness of the gas stream at the inlet, denoted by �g, is
the characteristic length scale that controls the selection of the most unstable wavelength.

It is clearly shown by previous works (Raynal 1997; Hoep↵ner et al. 2011; Ling et al.
2017) that the propagation speed of the interfacial wave is well predicted by the Dimotakis
speed. The Dimotakis speed UD is defined as (Dimotakis 1986)

UD =

p
⇢lUl +

p
⇢gUgp

⇢l +
p
⇢g

, (1.1)

where ⇢l and ⇢g are the liquid and gas densities and the subscripts g and l represent the
gas and liquid phases, respectively. The velocities of the liquid and gas stream at the inlet
are denoted by Ul and Ug, and UD is obtained through a phenomenological approach,
assuming the gas and liquid dynamic pressures are in a balance in the reference frame
moving with the wave speed. With the Dimotakis speed, the frequency and wavelength
of the most unstable wave can then be related to each other as f = UD/�.

Recently, through viscous spatial-temporal analysis, Fuster et al. (2013) and Otto et al.
(2013) showed that the interfacial instability can be absolute or convective, depending
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mainly on the dynamic pressure ratios between the two phases, M , defined as

M =
⇢gU

2
g

⇢lU2
l

. (1.2)

When M is large, the interfacial instability is absolute and the wave frequency predicted
by stability analysis was found to agree well with experiments and simulations (Fuster
et al. 2013; Agbaglah et al. 2017).

Studies of interfacial instability eventually aim to shed light on understanding the
behavior of liquid breakups occurring further downstream. Nevertheless, connections
between the upstream interfacial instability and the downstream turbulence and spray
characteristics have not been investigated thoroughly in previous studies. A possible
reason is that a three-dimensional simulation that can resolve both the interfacial
instability and the resulting turbulent spray is too expensive. In this study we only
consider one specific case of two-phase mixing layer which clearly lies in the absolute
instability regime. As a result, there is a dominant interfacial stability frequency and we
will compare the numerical results with the spatial viscous stability theory of Otto et al.
(2013).

1.3. Two-phase turbulent coherent structures

As the interfacial wave is formed, turbulent coherent structures simultaneously appear
in the gas stream near the interface (Bernal & Roshko 1986). Due to the significant
di↵erence in velocities and viscosities between the gas and liquid streams, the gas-liquid
interface acts like a deforming wavy “wall” to the gas stream. The resulting turbulent
vortical structures are similar to those in boundary layers (Wu & Moin 2009; Jodai &
Elsinga 2016). The growing interfacial waves significantly perturb the gas stream and play
a significant role in the transition to turbulence. When the amplitude of the interfacial
wave is large compared to the thickness of the gas stream, it appears as an obstacle
to the gas flow, causing the latter to separate downstream of the wave. As discussed
above, the frequency of wave formation will correspond to the fastest growing mode if
the instability is absolute. Therefore, the turbulence production will also be related to
the wave frequency. Not only can the interfacial wave development modulate the gas flow,
the vortices in the gas flow also influence the wave evolution and the subsequent breakup
(Jarrahbashi et al. 2016). The liquid stream eventually disintegrates into a large number
of droplets with a wide range of sizes. These droplets are dispersed in the turbulent flow.
Secondary breakup or coalescence may also occur. The present study aims to provide
rigorous statistics of multiphase turbulence in the mixing layer.

1.4. DNS of chaotic liquid breakups and topology changes

Thanks to the rapid development of computer power and numerical methodology,
direct numerical simulations of atomization become viable in the past decade and recent
simulations have provided high-resolution details of atomization, including interfacial
instability development, interaction between the interfacial wave and the turbulent gas
stream, and formation of liquid sheets, ligaments, and droplets (Ménard et al. 2007; Shinjo
& Umemura 2010; Rana & Herrmann 2011; Le Chenadec & Pitsch 2013; Jarrahbashi et al.
2016; Ling et al. 2017; Agbaglah et al. 2017). In particular, di↵erent droplets formation
mechanisms have been observed. When the interfacial waves roll up and develop into
liquid sheets, Taylor-Culick rims form at the edges of liquid sheets. Rayleigh-Taylor (RT)
or Rayleigh-Plateau (RP) instabilities in the transverse direction then develop at the
rims, generating liquid fingers and filaments (Marmottant & Villermaux 2004; Roisman
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et al. 2006; Agbaglah et al. 2013). These filaments finally break into a distribution of
small droplets. In addition to this well known finger-mechanism, simulation results also
reveal a less established mechanism, i.e., holes form in liquid sheets and the spontaneous
expansion of these holes causes liquid sheets to rupture violently, producing numerous
filaments and droplets of di↵erent sizes (Shinjo & Umemura 2010; Jarrahbashi et al. 2016;
Ling et al. 2017; Zandian et al. 2017, 2018). The holes-induced breakup of a thin liquid
sheet is also observed in the bag breakup of a drop in secondary atomization (Opfer et al.
2014) and splashes (Marston et al. 2016). The mechanisms that cause sheet deformation
and hole formation have been recently investigated via vortex dynamics by Zandian
et al. (2018). In current interface-resolved simulations, disjoining pressure is generally
ignored as the a↵ordable minimum mesh size is still far larger than the sheet thickness
where molecular forces are active in collapsing a liquid sheet. The holes observed in the
simulations are thus an outcome of the numerical cut-o↵ length scale, i.e., the cell size
(typically in microns or sub-microns). Nevertheless, recent experiments in splash and
secondary breakup interestingly show that holes indeed form in liquid sheets when the
thickness is around microns (Opfer et al. 2014; Marston et al. 2016). The reasons for holes
arising in a thicker sheet are not fully understood, but experiments seem to indicate that
the holes observed in atomization simulations are not far from what is observed in reality.

1.5. Modeling of turbulent atomization

An important future direction of atomization simulations is the development of sub-
grid models like large-eddy simulation for turbulent single-phase flow (Pope 2000). Spatial
scales involved in atomization processes, varying from the size of the injector to the
diameter of the smallest droplet, can easily go beyond three or four orders of magnitudes.
If one has to fully resolve all the scales to guarantee reasonably accurate macro-scale
features, the impact of numerical simulations to practical atomization applications will
be limited by their extreme costs.

Attempts to combining interface-capturing schemes and Lagrangian point-particle
models have been proposed in recent years (Herrmann 2010; Tomar et al. 2010; Ling et al.
2015; Zuzio et al. 2017). In these combined approaches, the interfaces of the small droplets
are not resolved as for the macro-scale interfaces, instead, the droplets are treated as point
masses. Since the droplet-scale flows are not resolved, closure models of the force and heat
transfer between the droplets and the surrounding flow are needed. As the Weber number
of these droplets/bubbles are typically small, they are not much di↵erent from solid
particles. Thus modeling e↵orts on force and heat transfer for dispersed multiphase flows
or particle-laden flows are directly applicable (Magnaudet & Eames 2000; Balachandar
& Eaton 2010; Ling et al. 2013, 2016). However, the above modeling e↵orts have not
yet been able to resolve the fundamental challenge of sub-grid modeling of atomization,
i.e., how to accurately represent the under-resolved formation of sub-scale droplets. It
is expected that statistics of droplets from di↵erent formation mechanisms will vary
significantly. The size distribution of droplets generated in ligament breakup due to RP
instability will, for example, be di↵erent from that for droplets produced in a secondary
breakup.

In the literature, there are also simulations which combine interface-capturing methods
and LES filtering to the turbulent gas flows (Labourasse et al. 2007; Larocque et al.
2010; Lakehal et al. 2012; Aniszewski 2016). These modeling e↵orts are mainly focused
on the sub-scale surface tension e↵ect since the small-scale variation of curvature is
under-resolved. The robustness and accuracy of these models in capturing flows with
significant topological changes are still to be explored. We believe that a viable sub-grid
modeling approach will need to be event based. In other words, the model has to be able
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to identify the droplet formation event and the corresponding breakup mechanism based
on topological configurations of the macro-scale liquid structures. In order to develop
sub-grid model like this, rigorous data of the droplets statistics covering a su�ciently
large number of events has to be collected from fully-resolved simulations.

1.6. E↵ect of mesh resolution

While simulations of bubbles and drops retaining their identities have been shown
to produce fully converged solutions (Lu & Tryggvason 2013; Dodd & Ferrante 2016),
liquid-gas multiphase flow simulations where the topology changes through breakup
and coalescence generally result in spontaneously generated small-scale features that
are di�cult to resolve. This is particularly true for almost all simulations of large-scale
atomization (Shinjo & Umemura 2010; Le Chenadec & Pitsch 2013; Jarrahbashi et al.
2016; Ling et al. 2017; Agbaglah et al. 2017). The general consensus among researchers
has been that while the small-scale physics are under-resolved, the large-scale flow
remains correct. Since small droplets and filaments contain little mass, leaving them
unresolved should have only minor impact on the overall results. We have recently started
to examine this assumption in more detail, by extensive grid refinement studies varying
from 8 million to 4 billion cells (number of cells to resolve the initial liquid stream
thickness varying from 32 to 256) (Ling et al. 2017). While the results show that some of
the large-scale statistics converge, considerable sensitivity on the resolution has also been
observed, such as for the droplet size distribution. In particular, small-scale instabilities
can generate drops larger than the most-unstable wave length and the error resulting
from not resolving the smallest scales fully thus manifests itself at much larger scales.

1.7. Goals of study

The purpose of the present study is to answer the following important questions for
simulations of spray formation in a two-phase mixing layer between parallel gas and
liquid streams:

• What are the Kolmogorov and Hinze scales in the present two-phase mixing layer
and do they e↵ectively represent the flow physics in atomization?

• What is the mesh requirement to fully resolve turbulent atomization?
• Will the large-scale multiphase turbulence statistics be a↵ected if the small scale are

under-resolved?
• How does the interfacial instability influence the multiphase turbulence develop-

ment?

Particular attention will be focused on obtaining the statistics of multiphase turbulence
and on the impact of the upstream interfacial instability on the turbulence. As an
extension to our previous work (Ling et al. 2017), the simulation for the most refined
mesh (M3) has been run for about twice longer time, so that the statistically converged
multiphase turbulence statistics, in particular those of higher order, can be obtained.

2. Methodology

2.1. Governing equations

The one-fluid approach is employed to resolve the two-phase flow, where the liquid
and gas phases are treated as one fluid with material properties (such as density and
viscosity) that change abruptly across the interface. The incompressible two-phase flows
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are governed by the Navier-Stokes equations with surface tension,

⇢

✓
@ui

@t
+ uj

@ui

@xj

◆
= � @p

@xi
+

@

@xj


µ

✓
@ui

@xj
+
@uj

@xi

◆�
+ fs,i , (2.1)

@ui

@xi
= 0 , (2.2)

where ⇢ and µ are the fluid density and viscosity, u and p the velocity and pressure fields.
The surface tension term is expressed as

fs,i = ��sni , (2.3)

where � is the surface tension coe�cient (assumed to be constant here); while , and ni

are the local curvature and unit normal of the interface. The surface tension is a singular
term, with a Dirac distribution function �s localized on the interface.

The volume fraction c is introduced to distinguish the two di↵erent phases. Here,
c = 1 in computational cells with only the liquid phase, and its time evolution satisfies
the advection equation (Hirt & Nichols 1981)

@c

@t
+ ui

@c

@xi
= 0 . (2.4)

The fluid density and viscosity are calculated based on the arithmetic mean as

⇢ = c⇢l + (1 � c)⇢g , (2.5)

µ = cµl + (1 � c)µg . (2.6)

Detailed discussion about using arithmetic or harmonic means for viscosity has been
given by Boeck et al. (2007). It is shown that both viscosity methods yield similar results
for su�ciently high mesh resolution.

2.2. Numerical methods

The governing equations are solved by the open source code PARIS-Simulator. The
details of the numerical methods implemented in PARIS-Simulator can be found in
previous works (Tryggvason et al. 2011; Ling et al. 2015; Bnà et al. 2016; Ling et al.
2017) and the code webpage†. Only the numerical aspects that are relevant to the present
study are summarized here.

The Navier-Stokes equations Eqs. (2.1)-(2.2), are solved by the finite volume method
on a staggered grid. The fields are discretized using a fixed regular cubic grid (with
cell size �) and we use a projection method for the time stepping to incorporate
the incompressibility condition (Chorin 1968). The temporal integration is done by a
second-order predictor-corrector method. The interface is tracked using a volume-of-
fluid (VOF) method with the mixed Youngs-centered implementation of Aulisa et al.
(2007) to determine the normal vector and the Lagrangian-explicit scheme of Li (1995)
for the VOF advection (Scardovelli & Zaleski 2003). The advection of momentum near
the interface is implemented in a manner consistent with the VOF advection, similar
to the methods of Rudman (1998) and Vaudor et al. (2017). The superbee limiter is
applied in the flux calculation (Roe 1986). The viscous term is treated explicitly with a
second-order centered di↵erence scheme. Curvature is computed using the height-function
method of Popinet (2009). Surface tension is computed from the curvature by a balanced
continuous-surface-force method (Renardy & Renardy 2002; Francois et al. 2006; Popinet

† The PARIS-Simulator Code, available from http://www.ida.upmc.fr/˜zaleski/paris.
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2009). To capture the dynamics of under-resolved droplets less erroneously than by just
quasi-fragment VOF patches, droplets of size smaller than four cells are converted to
Lagrangian point-particles and are traced under the one-way coupling approximation,
following the approach of Ling et al. (2015).

2.3. Simulation setup

2.3.1. Computational domain

As shown in figure 1 the computational domain is a rectangular cuboid. The domain is
initially filled with stationary gas (at t = 0) and then liquid and gas streams progressively
enter it. The x-coordinate is aligned with the stream velocity; while y and z are along the
height and width of the stream. The thicknesses of the liquid and gas streams at the inlet
are represented by Hl and Hg, respectively. Here, Hl is chosen to be the characteristic
length scale. Then the length (x), height (y), and width (z) of the domain are taken to
be Lx = 16Hl, Ly = 8Hl, and Lz = 2Hl, respectively. The thickness and the length of
the separator plate are denoted as ly and lx. The separator plate is included to mimic
the e↵ect of the fuel injection nozzle and the need for such a plate to accurately capture
interfacial instability and wave breakups has been addressed by Fuster et al. (2013) and
will also be discussed later.

In order to reduce the computational cost, a relatively small domain width Lz is used,
compared to Lx and Ly. The characteristic length scale for the interfacial instability
development is the vorticity layer thickness �g. The current domain width is significantly
larger than �g, i.e., Lz/�g = 16, and therefore is su�cient to capture the development
of interfacial stability and wave formation. When the transverse instability develops at
the rim further downstream, the domain width used here may not be su�cient to resolve
the large wavelengths. The e↵ect of the domain width Lz to the simulation results are
discussed in the Appendix C, in which we have show results with a domain four time
wider than the present one (namely Lz = 8Hl). The results of the present and the wider
domains for both low and high order two-phase turbulence statistics (mean velocity and
dissipation) agree with the results of the present domain in general, suggesting that the
important conclusions made in the present study remain valid. The discrepancy mainly
lies at the unbroken liquid stream near the bottom of the domain, which indicates the
constraint of the domain width indeed influences the transverse instability development
and interfacial wave breakup downstream in some extent. A high-resolution simulation
using a wider domain is computationally expensive and will be relegated to future work.

2.3.2. Boundary conditions

Inflow boundary condition is applied to the left of the domain (x = 0), with the velocity
specified as

ux=0 =

8
>>><
>>>:

Ul erf
(Hl�y)

�l
, 0 6 y < Hl ,

0 , Hl 6 y < Hl + ly ,

Ug erf
[y�(Hl+ly)]

�g
erf

[(Hl+ly+Hg)�y]
�g

, Hl + ly 6 y < Hl + ly + Hg ,

0 , otherwise .

(2.7)

The separator plate is located at Hl 6 y < Hl + ly. The error function, defined as

erf(y) =
2p
⇡

Z y

0

exp(��2)d� , (2.8)

is known to be the exact solution of the first Stokes problem and is employed to represent
the vorticity layers on the top and bottom boundaries of the gas stream and the top of
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the liquid stream, following the previous works (Otto et al. 2013; Fuster et al. 2013).
The thickness of the vorticity layers at the top and bottom boundaries of the gas stream
is denoted by �g and that for the vorticity (boundary) layer at the top of the liquid
stream by �l. (There is no vorticity layer at the bottom of the liquid stream since the
domain bottom is considered to be a slip wall.) For the velocity profile defined here,
the displacement boundary layer thickness is �/

p
⇡ and the boundary layer thickness

corresponding to u = 0.99Ug is about 2� (Ling et al. 2017). The volume fraction function
at the inlet is specified as

cx=0 =

⇢
1, 0 6 y < Hl ,
0, otherwise .

(2.9)

The bottom of the domain (y = 0) is taken to be a slip wall and periodic boundary
conditions are used at the back and front boundaries (z = 0 and z = Lz).

In order to minimize the e↵ect of the finite size of the domain, additional attention is
required for the boundary conditions at the top (y = Ly) and the right of the domain (x =
Lx). In general, there are two options for the top boundary: (1) symmetric boundary (or
slip wall) (Fuster et al. 2013; Agbaglah et al. 2017) and (2) free boundary that allows the
gas to freely enter or leave the boundary (Taub et al. 2013; Ling et al. 2015, 2017; Almagro
et al. 2017). If the former condition is used, a recirculating flow will form on top the
parallel streams (Agbaglah et al. 2017). The recirculation is less favorable since obviously
it may influence the physics of interest, such as carrying coherent structures downstream
back to the inlet, unless the domain is so large that the e↵ect of the recirculation becomes
negligibly weak (Fuster et al. 2013). Due to high computational cost, a relatively small
domain is used in the present study, although Ly and Lx are already 8 and 16 times of
the initial liquid stream thickness and are large enough to capture the physics near the
parallel streams. Therefore, the free boundary conditions is chosen for the top boundary
in the present setup to minimize the e↵ect of recirculation. Since we have used the free
boundary condition on the top, the outlet condition on the right surface of the domain
requires the convective velocity to be specified. (If a pressure outflow boundary condition
is invoked, then the flow is under constrained and may exit at the top boundary, breaking
the parallelism of the two streams.) The outflow velocity profile imposed at the right of
the domain will a↵ect the mean flow. In order to mimic the development of the gas stream,
we specify the outflow velocity based on the average velocity of a planar turbulent jet,
(Pope 2000)

ux=Lx
=

⇢
Ucsech

2(↵⇠) , if y > Hl + 1/2Hg ,
Uc, else ,

(2.10)

where ⇠ = y/y1/2, and y1/2 is the half width of the turbulent jet. The convective velocity
Uc is determined by mass balance so that the flux into the domain given in (2.7) is
equal to that leaving the domain. The variation y1/2 in x is found to be linear, namely,
dy1/2/dx = S. The parameters S and ↵ are constant, the values of which are given as
0.10 and 0.88, respectively (Pope 2000). A Neumann boundary condition @c/@x = 0 is
applied for the volume fraction function at the right boundary.

It is noted that outflow velocity profile used here does not represent the exact condition
at the outlet of the domain, since the flow is turbulent and time dependent. Equation
(2.10) is thus only an approximation to the mean flow at the outlet. It is expected that
the overall mean flow can be a↵ected to a certain extent by the outflow velocity profile,
in particular, a small region near the outlet will be influenced. Nevertheless, it is shown
from simulation results that the overall boundary conditions applied here can e↵ectively
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minimize the recirculation on the top of the parallel streams (see figure 1) and also
convect the vortices and droplets out of the domain.

In order to thoroughly examine the e↵ect of the present boundary conditions on the
simulation results, we have performed simulations with a larger domain (Lx and Ly

are 1.5 times those of the current setup) on a coarser mesh. The details of the tests
for di↵erent domain sizes are given in the Appendix C. The results show that the key
conclusions made in the present study are not influenced by the boundary conditions and
the domain size.

2.3.3. Physical parameters

The material properties of the two fluids (⇢l, ⇢g, µl, µg, �) and the injection conditions
of the two streams (Ul, Ug, Hl, Hg, �l, �g), values given in Table 1, fully characterize the
resulting multiphase flow. In order to simplify the analysis, we take Hl = Hg + ly and
�l = �g. Following the Buckingham ⇡ theorem, the dimensional physical parameters in
Table 1 are expressed in dimensionless form as shown in Table 2.

The liquid properties used here are the same as those of water. The gas is similar
but not identical to pressurized air. Instead of using exact air properties in experiments
(Matas et al. 2011; Fuster et al. 2013), we consider a case of moderate density ratio
(Ling et al. 2017) that is less expensive for numerical simulation. (As will be shown
later, even for this “easier” case, we barely reach fully resolved results, and thus a DNS
at the exact experiment condition will be exceedingly expensive for currently available
computer power.) Therefore, the fluid properties and injection conditions here are not
chosen to match any realistic fuel injection condition. A larger gas density is adopted
here so that the liquid-to-gas density ratio is equal to 20. The gas viscosity is chosen here
so that kinematic viscosity for the two phases are the same. The dynamic pressure ratio
M has been shown to be the primary parameter determining the macroscale behavior
of a two-phase mixing layer (Lasheras & Hopfinger 2000) and whether the interfacial
instability is absolute or convective (Otto et al. 2013; Fuster et al. 2013). In order to
place the interfacial instability in the absolute instability regime, a large gas-to-liquid
dynamic pressure ratio is needed, and in the present study M is taken to be 20. Since
the liquid-to-gas density ratio r and viscosity ratio m are all equal to 20, we referred to
this case of atomization in a two-phase mixing layer as the “A20” case.

The gas vorticity layer thickness �g is the characteristic length scale for the interfacial
instability (Eggers & Villermaux 2008; Matas et al. 2011). The vorticity layer thickness
�g varies with gas properties and injection conditions, and thus a precise value of �g is
generally unknown a priori. In the experiment by Fuster et al. (2013), the injected air is
at standard condition and an empirical correlation of �g was given as a function of the
Reynolds number of the gas stream, Reg,H , which is defined as

Reg,H =
⇢gUgHg

µg
. (2.11)

For the present simulation, the gas properties and injection condition are di↵erent,
therefore, the empirical correlation of Fuster et al. (2013) is not applicable. The vorticity
layer thickness in the present simulation is an independent parameter and the value used
in the present stimulation is chosen as �g/Hl = 1/8 (or �g/ly = 4).

The e↵ect of �g (and �l) on the development of interfacial instability has been discussed
extensively by Fuster et al. (2013) through 2D simulations. To investigate the influence
of �g on the interfacial wave breakup and the multiphase turbulence, simulations have to
be extended to 3D. A parametric study of �g with 3D simulations is interesting yet out
of the scope of the present work.
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⇢l ⇢g µl µg � Ul Ug Hl �g ly

(kg/m3) (kg/m3) (Pa s) (Pa s) (N/m) (m/s) (m/s) (m) (m) (m)

1000 50 10�3 5 ⇥ 10�5 0.05 0.5 10 8 ⇥ 10�4 1 ⇥ 10�4 2.5 ⇥ 10�5

Table 1. Physical parameters.

M r m Reg,� Weg,� Reg,H

⇢gU2
g /(⇢lU

2
l ) ⇢l/⇢g µl/µg ⇢gUg�g/µg ⇢gU2

g �g/� ⇢gUgHg/µg

20 20 20 1000 10 7750

Table 2. Key dimensionless parameters.

The separator plate thickness ly can have a significant impact on the the interfacial
instability if it is larger than or comparable to �g (Fuster et al. 2013). When ly/�g is
su�ciently small, then the e↵ect of ly/�g becomes negligible. Here, we chose ly/�g = 1/4,
which is significantly smaller than the threshold value of ly/�g = 1 given by Fuster et al.
(2013) and thus the specific value of ly is immaterial to the results presented here.

The Reynolds and Weber numbers of the gas stream based on the vorticity layer
thickness at the inlet �g, namely,

Reg,� =
⇢gUg�g

µg
, (2.12)

Weg,� =
⇢gU

2
g �g

�
, (2.13)

are also key dimensionless parameters for the interfacial instability (Otto et al. 2013).

2.3.4. Mesh resolution and time step

The fields are discretized using a fixed regular cubic grid (with cell size �). Simulations
are performed on four meshes referred to as M0, M1, M2, and M3 so that Mn has
Hl/� = 32 ⇥ 2n points in the liquid stream layer Hl, see Table 3. The time step in the
simulation for each mesh is computed based on time step restrictions for the convection
term (the Courant-Friedrichs-Lewy (CFL) condition), the di↵usion term, and the surface
tension term,

�t 6 �tconv =
✓�

umax
, (2.14)

�t 6 �tvisc =
�2

6⌫
, (2.15)

�t 6 �tsurf =

r
(⇢g + ⇢l)�3

⇡�
, (2.16)

where ✓ is the CFL number.
For the M3 mesh,� = 3.15⇥10�6 m,�tconv = 1.27⇥10�7 s (assuming umax = Ug = 10

m/s and ✓=0.4), �tvisc = 1.63 ⇥ 10�6, and �tsurf = 4.52 ⇥ 10�7 s. As can be seen here
the convection time step restriction is the most demanding one and as a result dictates
the time step in the simulation. The small time step given by the CFL condition is due
to the large gas injection velocity. In the simulation, the CFL number ✓ is taken to be 0.4
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Run �(µm) Hl/� Cells # Cores # Total core-hrs
M0 25 32 8.39 ⇥ 106 32 ⇠ 3 ⇥ 103

M1 12.5 64 6.71 ⇥ 107 256 ⇠ 5 ⇥ 104

M2 6.25 128 5.37 ⇥ 108 2048 ⇠ 1 ⇥ 106

M3 3.125 256 4.29 ⇥ 109 16384 ⇠ 14 ⇥ 106

Table 3. Summary of simulation runs.

in general. In order to confirm the simulation results are time-step independent, smaller
✓ like 0.2 has also been used and it is confirmed that the time step is su�ciently small.

The domain is initially filled with stationary gas (at t = 0) and then liquid and gas
streams progressively enters it. It takes a time period of about tUg/Hl ⇡ 200 for the flow
to reach a statistically steady state. The transient process has been shown in previous
works (Ling et al. 2017). For the M0, M1, and M2 meshes, the simulations all start from
t = 0 and end at about tUg/Hl = 1000, 880, and 650, respectively. For the M3 mesh, the
simulation was performed using 4.29 ⇥ 109 cells and 16,384 processors. Due to the high
computational cost for the M3 simulation, the simulation starts from a checkpoint of the
M2 simulation at about tUg/Hl = 200, and is continued only up to about tUg/Hl = 450.

The M3 simulations are split into multiple runs, which are conducted on the super-
computers CINECA-FERMI in Italy, LRZ-superMUC in Germany, and TGCC-CURIE
in France. The M0, M1, and M2 simulations are all performed on TGCC-CURIE. The
total simulation time for all four meshes is over 15 ⇥ 106 CPU core-hours. The results
presented correspond to the M3 mesh, unless stated otherwise.

The results of grid and statistical convergence studies, namely evaluating the e↵ects
of the mesh resolution and the averaging time on the present results, are shown in the
Appendices A and B.

3. Results

3.1. General behavior

When the two streams are injected into the domain, both of them are laminar and the
gas-liquid interface is perfectly flat. As the two streams meet at the downstream end of
the separator plate, the velocity di↵erence between the two streams introduces a shear
on the interface, which then triggers a Kelvin-Helmholtz instability. As a response of
this shear-induced instability, an interfacial wave is formed as shown in the right column
of figure 2. The shape of the wave at early stage is mainly influenced by the density
ratio, as explained by Hoep↵ner et al. (2011). The wave propagates downstream with the
Dimotakis velocity (Eq. (1.1)) which is in between the gas and liquid injection velocities
(see the right column of figure 2). This is consistent with experiments by Raynal (1997),
Hoep↵ner et al. (2011) and Jerome et al. (2013). The amplitude of the wave grows in
time. At a certain stage the wave amplitude becomes comparable to the gas stream
thickness, and the interaction between the interfacial wave and the gas stream becomes
strong. The interaction causes the liquid sheet pulled from the wave crest to roll and to
flap and eventually the liquid sheet breaks violently.

At the same time, instability also develops at the gas stream vorticity layer near the
interface due to the shear. Due to the lower velocity of the liquid stream, the gas-liquid
interface is seen as a deformable and wavy wall by the gas stream. The evolution of
vortical structures near the interface is visualized by the �2 criterion (Jeong & Hussain
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Figure 2. Development of the interfacial wave and coherent vortical structures.

1995). In order to distinguish the vortex rotation direction, the �2 iso-surface is colored by
the z� component of the vorticity. As a result, the red and blue vortices are aligned with
the z direction and rotate counter-clockwise and clockwise, respectively. On the other
hand, vortices with green color are aligned with the stream direction. A 3D snapshot of
the vortical structure is shown in figure 3. It can be observed that the vortical structures
upstream of the interfacial wave are quite similar to those in a turbulent boundary layer
(Wu & Moin 2009). The laminar vorticity layer transitions to turbulence and hairpin
vortices are clearly seen near the transition region. As the amplitude of the interfacial
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Figure 3. A snapshot of the vortical structures near the interface. Vortices are visualized by
the �2 criterion.

wave becomes large and acts as an obstacle to the gas flow, the flow separates at the
downstream face of the wave, forming a turbulent wake. As a result, the interfacial wave
is immersed in these complex turbulent vortices and thus the stretching and breaking of
the wave take place in a fully 3D chaotic manner.
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Figure 4. Average liquid volume fraction and u-velocity. The black curve corresponds to
c = 0.5. The orange rectangle near the inlet represents the separator plate.
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Figure 5. Mean flow profiles for Favre averaging at di↵erent streamwise locations.

3.2. Statistics of multiphase turbulence

3.2.1. Reynolds averaging and the mean flow

The mean flow for the present problem is two dimensional (x-y), so averaging of
quantities obtained from the DNS is conducted both temporally and spatially in the
z direction. The time and spatial (in z direction) averaging operator () is defined as

u(x, y) ⌘ 1

t1 � t0

1

Lz

Z t1

t0

Z Lz

0

u(x, y, z, t) dz dt (3.1)

where t0 and t1 are the starting and ending time for averaging. In the present study,
t0Ug/Hl = 200 when the statistically steady state is reached, and t1 is the end time of
the computation. The mean quantities are time-independent if t1 is su�ciently large.

The average liquid volume fraction and the streamwise velocity are shown in figure 4.
The contour line in figure 4 corresponds to c = 0.5, which can be viewed as the “average”
boundary of the unbroken liquid stream. The streamwise evolutions of the profiles of c
and u are shown in figure 5.

The fluctuation deviating from the average quantity is given as

u0 = u � u , (3.2)

which is denoted by a superscript 0. Conventionally, the Reynolds stress tensor divided
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Figure 6. Reynolds stress tensor divided by density for Reynolds averaging. The black curve
corresponds to c = 0.5. The orange rectangle near the inlet represents the separator plate.

by density (or often simply referred to as Reynolds stress (Pope 2000)) is expressed as
the velocity covariances,

⌧RA/⇢ = u0
iu

0
j , (3.3)

where the subscript RA represent Reynolds averaging. The results for u0
iu

0
j are shown

in figure 6. It can be observed that the maximum magnitude of u0u0/U2
g is about 0.12,

which is much larger than those of other components.
It should be note that, the Reynolds stress tensor expression given in Eq. (3.3) is strictly

valid only for single-phase incompressible flows. For the present problem that involves
two fluids of di↵erent density, the Reynolds stress tensor based on Favre-averaging will
better characterize the turbulent two-phase flows, discussed in the following section.

3.2.2. Favre averaging and averaged momentum equation

For the present problem, the density at a given location may exhibit temporal fluctua-
tions, although the density in each phase remains constant. The density fluctuations are
due to the unsteady motion of the gas-liquid interface and thus are generally strong near
the gas-liquid interface. As a result, the average density ⇢ varies spatially. For turbulent
flows with variable density, such as compressible turbulent flows (Huang et al. 1995),
the Favre-averaging (density-weighted averaging) technique is commonly employed to
develop the averaged equations. The Favre averaging or decomposition have also been
applied to gas-liquid flow for turbulence statistics analysis and model development (Vallet
et al. 2001; Demoulin et al. 2007; Mortazavi et al. 2016).

The Favre-averaging operator (̃) is defined as

ũ = ⇢u/⇢ , (3.4)

and the fluctuation away from the Favre-averaged quantity can be expressed as

u00 = u � ũ , (3.5)

which is denoted by a superscript 00. It can be easily shown that ũ = ũ and u00 = u � ũ.



17

The two-dimensional averaged momentum equation can be written as

@⇢ũiũj

@xj
= � @p

@xi
+

@

@xj


µ

✓
@ui

@xj
+
@uj

@xi

◆�
+ fs,i +

@⌧ij
@xj

, (3.6)

where ⌧ij is the Reynolds stress tensor

⌧ij = �⇢]u00
i u00

j . (3.7)

In two-phase flows with a sharp interface, the viscosity can be expressed in terms of
the Heaviside function as

µ = µlH + µg(1 � H) , (3.8)

where H = 1 and 0 in liquid and gas, respectively. The volume fraction function c in
VOF methods is identical to H in cells with either liquid or gas; while for cells with an
interface, c is the integral of H divided by the cell volume. The viscosity computed by
Eq. (2.6) is exact in cells with only liquid or gas and is a numerical approximation in
cells with an interface. As a result, the average viscosity µ can be related to c as

µ = (µl � µg)c + µg , (3.9)

and it can be easily shown that

µu

µ
=

(µl/µg � 1)cu + u

(µl/µg � 1)c + 1
. (3.10)

Similarly, for the average density, we have

⇢ = (⇢l � ⇢g)c + ⇢g , (3.11)

⇢u

⇢
=

(⇢l/⇢g � 1)cu + u

(⇢l/⇢g � 1)c + 1
. (3.12)

In the present study, ⇢l/⇢g = µl/µg, thus

µu

µ
=
⇢u

⇢
⌘ ũ , (3.13)

and Eq. (3.6) can be simplified as

@⇢ũiũj

@xj
= � @p

@xi
+

@

@xj

"
µ

 g@ui

@xj
+
g@uj

@xi

!#
+ fs,i +

@⌧ij
@xj

. (3.14)

The Reynolds stress tensor can be computed by

⇢]u00
i u00

j = ⇢uiuj � ⇢ũiũj , (3.15)

which involves third order statistics.
It can be observed from the comparison between figures 6 and 7 that, all the four

components of Reynolds stress tensors from Favre averaging, ]u00
i u00

j , are quite similar

to those from Reynolds averaging, u0
iu

0
j . The discrepancy between the Reynolds- and

Favre-averaged quantities is mainly located in the gas-liquid mixing layer (y/Hl ⇠ 1),
particularly in the region where the interfacial waves form and grow (4 < x/Hl < 8).

Above the contour line of c = 0.5, the magnitudes of ]u00
i u00

j are shown to be much lower

than those of u0
iu

0
j . The unsteady motion of the gas-liquid interface and the substantial

di↵erence in turbulence intensity in the gas and liquid streams (the liquid stream remains
laminar) have a strong impact to Reynolds stresses near the interface. As in the present
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Figure 7. Reynolds stresses divided by the average density for Favre averaging. The black
curve corresponds to c = 0.5. The orange rectangle near the inlet represents the separator

plate.

problem, the liquid density is significantly larger than the gas density, the mass-weighted
(Favre) averaged properties (such as Reynolds stresses) are weighted toward the liquid
properties. Since the velocity fluctuations in the liquid stream are much weaker than

those in the gas flow, the magnitudes of ]u00
i u00

j become smaller than u0
iu

0
j in the gas-liquid

mixing layer. As there is no density fluctuations in the gas-gas mixing layer in general,
(except when the interfacial wave occasionally invades into the gas-gas mixing layer,) the
di↵erence between the results from Reynolds and Favre-averaging is generally small.

As shown in Eq. (3.6) that the Favre-averaging technique allows one to write the mean
flow momentum equation without including density fluctuations. This is an important
useful feature for two-phase turbulence modeling as already shown by Vallet et al. (2001).
A more detailed analysis and modeling of Favre-averaged Reynolds stress tensor are of
interest, yet which is out of the scope of the present work.

3.2.3. Turbulent kinetic energy budget

The equation for the kinetic energy of the instantaneous flow can be obtained by
multiplying the momentum equation, Eq. (2.1), by ui, giving

@⇢ 1
2uiui

@t
+
@⇢uj

1
2uiui

@xj
= � @p

@xi
ui+

@

@xj


µui

✓
@ui

@xj
+
@uj

@xi

◆�
�µ

✓
@ui

@xj
+
@uj

@xi

◆
@ui

@xj
+fs,iui ,

(3.16)
where uiui/2 is the kinetic energy per unit mass. (Hereafter, we simply refer kinetic
energy per unit mass as “kinetic energy” unless otherwise specified.)

Similarly, we can get the equation for the kinetic energy of the mean flow by multiplying
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the mean momentum equation, Eq. (3.6), by ũi ,
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The turbulent kinetic energy (TKE), k is defined as

k = ]u00
i u00

i /2 (3.18)

and is equal to the trace of the tensor ]u00
i u00

j , the components of which are already shown
in figure 7.

The equation for TKE can be obtained by subtracting Eq. (3.17) from the averaged
Eq. (3.16),

0 = �@⇢ũjk
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Similar TKE equations have also been shown by Vallet et al. (2001) and Mortazavi et al.
(2016). The terms on the right hand side are advection, pressure di↵usion, turbulent
di↵usion, viscous di↵usion, dissipation, production, and surface-tension induced di↵usion,
respectively. The profiles of these terms at di↵erent streamwise locations are shown in
figure 8. The magnitudes of all the terms generally decrease when the sampling location
moves downstream. The downstream results are more noisy, (which may be due to the
fact that the averaging time is still not long enough,) but their contribution to the overall
turbulence statistics is relatively small.

The TKE budget terms can be further averaged over the domain height Ly to obtain
a one dimensional distribution of TKE budget along the streamwise direction as shown
in figure 9. Due to the existence of a large number of droplets, the term due to surface
tension is generally very noisy, in particular in the downstream region where interfacial
waves break into droplets, see figure 9(b). The pressure-di↵usion term in Eq. (3.19)
includes two contributions: the pressure fluctuations due to turbulent motion and those
due to surface tension at the interface. Similar to the surface-tension term in TKE budget,
the pressure di↵usion also exhibits significant fluctuations (similar magnitude but with
an opposite sign) downstream. Note that these fluctuations are mainly induced by the
Laplace pressure at droplet interfaces instead of turbulence. To identify the pressure
di↵usion of TKE only related to turbulent flow motion, we plot the pressure di↵usion
without the contribution of surface tension (namely taking away the Laplace pressure
from the total pressure), as shown in figure 9(a), the profile of which is seen to be
much smoother. Furthermore, since the pressure fluctuation due to the contribution of
Laplace pressure is present as long as there are interfaces. Even in the region with smooth
interfaces without droplets (such as i.e., 3 < x/Hl < 6), the reduction of the magnitude of
the pressure di↵usion by removing the contribution of Laplace pressure is also profound.

As the TKE budget terms involve high order statistics, it is more di�cult to obtain
converged solutions. Results for the 1D TKE budget obtained from di↵erent meshes
are shown figure 9(c). The magnitudes of the advection and the production terms are
generally significantly larger than the other three terms, so three separate figures (see
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Figure 8. Turbulence kinetic energy budget at di↵erent streamwise locations. The terms in
Eq. (3.19) are normalized by ⇢gU3

g /Hl.

figures 9(d–f)) are plotted to show the e↵ect of mesh resolution on the dissipation,
the pressure di↵usion, and the turbulent di↵usion terms. It can be observed that the
dissipation and the pressure terms are more sensitive to the mesh resolution than other
terms. In particular, minimum dissipation decreases from about -0.0005 to -0.0016 when
the mesh is refined from M0 to M2. The M2 and M3 results for the dissipation agree
quite well. Similar observation can be made for the pressure term. While the cell size
decreases from M0 to M2, the pressure di↵usion increases substantially. The results of
the M2 and M3 are similar, although due to the noise in the M3 results the agreement
is not as good as for the dissipation. The generally good agreement between the M2 and
M3 results of high order turbulence statistics indicates that the M3 mesh is adequate to
resolve the turbulence in the present problem. (Further evidence for this conclusion is to
be given later based on the enstrophy calculation and the estimated Kolmogorov scale.)

It can be observed from figure 8(a) that, near the inlet at x/Hl = 4, TKE production
in the gas-liquid mixing layer is much stronger than the gas-gas counterpart. This is
consistent with previous observations in figure 2 that the two-phase mixing layer is more
unstable and transits to turbulence earlier. When moving downstream, the interfacial
wave grows, and vortices generated on the wave interact with the gas-gas mixing layer,
accelerating its transition to turbulence. At x/Hl = 6, the gas-gas mixing layer produces
TKE comparable to the gas-liquid counterpart. The TKE for both mixing layers are
di↵used e↵ectively and at x/Hl = 8, the two mixing layers merge together although
the results are somehow noisy. A smoother representation of the TKE budget at the
downstream region would require a long averaging time, which in turn can be achieved
by running the simulation for a much longer time. A longer simulation with M3 mesh is
beyond the current resources available to us and will be relegated to future works.
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Figure 9. One-dimensional turbulence kinetic energy budget along streamwise direction. The
terms in Eq. (3.19) are normalized by ⇢gU3

g /Hl and averaged over domain height Ly. Figures (a)
and (b) are TKE budget with and without the Laplace pressure contribution subtracted from
the pressure di↵usion term; while figure (c) shows the TKE budget computed with di↵erent
mesh resolutions.

3.2.4. Turbulence dissipation

The distribution of the turbulence dissipation, denoted as ✏, for the di↵erent meshes is
shown in figure 10. The results for di↵erent mesh resolutions are plotted with the same
legend. (Further results of grid refinement studies can be found in the appendix, see figure
19(d).) It is clear that a fine mesh is required to capture the dissipation. While the M0
and M1 meshes underpredict turbulence dissipation, the M2 and M3 meshes yield similar
results. The turbulence dissipation is generally located at the gas-liquid mixing layer. In
the region of where the dissipation is larger, (i.e., 4 < x/Hl < 6), there remains a small
discrepancy between the M2 and M3 results. More results for grid-refinement studies are
shown in figure 19 in Appendix A. The di↵erence between the M2 and M3 results are
obviously much smaller than that between the M1 and M2 results. Therefore, although
it would require a mesh finer than M3 (such as M4) to fully confirm grid independence,
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Figure 10. Distribution of turbulent kinetic energy dissipation for di↵erent mesh resolutions.
The black curve corresponds to c = 0.5. The orange rectangle near the inlet represents the
separator plate.
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Figure 11. Profiles of turbulent kinetic energy dissipation along the lines (a) y/Hl = 1 and
(b) x/Hl = 4, 6, 8, and 10.

we believe the M3 results of dissipation presented in figure 10(a) are not far from the
grid-converged solution.

The profiles of ✏ along the lines y/Hl = 1 and x/Hl = 4, 6, and 8 are plotted in figure
11. As shown in figure 11(a) the magnitude of turbulence dissipation starts to increase
at about x/Hl = 2 where the interfacial wave starts to develop and the laminar vorticity
layer transits to turbulence. The dissipation grows along x as turbulence develops and
reaches a maximum of about ✏max/(⇢gU

3
g /Hl) = �0.01 at about x/Hl = 5.5. After that,

✏ decreases gradually. Near the outlet x/Hl = 14.5, ✏/(⇢gU
3
g /Hl) = �0.002. From figure

11(b) it is seen that the distribution of ✏ is initially similar to a Gaussian profile and
symmetric about the line y/Hl = 1. As the gas-liquid mixing layer develops, the profile
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of ✏ expands in the y direction and loses its symmetry due to the influence of the bottom
wall. The bottom boundary of the non-zero ✏ region is aligned with the the contour line
c = 0.5. The top boundary, e.g. defined as ✏ = 20%✏max, is about a straight line with
the slope dy/dx = 0.25. This expansion with a constant slope ends at about x/Hl = 8,
where the interfacial wave amplitude becomes comparable to the stream thickness and
the two mixing layers merge. Then the distribution of ✏ becomes more uniform within
the two merged mixing layer (0 < y/Hl < 2) as shown in both figures 10(a) and 11(b).

When details of the turbulent flow are unknown, a simple estimate of ✏ is often made
based on the integral velocity U0 and length scale l0 as

|✏|
⇢g

⇡ U3
0

l0
. (3.20)

If we take U0 = UD and l0 = Hl, then |✏|/(⇢gU
3
g /Hl) ⇡ U3

D/U3
g . For the current problem

with larger M and ⇢l/⇢g, the Dimotakis speed can be approximated as UD ⇡ Ug

p
(⇢g/⇢l),

then |✏|/(⇢gU
3
g /Hl) ⇡ U3

D/U3
g ⇡ (⇢g/⇢l)

3/2 = 0.011, which is close to the maximum
magnitude of dissipation obtained in simulation (see figure 11). It can be also proved
that, if the gas inflow velocity Ug is used as U0, the ✏ will be significantly overestimated
if Hl remains to be used as the length scale. This seems to indicate that the interfacial
wave advection speed UD is better than the inflow gas stream velocity Ug in characterizing
the integral scale of the turbulent flow motion.

3.2.5. Estimates of Kolmogorov and Hinze scales

With ✏ obtained above, we can estimate the Kolmogorov length scale in the gas-liquid
mixing layer. The expression of the Kolmogorov length scale is given as

⌘ =

 
⌫3

g

✏/⇢g

!1/4

. (3.21)

It is shown in figure 11(a) that the maximum value of ✏/(⇢gU
3
g /Hl) is about 0.01. Then

the corresponding Kolmogorov length scale is about 3.0 µm (⌘/Hl = 0.0038). In the
downstream region of the gas-liquid mixing layer, ✏/(⇢gU

3
g /Hl) decreases to about 0.002,

for which ⌘ ⇡ 4.5 µm (⌘/Hl = 0.0056). According to the DNS resolution criterion given
by Pope (2000), the smallest turbulent scales will be well resolved if

�

⌘
. 2.1 . (3.22)

The cell size for the M3 mesh, �M3 = 3.125 µm, clearly satisfies the criterion. Even
the M2 mesh cell size is close to the required resolution. This is consistent with the
observation that the M2 and M3 meshes yield similar results for dissipation (see figure
19(d)) and confirms that the M3 mesh is adequate to provide a resolved simulation of
the present problem and the multiphase turbulence statistics presented above are grid-
independent.

Based on a scaling argument focusing on the balance between the inertia force due to
turbulent motion and the surface tension, the maximum stable droplet diameter for the
droplet size was proposed by Kolmogorov (1949) and Hinze (1955) as

⌘H = C

✓
�

⇢g

◆3/5✓
✏

⇢g

◆�2/5

, (3.23)

where C ⇡ 0.725 is a constant and ⌘H is often referred to as the Hinze scale. For
droplets/bubbles larger than ⌘H , the surface tension will not be su�cient to balance



24

the dynamic pressure fluctuations and these droplet/bubbles will break into smaller
ones. Therefore, the Hinze scale indicates the smallest droplet size which can exist in
a turbulent flow.

Similar to the Kolmogorov scale, we can also estimate the Hinze scale in the present
problem with the turbulence dissipation obtained in simulation. For ✏/(⇢gU

3
g /Hl) = 0.01,

⌘H ⇡ 264 µm; for ✏/(⇢gU
3
g /Hl) = 0.002 at the downstream mixing layer, ⌘H ⇡ 502 µm.

The size distribution of droplets has been shown in our previous studies (Ling et al.
2017) and it was found that the majority of droplets generated in the mixing layer
are significantly smaller than ⌘H obtained above. (The measured mean volume-based
diameter is about 50 µm, see figure 13(c) in the work by Ling et al. (2017).) Therefore,
the Hinze scale does not well represent the size of droplets formed in the present problem.

The maximum stable droplet diameter from the Kolmogorov–Hinze theory assumes
that the breakup of a large droplet is mainly dictated by the turbulent velocity fluctuation
over a length comparable to the droplet diameter. Therefore, it is a good estimate
of the droplet size when turbulence is responsible for breaking bulk liquids into small
droplets. The disagreement between the Hinze scale and the droplet size in the present
problem seems to indicate that, although the breakups of liquid sheets and ligaments
are surrounded by turbulent vortices, the turbulent velocity fluctuations are not the
dominant breakup mechanism and do not dictate the size of the droplets formed. During
the disintegration of a ligament or a liquid sheet, droplets much smaller than the smallest
wave length are observed. The satellite droplets generated from a ligament breakup,
for example, are significantly smaller than the main droplets which are of the scale of
the ligament diameter. If the generated small droplets were contained in a finite region
and would coalesce, the size may experience a reverse cascade back to the Hinze scale.
Nevertheless, in the present problem, the droplets are rapidly convected and dispersed
downstream and coalescence is rarely observed. Therefore, the Hinze scale is not a relevant
length scale in describing the smallest droplet size formed in the two-phase mixing layer.

3.2.6. Energy spectra

The temporal velocity spectra at di↵erent streamwise locations of the gas-liquid mixing
layer are shown in figure 12. The purpose of showing the velocity spectra is to examine
if the inertial subrange can be identified, which in turn can show if the turbulence at
di↵erent streamwise locations is in equilibrium or not. The spectra of the u0 and v0

fluctuations do not show a clear range with the -5/3 slope. The -5/3 slope can be better
discerned from the spectrum of w0, namely the velocity fluctuations in the homogeneous
direction. The di�culty in identifying the inertial subrange is mostly likely due to the
moderate Reynolds number in the present problem, for which the width of the inertial
range is not very large. Further than that, the results shown in figure 12 are from temporal
data for a given spatial location and are thus quite noisy, making the identification of
the inertial subrange somewhat tentative.

In order to better show the velocity spectra, we plot the spatial velocity spectra in
the z direction at di↵erent streamwise locations in figure 13. In order to reduce the
noise, the spectra are averaged in time. Then the inertial subrange with a �5/3 power
law is more clearly revealed in all three velocity components between k/Hl = 0 and
1. The lower bound wavenumber is dictated by the domain width Lz/Hl = 2. The
inertial subrange seems to be more clear and wider when the sampling location moves
downstream. This seems to indicate that the turbulence at the upstream location (x/Hl =
4) is out of equilibrium, which in turn is due to the strong wave-turbulence interaction
in the upstream region as shown in figure 2. After the wave breaks downstream, the
turbulence equilibrates and the inertial subrange is better established.
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Figure 12. Velocity spectra at di↵erent locations.
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Figure 13. Velocity spectra at di↵erent streamwise locations.

3.3. Interfacial instability regime and dominant frequency

Following the analysis of Otto et al. (2013), we solve the Orr-Sommerfeld equations
to investigate the viscous spatio-temporal instability of the two-phase mixing layer. The
details of the approach can be found in their paper (Otto et al. 2013) and thus are not
repeated. Here only the essential steps are briefly summarized for clarity.

The base flow is two-dimensional and the streamwise velocity profile is taken as

ug(y � Hl) = �Ulerf

✓
y � Hl

�l

◆
+ Ui


1 + erf

✓
y � Hl

�d

◆�
, y < Hl, (3.24)

ul(y � Hl) = �Ugerf

✓
y � Hl

�g

◆
+ Ui


1 � erf

✓
y � Hl

�d

◆�
, y > Hl, (3.25)

where Ui is the interface velocity obtained from continuity of shear stresses across the
interface as

Ui

Ua
=
�l/�g(1 + M) + m(1 � M)

1 + m

�d
�g

, (3.26)

where M = (Ug�Ul)/(Ug+Ul), m = µl/µg and Ua = (Ug+Ul)/2. The parameter �d is an
adjusting parameter to mimic the velocity deficit behind the separator plate. Numerical
simulations and experimental data reported by Fuster et al. (2013) have confirmed that
this velocity deficit is important to capture the correct transition from convective to
absolute instability.

The model base flow profiles used in stability analysis for di↵erent �d are shown in
figure 14 which also includes the mean streamwise velocity profile at x/Hl = 0.75 in the
present simulation for comparison.

The perturbation about the base flow are given in the form of streamfunction  and
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Figure 14. Spatio-temporal viscous stability. (a) Models for initial streamwise velocity profile.
(b) !i contours to show the pinching point.

takes the form of normal modes

 g,l(x, y, t) = �(y)g,l exp(i↵x � !t) . (3.27)

Then the Orr-Sommerfeld equations for the �g(y) and �l(y) are expressed as

(�i!̌ + i↵̌Ǔl)(

@2

@y̌2
� ↵̌2) � m

rRea,�
(
@2

@y̌2
� ↵̌2)2 � i↵̌Ǔ 00

l

�
�̌l = 0, y < Hl, (3.28)


(�i!̌ + i↵̌Ǔg)(

@2

@y̌2
� ↵̌2) � 1

Rea,�
(
@2

@y̌2
� ↵̌2)2 � i↵̌Ǔ 00

g

�
�̌g = 0, y > Hl, (3.29)

where (̌) denote non-dimensional variables with Ua and �g as typical velocity and length
scales.

The branches of the imaginary part of the frequency !i are shown in the complex spatial
wave number plane (↵r-↵i plane) in figure 14(b). This diagram reveals the convective
nature of the instability of the gas-liquid mixing layer. The method of Bers (1983) is
used to determine the transition from convective to absolute instability. It is observed
that the two branches for !i�g/Ua = 0.04 reconnect at a saddle point (↵r�g = 0.5
and ↵i�g = �0.3). The value of !r corresponding to the saddle point is the dominant
frequency emerging in the flow field. The values obtained from the theory range from
fHl/Ug ⇡ 0.031 to 0.035 for �d/�g = 0.1 to 0.5. Similarly, the value of �↵i�g = 0.3 is
the dominant spatial growth rate. The theoretical predictions of dominant spatial growth
rate and frequency are compared with simulation results in figure 15.

The mixing layer thickness here is estimated as Hl�yc, where yc is the mean interfacial
height corresponding to c = 0.5. The spatial growth of the mixing layer thickness is shown
in figure 15(a) for di↵erent meshes. It should be noted that along the streamwise direction,
Hl�yc is first negative and then becomes positive (see figure 4(a)). Since Hl�yc is plotted
in the log scale in figure 15(a), the results for negative Hl � yc (for (x � lx)/�g . 9) will
not be shown. Strictly speaking, Hl � yc serves as a good measure of the mixing layer
thickness only when the value is not too small, i.e., log[(Hl � yc)/�g] > �2. The rapid
growth in the region 8 . (x� lx)/�g . 11 is due to the artifact that Hl �yc transits from
negative to positive values.

It is observed that all the M1 to M3 curves superpose for (x � lx)/�g & 12. An
exponential spatial growth can be identified in the region 11 < (x � lx)/�g < 16. The
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exponential growth rates for the M1 to M3 meshes are quite similar. These rates agree
very well with the theoretical predicted value �↵i = 0.3/�g. The exponential growth
region for the M2 mesh is wider than that for the M3 mesh, which may be due to
the fact that the M3 simulation has only been run for a relatively shorter time and
there remain spatial fluctuations in yc (see figure 4). After that region, a more gradual
nonlinear growth is seen. The linear stability theory is valid only when the amplitude of
the interfacial wave and the perturbation caused by the wave to the gas stream remain
small. As the interfacial wave grows and propagates downstream, the nonlinear e↵ect will
eventually become important (such as for log[(Hl � yc)/�g] & �0.5) and the simulation
results will deviate from the linear theory. The fact that the exponential growth appears
only in an intermediate region has also been observed in experiments (Matas et al. 2011)
and simulations (Agbaglah et al. 2017).

The dominant frequency in the simulations can be observed in the spectra of the
integral of gas and liquid enstrophy over the whole domain, see figure 15(b). The liquid
and gas enstrophy are computed as

⌦l =
1

2

Z Lx

0

Z Ly

0

Z Lz

0

c !i!i dx dy dz , (3.30)

⌦g =
1

2

Z Lx

0

Z Ly

0

Z Lz

0

(1 � c)!i!i dx dy dz , (3.31)

where !i is the vorticity. A clear peak is seen at fHl/Ug ⇡ 0.037 which is very close to the
theoretical prediction. Figure 15(c) shows the interfacial height spectra (A denotes the
Fourier transform of the interfacial height) at x/Hl = 0.75 and the dominant frequency
is about fHl/Ug ⇡ 0.05, which is slightly larger than the theoretical prediction.

The dominant frequency (or period) can also be observed from the temporal evolution
of the enstrophy as shown in figure 16. The dominant wave period is about 27Hl/Ug and
is the inverse of the dominant frequency obtained from figure 15. Since the interfacial
wave propagates with UD, the wave length can be estimated as � = UD/f ⇡ 6Hl. The
wavelength estimated here is consistent with the observation in figure 2. It is also observed
that � is significantly larger than the liquid stream thickness at the inlet Hl.

Figure 16(a) also shows the enstrophy evolution for di↵erent mesh resolutions. The
observed oscillations in the enstrophy are due to the periodic formation and breakup of
interfacial waves. Both the mean value and the oscillation amplitude increase when the
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Figure 16. (a) Temporal evolution of gas enstrophy of the whole domain and (b)
time-averaged liquid and gas enstrophy for di↵erent mesh resolutions.

mesh is refined from M0 to M3, while the dominant oscillation frequencies for di↵erent
mesh resolutions are similar. The coarse meshes M0 and M1 significantly underpredict the
enstrophy magnitude. The average enstrophy is plotted as a function of grid size in figure
16(b). The average enstrophy increases with number of cells used to resolve the initial
liquid stream thickness, i.e., Hl/�, until it saturates at the M3 mesh (Hl/� = 256).
This again indicates that the finest mesh, M3, is necessary and adequate to resolve the
multiphase turbulence. We need to admit that the average enstrophy still increases about
10% from the M2 to the M3 mesh. The discrepancy is consistent to the observation in
figure 10. In order to fully confirm the grid-independence of the M3 results, a simulation
with an even finer mesh is required, but this will be relegated to future work.

The dominant frequency in the enstrophy spectra as shown in figure 15(b) is an
important observation, since it clearly indicates that the turbulence production follows
the same frequency as the interfacial instability. This is due to the fact that the formation
and growth of the interfacial wave has a strong impact on the turbulence transition and
development, see figures 2 and 3. The interfacial wave behaves as an obstacle to the
gas stream and its interaction with the gas flow generates a large number of turbulent
vortices both upstream and downstream of the interfacial wave. Therefore, the growth
of the interfacial wave enables the kinetic energy transfer from the gas mean flow to the
turbulent fluctuations. On the other hand, the flow remains laminar within the liquid
stream. As a result there is a strong intermittency in the two-phase mixing layer.

In order to better illustrate the impact of interfacial wave on turbulence, we plot the
temporal evolution of the root mean square (rms) of velocity fluctuations along the z
direction for di↵erent streamwise locations in figure 17. The averaging operator over the

domain width (Lz) is denoted by (̂), defined as

û(x, y, t) ⌘ 1

Lz

Z Lz

0

u(x, y, z, t) dz (3.32)

and the fluctuation away from the mean value is given as

u⇤ = u � û . (3.33)

Low-frequency fluctuations can be seen in the temporal evolution of ([u⇤u⇤)1/2 measured
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di↵erent streamwise locations.

upstream (x/Hl = 4), see figure 17(a), which are clearly due to the passage of the
interfacial wave. The average liquid volume fraction ĉ is equal to zero most of the time,
except when the interfacial wave passes the sampling location, ĉ jumps up to about
unity, (ĉ = 1 indicates that the interfacial wave spans over Lz). The occurrence of spikes
in ĉ follows the period of wave formation and agree well with the dominant frequency
predicted by instability theory. During the passage of the interfacial wave (within the

spike), ([u⇤u⇤)1/2 drops to zero; but it jumps up to a large value after the wave passes.
This is due to the turbulent flows developing on the upstream side of the interfacial wave,
see figure 3. Then ([u⇤u⇤)1/2 will continue to decrease until the arrival of the subsequent
wave.

Further downstream (x/Hl = 8 and 12), the wave breaks and the two mixing layers
merge together, the e↵ect of the interfacial instability frequency becomes less profound
and the amplitude of low-frequency fluctuations in ([u⇤u⇤)1/2 becomes smaller.

The temporal spectra of [u⇤u⇤ and dv⇤v⇤ are shown in figure 18. For x/Hl = 4 a dominant
frequency is clearly seen at about fHl/Ug ⇡ 0.03 � 0.035, which again agrees well with
the stability theory prediction. When moving downstream at x/Hl = 10, the spectrum
function decreases with frequency smoothly, entering the inertial regime, but no dominant
frequency is observed.

Figure 18 clearly shows that the integral time scale is dictated by the dominant
frequency (the most unstable mode) in the interfacial instability. The interfacial wave
development is the driving force and feed energy to the resulting turbulent flows near the
interface. This is also consistent with the previous observation that using the Dimotakis
speed as the integral velocity scale in Eq. (3.20) better captures the dissipation.

Finally, the spectra drops at about fHl/Ug = 10. With the dissipation measured in
simulation, the Kolmogorov frequency can be estimated,

f⌘ =

✓
✏/⇢g

⌫g

◆1/2

. (3.34)

For ✏/(⇢gU
3
g /Hl) = 0.01, f⌘Hl/Ug = 8.94, which is close to the value measured above

from the spectra.

4. Conclusions

Direct numerical simulations of a two-phase mixing layer between parallel gas and
liquid streams are performed. Particular attention is focused on obtaining high-order
statistics for the multiphase turbulence arising in the two-phase mixing layer. Extensive
grid refinement studies are carried out with four di↵erent meshes with the number of
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Figure 18. Temporal evolution of rms of fluctuations at di↵erent streamwise locations.

cells across the the liquid stream thickness varying from 32 to 256. The finest mesh (M3)
consists of about 4 billion cells and is shown to be necessary and adequate to resolve the
multiphase turbulence, yielding converged high-order statistics.

Due to the presence of fluids with di↵erent densities, the averaged momentum equation
and the turbulent kinetic energy (TKE) transport equation are developed based on the
Favre averaging technique. The results for the mean flow, Reynolds stresses, and TKE
budget terms are presented. The turbulence dissipation obtained is used to estimate
the Kolmogorov and Hinze scales in the present problem. The estimated Kolmogorov
length scale is similar to the resolution of the finest mesh (M3) used in the present
simulation, confirming that the smallest turbulent eddies are well captured. The Hinze
scale is significantly larger than the typical size of droplets formed in atomization. The
chaotic breakups of ligaments and sheets generate droplets that are much smaller than
the most unstable wave length and the rapid droplets dispersion leave few opportunities
for coalescence, therefore, the Hinze scale does not seem to well represent droplet size in
primary atomization.

Viscous stability analysis is also performed on the present problem following the
pervious works of Otto et al. (2013) and Fuster et al. (2013). The theory predicts
that the instability of the present two-phase mixing layer is absolute, since branches
on the complex wave number space reconnect at a “pinching” point. The outcome of
absolute instability is that a dominant frequency will arise. The predicted value agrees
well with the dominant frequency in the spectra of interface motion and also enstrophy
in the domain. The dominant frequencies in interfacial instability and enstrophy are very
close, which indicates that the interfacial wave development is strongly coupled with the
turbulence development. Temporal evolutions of the root mean squares (rms) of velocity
fluctuations for di↵erent streamwise locations are then presented. It is observed that
near the inlet, there is a strong intermittence e↵ect, i.e., rms of velocity fluctuations
drops to zero when a interfacial wave passes the sampling point and then rises up after
the wave passage. The temporal spectra of velocity fluctuation rms exhibits a dominant
frequency that match with the theoretical prediction from viscous stability analysis. The
most unstable mode of interfacial instability dictates the interfacial wave period and also
the integral time scale for turbulence.
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UD/Ug f0Hl/Ug �/Hl |✏max|/(⇢gU3
g /Hl) ⌘/Hl f⌘Hl/Ug ⌘H/Hl

0.22 0.031-0.037 6.02 0.01 0.0038-0.0056 4.0-8.9 0.33-0.63

Table 4. Summary of important results for the two-phase mixing layer.

Finally the important results for the two-phase mixing layer measured in DNS are
summarized in Table 4.

Appendix A. E↵ect of mesh resolution

The results of grid convergence studies for the multiphase turbulence statistics are
shown in figure 19. Four mesh resolutions are considered in the present study and the
details are listed in Table 3. It is seen that all the four meshes used here capture the mean
flow properties, including c and u, very well. When it comes to higher order statistical
terms, such as the Reynolds stress and the turbulence dissipation, then the M0 and M1
meshes are shown to be insu�cient. It can be seen from figure 19(d) that, when the cell
size decreases from the M0 to M2 meshes, the magnitude of the turbulent dissipation
increases significantly. In other words, the M0 and M1 meshes significantly underpredict
the dissipation. The results for both Reynolds stress and turbulence dissipation for the
M2 and M3 meshes generally agree very well, indicating that the M3 mesh is adequate
to resolve the multiphase turbulence in the present problem. The agreement between the
M2 and M3 results for the Reynolds stress component and the dissipation at y/Hl = 1
and 2) is not as good as in other regions. The discrepancy is more profound for the
downstream location (x/Hl = 10). This is mainly due to the the fluctuations in the
M3 results. The fluctuations in the M3 results can be further reduced by running the
simulation for a longer time. Yet due to the extreme computational cost, the longer run
can only be left for future work. In spite of the noise, the current results are su�cient to
provide reasonable estimate of Reynolds stress and turbulent dissipation in the two-phase
mixing layer.

Appendix B. E↵ect of averaging time

The results of statistical convergence study for the multiphase turbulence statistics
are shown in figure 20. Here, three di↵erent time durations are used for averaging in
Eq. (3.1) where the averaging time T1, T2, T3 are 43, 77, and 135 Hl/Ug, respectively.
The results clearly show that all the three cases well capture the mean flow properties (c
and u). Nevertheless, for higher order statistics like the Reynolds stress downstream and
the turbulence dissipation, a longer averaging time is required. The simulation length
T3 seems to yield converged results, although the turbulence dissipation at downstream
location is still somehow noisy. All the results for the M3 mesh presented in the results
section are averaged over T3.

Appendix C. E↵ect of the domain size

In order to examine the e↵ect of the domain size, we have also considered two di↵erent
domains that are larger than the present setup: a wider domain (Lx/Hl = 16, Ly/Hl = 8,
and Lz/Hl = 8) and a longer and higher domain (Lx/Hl = 24, Ly/Hl = 12, and
Lz/Hl = 2). The results of the interfacial instability and the multiphase turbulence
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Figure 19. Statistical convergence studies for multiphase turbulence statistics.

statistics are shown in figures 21 and 22, respectively. The tests are done with a mesh
resolution equivalent to M1 and the results in figure 22 are plotted with the same color
scale.

The development of the interfacial instability is characterized by the vorticity layer
thickness (�g) (Matas et al. 2011). The width of the present domain is significantly larger
than �g (Hl/�g = 16) and thus is su�cient to capture the dominant frequency arising
from absolute instability. Figure 21 shows the spectra of the gas enstrophy and the
interfacial height for the present and the wider domains, i.e., Lz/Hl = 2 and 8. The
simulation for the wider domain was run for a shorter time, so the spectra are more
noisy, nevertheless, the results for the two domains generally agree well with each other.
A dominant frequency is observed in both cases, though the dominant frequency seems
to shift slightly to the right for the wider domain.

As the interfacial wave grows as it propagates downstream, transverse instability
develops and the wave becomes fully 3D (Zandian et al. 2018). Then the domain
constraint in the transverse direction will influence the transverse instability (since the
long wavelength instability will not be resolved) and later on wave breakup. From figures
22 (a) and (b) it can be observed that although the results of u and ✏ for the two cases
generally agree well, there exists a discrepancy in the contour line c, showing that the
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Figure 20. Statistical convergence studies for multiphase turbulence statistics.
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Figure 22. Comparison of results for di↵erent domain size: (a) the present domain (Lx/Hl = 16,
Ly/Hl = 8, Lz/Hl = 2), (b) the wider domain (Lx/Hl = 16, Ly/Hl = 8, Lz/Hl = 8), and (c)
the longer and higher domain (Lx/Hl = 24, Ly/Hl = 12, Lz/Hl = 2). The results presented
here are for the M1 mesh resolution, i.e., Hl/� = 64. The left and right columns are the mean
velocity and the turbulent dissipation, respectively. The black curve corresponds to c = 0.5. The
box with green dashed lines indicate the present domain size. The orange rectangle near the
inlet represents the separator plate.

unbroken liquid stream is shorter for the case with the wider domain. This indicates that
the downstream dynamics of the two-phase mixing layer would require a wider domain
to avoid any influence of boundary conditions but this is left for future research.

In order to avoid generating a recirculation above the parallel streams, we apply a
Neumann boundary condition for the velocity on the top boundary to allow fluid to
freely enter or leave the domain. Accordingly a velocity Dirichlet boundary condition
is applied to the right boundary with the velocity profile specified as Eqs. (2.7) and
(2.10). The outflow velocity profile given is to mimic the mean flow near the outlet and
doest not represent the exact time-dependent outflow condition. The results of the mean
liquid volume fraction (the black lines indicated c̄ = 0.5), the mean velocity and the
turbulence dissipation for the present domain (Lx/Hl = 16, Ly/Hl = 8, and Lz/Hl = 2)
are compared to those for a longer and higher domain (Lx/Hl = 24, Ly/Hl = 12, and
Lz/Hl = 2). It can be seen that the results of the present domain in general agree well
with those in the larger domain, except a small region near the outlet.

Therefore, the important observations made in the results section are thus confirmed
to be not influenced by the domain size and the applied boundary conditions.



35

Acknowledgments

This work has been supported by the Department of Mechanical Engineering at Baylor
University in United States and the ANR MODEMI project (ANR-11-MONU-0011)
program in France.

This work was granted access to the HPC resources of TGCC-CURIE and CINES-
Occigen under the allocations t20152b7325, t20162b7760, 2017tgcc0080, made by
GENCI. HPC resources at CINECA and LRZ based in Italy and Germany have been
used for the M3 mesh simulations, supported by PRACE (2014112610). This work has
used resources of the Oak Ridge Leadership Computing Facility, which is a DOE O�ce
of Science User Facility supported under Contract DE-AC05-00OR22725. The authors
would also acknowledge the Texas Advanced Computing Center for providing HPC
resources that have contributed to the simulation results. The Baylor High Performance
and Research Computing Services (HPRCS) have been used to process the simulation
results reported in this paper.

We would thank Dr. R. Scardovelli, Dr. W. Aniszewski, Dr. J. Lu, Dr. L. Malan
for their contribution to the development of the code PARIS-Simulator and also thank
Dr. T. Otto and Dr. T. Boeck for sharing their spatio-temporal stability code. We also
appreciate the helpful discussions with Dr. A. Cartellier and Dr. J.-P. Matas.

Finally, the simulation data are visualized by the software VisIt developed by the
Lawrence Livermore National Laboratory.

REFERENCES

Agbaglah, G., Chiodi, R. & Desjardins, O. 2017 Numerical simulation of the initial
destabilization of an air-blasted liquid layer. J. Fluid Mech. 812, 1024–1038.

Agbaglah, G., Josserand, C. & Zaleski, S. 2013 Longitudinal instability of a liquid rim.
Phys. Fluids 25, 022103.

Almagro, A., Garcia-Villalba, M. & Flores, O. 2017 A numerical study of a variable-
density low-speed turbulent mixing layer. J. Fluid Mech. 830, 569–601.

Aniszewski, W. 2016 Improvements, testing and development of the ADM-⌧ sub-grid surface
tension model for two-phase LES. J. Comput. Phys. 327, 389–415.

Aulisa, E., Manservisi, S., Scardovelli, R. & Zaleski, S. 2007 Interface reconstruction
with least-squares fit and split advection in three-dimensional cartesian geometry.
J. Comput. Phys. 225, 2301–2319.

Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid
Mech. 42, 111–133.

Bernal, L. P. & Roshko, A. 1986 Streamwise vortex structure in plane mixing layers. J. Fluid
Mech. 170, 499–525.

Bers, A. 1983 Space-time evolution of plasma instabilities-absolute and convective. In
Basic plasma physics: Selected Chapters, Handbook of Plasma Physics. North-Holland,
Amsterdam (Netherlands).
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