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A Fast Fourier Transform-based approach for Generalized
Disclination Mechanics within a Couple Stress theory

Stéphane Berbenni and Vincent Taupin and Claude Fressengeas and Laurent Capolungo

Abstract Recently, a small-distortion theory of coupled plasticity and phase transformation accounting for
the kinematics and thermodynamics of generalized defects called generalized disclinations (abbreviated g-
disclinations) has been proposed [2, 3]. Then, a first numerical spectral approach has been developed to solve
the elasto-static equations of field dislocation and g-disclination mechanics set out in this theory for periodic
media and for linear elastic media using the classic Hooke’s law [6]. Here, given a spatial distribution of
generalized disclination density tensors in a homogenous linear higher order elastic media described, a
couple stress theory with elastic incompatibilities of first and second orders is developed. The incompatible
and compatible elastic second and first distortions are obtained from the solution of Poisson and Navier-type
equations in the Fourier space. The efficient Fast Fourier Transform (FFT) algorithm [17] is used based on
intrinsic Discrete Fourier Transforms (DFT) that are well adapted to the discrete grid to compute higher
order partial derivatives in the Fourier space. Therefore, stress and couple stress fields can be calculated
using the inverse FFT. The numerical examples are given for straight wedge disclinations and associated
wedge disclination dipoles which are of importance to geometrically describe tilt grain boundaries at fine
scales in polycrystalline solids.

1 Introduction

In crystalline media, the internal stresses and couple stresses result from an incompatible process where
crystal defects - dislocations, disclinations or “generalized disclinations” (abbreviated “g-disclinations”)
- induce the discontinuity of (elastic, i.e. lattice) displacement or distortion across surfaces in the body.
Dislocations and disclinations were mathematically introduced by Volterra [54]. In the sole presence of dis-
locations, incompatibility fields were smoothly described in the continuum theory of dislocations initiated
by Kröner [26, 29] and many others [7, 38, 55, 25] by using Nye’s dislocation density tensor [43]. The con-
tinuum theory of dislocations was recently revisited by Acharya and co-workers [1, 47, 4]. One of the key
features of the revisited continuum dislocation theory resides in the Stokes-Helmholtz decomposition of the
elastic distortion and the associated side conditions yielding a unique solution for the incompatible part as-
sociated with a prescribed dislocation density field, while the compatible part is unambiguously determined
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Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux, LEM3, UMR CNRS 7239, University of Lorraine,
Ile du Saulcy, 57045 Metz, France e-mail: stephane.berbenni@univ-lorraine.fr

Vincent Taupin
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from the satisfaction of the balance of linear momentum together with boundary conditions. When discli-
nations are present in the body in addition to dislocations, the displacement and rotation vectors are both
multi-valued functions. Such a situation typically occurs in solids exhibiting kink bands, grain and subgrain
boundaries and triple junctions. In this case, the elastic curvature tensor has an incompatible part comple-
menting the compatible gradient component [9, 15]. Beyond Volterra’s construct, the entire distortion tensor
including the strain tensor in addition to the rotation tensor may be multivalued along some surface. Such
situations are commonplace in materials science. They include terminating twinning and phase boundaries,
terminating shear bands, sharp corners of inclusions in a matrix of dissimilar media, in addition to grain
boundaries and triple junctions. As recently discussed in [2], the discontinuity of the distortion field is re-
flected by the incompatibility of the elastic 2-distortion, (i.e. the second gradient of displacement in strain
gradient elasticity theory) in the presence of a non-vanishing g-disclination density tensor field. A Wein-
garten theorem and a finite strain framework were also recently reported in [3].

An increasingly attractive alternative to the finite-element method is a computationally efficient scheme
based on the Fast Fourier Transform (FFT) for the solution of periodic boundary-value problems in con-
tinuum mechanics. Pioneering works in this field can be found in [35, 37, 36, 11, 13, 30, 33, 41, 53]. This
numerical approach solves the Lippmann-Schwinger integral equation of the periodic boundary-value prob-
lems by means of the Green’s function of a chosen reference medium. It has been applied so far to elastic
and elasto-plastic composites and polycrystals in the absence of crystal defects. The main interest of the
FFT approach relies on its computational efficiency [36, 44]. Its main drawbacks are the need for a periodic
representative volume element and the possible occurrence of spurious Gibbs oscillations arising from the
presence of strong spatial gradients. The elasto-static equations of FDM, which provide the long-range in-
ternal elastic fields associated with a prescribed distribution of dislocation densities in a body, were recently
solved within the FFT framework [8]. In the latter, the equations for the incompatible elastic distortions and
the balance of momentum are solved in the Fourier space, while the resulting elastic fields are obtained in
the real space by using the inverse Fourier transforms. Independently, an extension of this spectral approach
to field dislocation and generalized-disclination mechanics (FDGDM) was first proposed in [6] using classic
Cauchy stress theory, with additional features including a different discretization treatment of FFT-induced
Gibbs oscillations in comparison with ref. [8]. Extensive 2D simulations showed that the numerical spectral
approach is as accurate as optimized finite element approximations, but computationally much more effi-
cient [6].

Motivated by the accuracy and the speed of such spectral approaches for the solution of classic elasto-static
problems, we extend in the present contribution the theory developed in [6] to account for the second order
couple stress tensor (which is related to the skew-symmetric part of the third order hyperstress tensor) and
the second order elastic curvature (which is related to the third order elastic 2-distortion tensor). Among
various higher order theories, the Cosserat, couple-stress, micromorphic, strain-gradient theories are mostly
documented, see e.g. [28], [42], [12] and [14]. The couple-stress theory originally developed by [34, 24]
contains the least material parameters in the constitutive equations compared with other non-conventional
theories involving multiple materials length scale dependent elastic constants which may be difficult to
identify at fine scales. Analytical elastic fields of straight dislocations and disclinations were obtained in a
couple stress theory in [27, 32, 5, 19]. Furthermore, in a different context dedicated to homogenization and
composites, the Green’s function technique for isotropic centrosymmetric couple stress materials was de-
rived in [48, 56] and a DFT-based approach was proposed for both Cosserat and couple stress linear elastic
heterogeneous materials in [22, 23]. Recently, a general free energy density functional for crystalline ma-
terials with third order hyperstress tensor undergoing incompatible fields due to dislocations, disclinations
and g-disclinations was proposed in [52, 50]. Here, the constitutive model will be built up starting from this
general free energy density functional but will be simplified to only consider the second order deviatoric
elastic curvature within a couple stress theory with incompatibilities.

The paper is organized as follows:
In section 2, the notations are introduced. The kinematics for generalized disclination (abbreviated g-
disclination in the sequel) mechanics is reviewed in section 3 and the solutions for incompatible fields
are given in the same section. Then, the generalized constitutive and equilibrium equations within a couple
stress theory are introduced in section 4. General three-dimensional solutions for incompatible elastic fields
of g-disclinations are derived in section 5 to compute their stress and couple stress fields in the Fourier
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space. In section 6, the DFT method is introduced in the case of two-dimensional (2D) problems, and the
FFT algorithm [17] will be used to solve the Poisson and Navier-type equations with microstructural length
scale in the case of infinite straight g-disclinations. In section 7, g-disclination densities are distributed
on 2D FFT pixelized grids for different configurations: single wedge disclination and wedge disclination
dipole. The incompatible and compatible elastic fields are obtained in the discrete Fourier space and then
used to derive the stresses and couple stresses by using the inverse FFT for an isotropic centrosymmetric
elastic solid. The present numerical method is validated by comparisons with existing analytical expressions
[10, 5, 46].

2 Notations

A bold symbol denotes a tensor or a vector. The symmetric part of tensor A is denoted Asym. Its skew-
symmetric part is Askew and its transpose is denoted by At . The tensor A ·B, with rectangular Cartesian
components AikBk j, results from the dot product of tensors A and B, and A⊗B is their tensorial product,
with components Ai jBkl . The vector A ·V, with rectangular Cartesian components Ai jVj, results from the dot
product of tensor A and vector V. A “:” represents the trace inner product of the two second order tensors
A : B = Ai jBi j, in rectangular Cartesian components, or the product of a higher order tensor with a second

order tensor, e.g., A : B = Ai jklBkl . A “
...” represents the trace inner product of the two third order tensors

A
...B = Ai jkBi jk, in rectangular Cartesian components, or, it denotes the product of a higher order tensor with

a third order tensor, e.g., A
...B = Ai jklmBklm. The cross product of a second-order tensor A and a vector V, the

div and curl operations for second/third-order tensors are defined row by row, in analogy with the vectorial
case. For any base vector ei of the reference frame:

(A×V)t · ei = (At · ei)×V (1)
(div A)t · ei = div(At · ei) (2)
(curl A)t · ei = curl(At · ei). (3)

In rectangular Cartesian components:

(A×V)i j = e jklAikVl (4)
(A×V)i jk = eklmAi jlVm (5)

(divA)i = Ai j, j (6)
(divA)i j = Ai jk,k (7)

(curlA)i j = e jklAil,k =−(gradA : X)i j (8)
(curlA)i jk = eklmAi jm,l . (9)

where e jkl is a component of the third-order alternating Levi-Civita tensor X and the spatial derivative with
respect to a Cartesian coordinate is indicated by a comma followed by the component index.

3 Kinematics of generalized crystal defects and incompatibilities

3.1 Linear theory

The analysis is developed in the small distortion framework (linear theory). The body V , with boundary ∂V ,
is assumed to be a continuum, with smooth displacement and rotation vector fields (u,ωωω = 1/2curlu). The
total 1-distortion (first distortion) tensor field U = gradu, the curvature tensor field, κκκ = gradωωω , and the 2-
distortion (second distortion) tensor field, G = gradU, are therefore assumed to be integrable (compatible,
or curl free). Under such assumptions, the possibility of developing cracks in the body is discarded. The
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total 1-distortion writes as the sum of the elastic distortion, Ue, and plastic distortion, Up:

U = Ue +Up. (10)

Similarly, the 2-distortion tensor can be decomposed into elastic and plastic 2-distortion tensors:

G = Ge +Gp. (11)

In a compatible body in the absence of polarized crystal defect density, the elastic/plastic distortions and
2-distortions are curl-free gradient tensors. However, they will contain incompatible, non-gradient parts, in
the presence of a polarized crystal defect density, while total 1 and 2-distortions remain compatible. Such
general incompatibilities are now discussed in terms of crystal defects.

3.2 Volterra’s crystal translation and rotation line defects

Volterra [54] introduced six types of crystal line defects. Three of them, known as dislocations, are trans-
lational defects, and the other three, referred to as disclinations, are rotational defects. Like disclinations,
dislocations have a smooth elastic distortion field Ue in a non-simply-connected domain excluding their
core. However, their (elastic) displacement field features a discontinuity denoted JueK across a (non-unique)
smooth surface in this domain. The geometry of any such surface is arbitrary except that, in a discrete mod-
eling framework, it terminates along the dislocation line. A line integral of the elastic distortion field along
any curve encircling the dislocation line, i.e. a Burgers circuit, is constant and is equal to the discontinuity
of the elastic displacement. This constant b = JueK is referred to as the Burgers vector of the dislocation.
It represents the strength of the dislocation. In contrast with Volterra’s discrete representation of crystal
defects, we presently choose a continuous setting, in order to regularize this classical description. We con-
sider smooth elastic distortion fields in simply connected domains, in which they are point-wise irrotational
outside the core region, whereas their non-vanishing curl defines a smooth dislocation density tensor field
inside the core (of non-zero volume):

ααα = curlUe. (12)

The Burgers vector is then obtained by integrating the dislocation density tensor field, referred to as Nye’s
tensor field, along appropriate surface patches S with unit normal n:

b =
∫

S
ααα.ndS. (13)

Similarly, disclinations result from a discontinuity denoted JωωωeK in the rotation field over a surface termi-
nating on the disclination line in a discrete setting, even though a smooth elastic curvature field κκκe exists
in this region. The strength of disclinations is characterized by their Frank vector ΩΩΩ , which represents the
magnitude and direction of the rotational discontinuity ΩΩΩ = JωωωeK over a closed circuit encircling the discli-
nation line. In deWit’s continuous setting [9], also adopted in the present paper, the smooth elastic curvature
field is irrotational outside the disclination core region, and the disclination density tensor is defined as the
curl of this field inside the core, of non-zero volume:

θθθ = curlκκκe. (14)

The Frank vector is then obtained by integrating the disclination density tensor field along appropriate
surface patches S:

ΩΩΩ =
∫

S
θθθ .ndS. (15)
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3.3 Generalized disclination (g-disclination) kinematics

Acharya and Fressengeas [2] adopted a similar approach in introducing generalized disclinations , as shown
in Fig. 1. The g-disclination concept goes beyond the Volterra construct, in the sense that the distortion
field now has a discontinuity denoted JUeK along a surface terminating at the g-disclination line (Fig. 1),
whereas the elastic 2-distortion tensor field Ge is still smooth in the non-simply connected region excluding
the g-disclination line. As already mentioned, this surface of discontinuity is referred to as a phase or
grain boundary. The strength ΠΠΠ of the g-disclination is defined as the jump in the elastic distortion tensor
field across the interphase: ΠΠΠ = JUeK. In a continuous setting, the elastic 2-distortion field is point-wise
irrotational in the defect free volume of the body. Its curl in the defected part provides for the definition of
the third order g-disclination density tensor field πππ:

πππ = curlGe, (16)

and the integration of the latter over an appropriate surface patch yields the jump of the elastic distortion
tensor field:

ΠΠΠ =
∫

S
πππ.ndS (17)

When, as a special case, the strain discontinuity vanishes, while a rotation discontinuity JωωωeK is persisting,
the g-disclinations reduce to standard disclinations. In the context of g-disclinations, the dislocation density
tensor ααα needs to be redefined by alternating the elastic 2-distortion tensor [2]:

ααα =−Ge : X (18)

instead of Eq.12.

Fig. 1 Cross sectional view of two different types of straight line defects: dislocation (a) seen as the terminating curve of
the surface of displacement discontinuity (the arrows with reverse directions along the displacement discontinuity surface
describe different displacement directions), g-disclination (b) seen as the terminating curve of the surface of curvature/strain
discontinuity (the differently inclined parallel lines in the vicinity of the distortion discontinuity surface decribe different strains
like different shears for example).
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3.4 Incompatible field equations

Invoking the Stokes-Helmholtz orthogonal decomposition of the square-integrable elastic 2-distortion ten-
sor field Ge (see for example [21]), there exist unique tensor fields χχχ and Z such that Ge writes as the
sum:

Ge = G⊥e +G‖e = curl χχχ +gradZ. (19)

with the orthogonality condition
∫

V curl χχχ : gradZdv = 0. Thus, taking the curl of Ge in Eq.19 extracts
curl χχχ and discards gradZ, whereas taking its divergence extracts gradZ and eliminates curl χχχ . Therefore,
Eq.16 involves only curl χχχ , which we will identify below as the incompatible part G⊥e of Ge:

curlG⊥e = curlcurl χχχ = πππ. (20)

Similarly, gradZ will be the compatible part G‖e of the elastic 2-distortion Ge, and Z will be the elastic
distortion Ue, up to a constant. To ensure correctness of this identification, G⊥e must vanish identically
throughout the body when πππ = 0. In this aim, following [21, 1], Eq.20 is augmented with the side conditions:

divG⊥e = 0 in V (21)
G⊥e .n = 0 on ∂V (22)

with unit normal n on ∂V . Then taking the curl of Eq.16 and using the side condition (21), it follows that:

curlcurlG⊥e = graddivG⊥e −divgradG⊥e =−divgradG⊥e = curlπππ (23)

Hence, G⊥e satisfies a first Poisson-type equation

divgradG⊥e = −curlπππ in V (24)
G⊥e .n = 0 on ∂V. (25)

In component form, Eq.24 reads
Ge,⊥

i jk,ll =−eklmπi jm,l (26)

As a consequence, the field of incompatible elastic 2-distortion G⊥e is uniquely determined once the g-
disclination density field πππ is prescribed. In particular, it vanishes uniformly when πππ = 0. Using Eqs.(8,18),
the dislocation density tensor can therefore be written as:

ααα =−G⊥e : X−gradUe : X = curlUe−G⊥e : X (27)

In turn, the Stokes-Helmholtz decomposition of the elastic distortion Ue can be used to separate its compat-
ible part, U‖e , from its incompatible part, U⊥e :

Ue = U⊥e +U‖e = curl ψψψ +gradw, (28)

and to ensure uniqueness of the latter through the solution of a Poisson-type equation. In the decomposition
(28), U‖e = gradw again belongs to the null-space of the curl operator since curl gradw = 0, while U⊥e =
curl ψψψ must additionally satisfy the side conditions:

divU⊥e = 0 in V (29)
U⊥e .n = 0 on ∂V. (30)

Invoking the identity curl curl U⊥e = grad div U⊥e −div grad U⊥e , taking the curl of Eq. 27 and using Eq.29
then leads to a second Poisson-type equation:

div grad U⊥e = −curl (ααα +G⊥e : X) in V (31)
U⊥e .n = 0 on ∂V. (32)

In component form, Eq.31 reads
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Ue,⊥
i j,kk =−e jklαil,k− (Ge,⊥

i jk −Ge,⊥
ik j ),k (33)

Hence, U⊥e is uniquely determined once the dislocation and g-disclination density fields (ααα,πππ) are pre-
scribed. In particular, it vanishes uniformly in V when ααα = 0 and πππ = 0. Eqs. (31,33) will be transformed in
the Fourier space in what follows (Section 5) and solved using the discrete Fourier transform (DFT) method
(Section 6).

4 Constitutive and equilibrium equations

4.1 Constitutive relationships

Recently, a general free energy density functional Ψ (εεεe,Ge) for crystalline materials undergoing incom-
patible fields due to dislocations, disclinations and g-disclinations was reported in [52]. Here, in order to
reduce this general form to a couple stress theory with incompatible fields, Ψ is supposed to only depend
on the elastic strain εεεe and the skew-symmetric part of the elastic 2-distortion tensor Ge denoted Gskew

e as
follows:

Ψ =
1
2

εεεe : C : εεεe + εεεe : B
...Gskew

e +Gskew
e

...D : εεεe +
1
2

Gskew
e

...E
...Gskew

e (34)

where C is the fourth order tensor of linear elastic moduli with the classic symmetry properties Ci jkl =
C jikl = Ci jlk = Ckli j, B is a fifth order tensor with Bi jklm = B jiklm = −Bi jlkm = −B jilkm, D is a fifth order
tensor with Di jklm = −D jiklm = Di jkml = −D jikml and E is a sixth order tensor with Ei jklmn = −E jiklmn =
−Ei jkmln = E jikmln = Elmni jk. The constitutive relationships are obtained by taking the partial derivatives
of Ψ with respect to εεεe and to Gskew

e in order to find the symmetric second order stress tensor Tsym (i.e.
T sym

i j = T sym
ji ) and the skew-symmetric third order hyperstress tensor denoted Mskew (i.e. Mskew

i jk =−Mskew
jik ),

respectively:

Tsym = C : εεεe +B
...Gskew

e +Gskew
e

...D (35)

Mskew = εεεe : B+D : εεεe +E
...Gskew

e (36)

For isotropic and centrosymmetric materials as considered here, the free energy density functional Ψ further
reduces to the one of a couple stress material [34, 24] with elastic incompatibilities under the quadratic form:

Ψ =
1
2

εεεe : C : εεεe +
1
2

κκκ
D
e : A : κκκ

D
e (37)

where κκκD
e is the second order deviatoric elastic curvature tensor, and, C, A read:

Ci jkl = λδi jδkl +µ
(
δikδ jl +δ jkδil

)
(38)

Ai jkl = A1δikδ jl−A2δ jkδil (39)

where µ and λ are respectively the classic shear modulus and Lamé constant of the material, and, A1, A2
are couple stress elastic constants that are length scale dependent. Let us note that the second order elastic
curvature tensor κκκe is related to the skew-symmetric part of the third order elastic 2-distortion tensor Gskew

e
as follows:

κκκe = −1
2

X : Gskew
e (40)

Gskew
e = −X ·κκκe (41)

Taking now the thermodynamic conjugate of κκκD
e as the second order deviatoric couple stress tensor mD,

we obtain from equation (37) together with equation (38) the constitutive relationships for homogeneous
isotropic centro-symmetric materials:
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T sym
i j = Ci jklε

e
kl = λε

e
kkδi j +2µε

e
i j (42)

mD
i j = Ai jklκ

eD
kl = A1κ

eD
i j −A2κ

eD
ji (43)

Let us note that only the deviatoric parts of second order elastic curvature and couple stress tensors are
constitutively determined like in the so-called “undeterminate” couple stress theory originally derived by
[34]. The second order couple stress tensor m is related to the skew-symmetric part of the third order
hyperstress tensor Mskew by the following operations:

m = −X : Mskew (44)

Mskew = −1
2

X ·m (45)

This initial couple stress theory is still very controversial, see for instance [40], who proposed from homog-
enization theory with micro-randomness a couple stress theory with symmetric couple stress tensor. In the
present study, the material constant A1 is defined as a function of a microstructural length scale (or charac-
teristic size) l such that A1 = 4µl2 [34]. Furthermore, the constant A2 is bounded in the Mindlin-Tiersten
theory [34].

4.2 Equilibrium equations

In a couple stress theory, the linear and angular momentum balance equations for the elasto-static problem
without body force and body couple force densities take the forms:

divT = 0 in V , (46)
divmD−X : T = 0, in V (47)

where T is the force-stress tensor which splits into symmetric Tsym and skew-symmetric Tskew parts: T =
Tsym +Tskew and where the second order tensor mD is the deviatoric couple-stress tensor as defined earlier.

The equilibrium equations (46) and (47) are appended with force-stress vector field td and couple-stress
vector md applied to a part of the boundary ∂Vt as detailed in [34] (see also [24]) and the other part ∂Vu is
subjected to the prescribed displacements ud .

From T = Tsym +Tskew with Ti j
skew = 1

2 ei jkemnkTmn and using eqs. 46 and 47, a single equilibrium equa-
tion involving Tskew and mD can be written as follows:

divTsym +
1
2

curl
(
divmD)= 0 in V (48)

Using the Stokes-Helmoltz decomposition (equations 19 and 28), the equilibrium equation (48) together
with the constitutive relationships can be rewritten in the form of a partial differential equation of Navier-
type in V :

div C : εεε
‖
e +

1
2

curl
(

div
(

A : κκκ
D‖
e

))
+ f⊥ = 0, (49)

where εεε
‖
e , κκκ

D‖
e are respectively given by:

ε
e,‖
i j =

1
2
(wi, j +w j,i) (50)

κ
eD,‖
i j =

1
2

eiklwl,k j (51)

and where the incompatible fictive body force density arising from the generalized defects is given by:

f⊥ = div C : εεε
⊥
e +

1
2

curl
(

div
(

A : κκκ
D,⊥
e

))
(52)
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with ε
e,⊥
i j = 1

2

(
Ue,⊥

i j +Ue,⊥
ji

)
and with κ

e,⊥
i j = − 1

2 emniG
e,skew,⊥
mn j . Eqs. (49) to (52) together with adequate

boundary conditions on displacements, force and couple traction vectors [34, 24] set a couple stress elas-
ticity problem for the unknown fields w, εεε

‖
e and κκκ

D,‖
e which can therefore be determined uniquely. The

incompatible volume fictive body force f⊥ is first determined by solving the Poisson-type equations (24,31)
for G⊥e , U⊥e to give κκκ

D,⊥
e and εεε⊥e after defect density fields (ααα,πππ) have been initially prescribed.

Assuming a homogeneous reference medium with uniform elastic moduli and couple stress moduli C0
i jkl

and A0
i jkl , such that Ci jkl = C0

i jkl and Ai jkl = A0
i jkl , no “polarization tensor” fields are accounted for (i.e. no

iterative scheme is needed). Therefore, eqs.49 to 52 yield, in component form:

C0
i jklwk,l j +

1
4

eikleprsA0
lmpqws,rqmk +C0

i jklε
e,⊥
kl, j +

1
2

eiklA0
lmpqκ

eD,⊥
pq,mk = 0 (53)

Using eq. 42 and eq. 43 in eq.53 yields:

µwi,kk +(λ +µ)wk,ki +µl2 (wk,ikmm−wi,kkmm
)

+λε
e,⊥
kk,i +2µε

e,⊥
ik,k +2µl2eiklκ

eD,⊥
lm,mk−

A2

2
eiklκ

eD,⊥
ml,mk = 0,

(54)

It is noteworthy that the classic size-independent theory with incompatibilities described in [6] for instance
is found with l = 0 and A2 = 0. In this case, the term containing the incompatible elastic curvature fields
due to g-disclinations as well as that with compatible elastic curvatures vanish and the classic Navier-type
operator including only second order partial spatial derivatives with classic isotropic linear elasticity is
retrieved.

5 Fourier method

5.1 Solution of Poisson-type equations in Fourier space

The previous Poisson and Navier-type equations can be solved using the Fourier Transform method. Indeed,
the unknown vector field w(xxx) can be obtained by using the spectral method based on Fourier transforms to
derive later on the stresses, elastic rotations etc. in the Fourier space. Then, the elastic fields are estimated
in the real space using the inverse Fourier Transform. The FFT algorithm is well suited for periodic media.
This one will be developed in section 6 to estimate the discrete Fourier transforms on FFT grids.

In the Fourier space, let ξξξ be the Fourier vector of magnitude ξ =
√

ξξξ ·ξξξ and components ξi in a carte-
sian coordinate system in a general three-dimensional setting. The complex imaginary number is denoted i
and defined as i =

√
−1.

Let α̃αα(ξξξ ), Ũ⊥e (ξξξ ), ε̃εε
⊥
e (ξξξ ), π̃ππ(ξξξ ), G̃⊥e (ξξξ ) and κ̃κκ

D,⊥
e (ξξξ ) be the continuous Fourier transforms of ααα(xxx),

U⊥e (xxx), εεε⊥e (xxx), πππ(xxx),G⊥e (xxx) and κκκ
D,⊥
e (xxx). Then, the Poisson-type equations (eqs. 24 and 31) are solved

using the differentiation theorem in Fourier space. Using component notations, Eq. 26 writes in the Fourier
space

G̃e,⊥
i jk (ξξξ ) =

i
ξ 2 ξleklmπ̃i jm(ξξξ ) ∀ξξξ 6= 000

G̃e,⊥
i jk (000) = 000

(55)

and Eq. 33 yields in the Fourier space

Ũe,⊥
i j (ξξξ ) =

i
ξ 2 ξk

(
e jklα̃il(ξξξ )+ G̃e,⊥

i jk (ξξξ )− G̃e,⊥
ik j (ξξξ )

)
∀ξξξ 6= 000

Ũe,⊥
i j (000) = 000

(56)

Therefore, ε̃εε
⊥
e (ξξξ ) is derived from the symmetric part of Ũ⊥e (ξξξ ) and κ̃κκ

D,⊥
e (ξξξ ) is obtained from the skew-

symmetric part of G̃⊥e (ξξξ ) (see eq. 40).
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5.2 Solution of Navier-type equation in Fourier space

Let w̃(ξξξ ), ε̃εε
‖
e(ξξξ ) and κ̃κκ

D,‖
e (ξξξ ) be the continous Fourier transform of w(xxx), εεε

‖
e(xxx) and κκκ

D,‖
e (xxx). Then, the

Fourier transform of the Navier-type equation (equation 53) yields

C0
i jklξlξ jw̃k(ξξξ )−

1
4

eikleprsA0
lmpqξrξqξmξkw̃s(ξξξ ) = iC0

i jklξ j ε̃
e,⊥
kl (ξξξ )+

1
2

eiklA0
lmpqξmξkκ̃

eD,⊥
pq (ξξξ ) (57)

The solution w̃(ξξξ ) can be obtained with the introduction of the Green tensor G̃ik(ξξξ ) in the Fourier space:

w̃i(ξξξ ) = G̃ik(ξξξ ) f̃⊥k (ξξξ ) (58)

where:

G̃ik(ξξξ ) =

(
C0

i jklξlξ j−
1
4

ei jlA0
lmpqeprkξrξqξmξ j

)−1

(59)

and:
f̃⊥i (ξξξ ) = iC0

i jklξ j ε̃
e,⊥
kl (ξξξ )+

1
2

eiklA0
lmpqξmξkκ̃

eD,⊥
pq (ξξξ ) (60)

It is noteworthy that eqs. 58 to 60 can be applied to any centrosymmetric anisotropic couple stress materials.

For isotropic centrosymmetric couple stress materials, C0
i jkl and A0

i jkl are defined by eqs. 38 and 39. In
this case, the expression of the non local Green tensor can be found in [48, 56]. Thus, the expression of
G̃ik(ξξξ ) is given by:

G̃ik(ξξξ ) =
1

µξ 2

[
1

1+ l2ξ 2

(
δik−

ξiξk

ξ 2

)
+

µ

λ +2µ

ξiξk

ξ 2

]
∀ξξξ 6= 000

G̃ik(000) = 000
(61)

The compatible elastic strain ε̃εε
‖
e(ξξξ ) is obtained in the Fourier space from the differentiation rule:

ε̃
e,‖
i j (ξξξ ) =

1
2

i(ξ jw̃i(ξξξ )+ξiw̃ j(ξξξ ))

κ̃
eD,‖
i j (ξξξ ) =−1

2
eiklξ jξkw̃l(ξξξ )

(62)

5.3 Stress and couple stress fields

Knowing Ũ⊥e (ξξξ ) and Ũ‖e(ξξξ ), the (total) elastic distortion in the Fourier space yields

Ũe
i j = Ũe,⊥

i j +Ũe,‖
i j (63)

The stress T̃(ξξξ ) in Fourier space is obtained in component form as:

T̃i j(ξξξ ) =C0
i jkl ε̃

e
kl(ξξξ ) ∀ξξξ 6= 000

T̃i j(000) = 0
(64)

where ε̃e
i j =

1
2

(
Ũe

i j +Ũe
ji

)
and where the far-field (overall) stress which is the spatial average of Ti j over the

periodic unit cell is set to zero. Here, only the internal stress field will be computed in section 7.
The couple stress m̃D(ξξξ ) in Fourier space is obtained in component form as:

m̃D
i j(ξξξ ) = A0

i jkl κ̃
eD
kl (ξξξ ) ∀ξξξ 6= 000

m̃D
i j(000) = 0

(65)



A Fast Fourier Transform-based approach for Generalized Disclination Mechanics within a Couple Stress theory 11

where the far-field (overall) deviatoric couple stress which is taken as the spatial average of mD
i j over the

periodic unit cell is set to zero. Here only the internal couple stress field due to generalized defects will be
computed in section 7.

The elastic stress and couple stress moduli C0
i jkl and A0

i jkl in eq. 64 and 65 are defined by eqs. 38 and 39.

Then, the inverse Fourier transforms of T̃(ξξξ ) and m̃D(ξξξ ) are numerically computed using the FFT algorithm
and inverse FFT allows finding T and mD on the discretized periodic unit cell.

6 Fast Fourier Transform numerical implementation

6.1 Discrete Fourier Transforms and FFT

The field equations derived in the Fourier space are now solved by 2D discrete Fourier transforms with the
Fast Fourier Transform (FFT) algorithm. Here, periodicity is assumed for the distribution of g-disclination
densities (i.e. πππ), with spatial periods T1 and T2 in the x1 and x2 directions, respectively. The periodic
representative volume element (RVE) or unit cell is discretized by a regular rectangular grid with N1×N2
pixels with position vector xxx = ((i−1)δ1,( j−1)δ2), where i = 1→N1, j = 1→N2 and δ1, δ2 are the pixel
sizes in the x1 and x2 directions with δ1 = δ2 = δ . The total number of FFT grid points is Ntot = N1×N2.
Here, the FFTW package of Matlab is used to compute discrete Fourier transforms [17]. The discrete FFT
of a given spatial function f is f̂ = FFT( f ). The inverse Fourier transform is f = FFT−1

(
f̂
)

. They write
with the Matlab FFT convention:

f̂ (k, l) =
N1

∑
i=1

N2

∑
j=1

f (i, j)exp
(
−2πi

(
(i−1)(k−1)

N1
+

( j−1)(l−1)
N2

))
(66)

and

f (i, j) =
1

Ntot

N1

∑
k=1

N2

∑
l=1

f̂ (k, l)exp
(
+2πi

(
(i−1)(k−1)

N1
+

( j−1)(l−1)
N2

))
(67)

It should be pointed out that Eqs. 66 and 67 are finite sums which can be determined exactly by FFT for
periodic unit cells.

6.2 DFT differentiation rules based on centered finite difference approximation

Here, the following differentiation rules are used for first-, second- and fourth- order partial derivatives
calculated on the discrete grid based on a 9-pixel centered finite difference approximation [45]:
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∂ f (i, j)
∂x1

=
f (i+1, j)− f (i−1, j)

2δ1
(68)

∂ f (i, j)
∂x2

=
f (i, j+1)− f (i, j−1)

2δ2
(69)

∂ 2 f (i, j)
∂x2

1
=

f (i+1, j)−2 f (i, j)+ f (i−1, j)
δ 2

1
(70)

∂ 2 f (i, j)
∂x2

2
=

f (i, j+1)−2 f (i, j)+ f (i, j−1)
δ 2

2
(71)

∂ 2 f (i, j)
∂x1∂x2

=
f (i+1, j+1)+ f (i−1, j−1)

4δ1δ2
(72)

− f (i+1, j−1)+ f (i−1, j+1)
4δ1δ2

(73)

∂ 4 f (i, j)
∂x4

1
=

f (i−2, j)−4 f (i−1, j)+6 f (i, j)−4 f (i+1, j)+ f (i+2, j)
δ 4

1
(74)

∂ 4 f (i, j)
∂x4

2
=

f (i, j−2)−4 f (i, j−1)+6 f (i, j)−4 f (i, j+1)+ f (i, j+2)
δ 4

2
(75)

∂ 4 f (i, j)
∂x2

1∂x2
2

=
4 f (i, j)
δ 2

1 δ 2
2

(76)

− 2
f (i−1, j)+ f (i+1, j)+ f (i, j−1)+ f (i, j+1)

δ 2
1 δ 2

2
(77)

+
f (i+1, j−1)+ f (i−1, j−1)

δ 2
1 δ 2

2
(78)

+
f (i+1, j+1)+ f (i−1, j+1)

δ 2
1 δ 2

2
(79)

∂ 4 f (i, j)
∂x2∂x3

1
=

f (i+2, j+1)+2 f (i−1, j+1)
4δ 3

1 δ2
(80)

− f (i−2, j+1)+2 f (i+1, j+1)
4δ 3

1 δ2
(81)

+
f (i−2, j−1)+2 f (i+1, j−1)

4δ 3
1 δ2

(82)

− f (i+2, j−1)+2 f (i−1, j−1)
4δ 3

1 δ2
(83)

∂ 4 f (i, j)
∂x1∂x3

2
=

f (i+1, j+2)+2 f (i+1, j−1)
4δ1δ 3

2
(84)

− f (i−1, j+2)+2 f (i+1, j+1)
4δ1δ 3

2
(85)

+
f (i−1, j−2)+2 f (i−1, j+1)

4δ1δ 3
2

(86)

− f (i−1, j+2)+2 f (i−1, j−1)
4δ1δ 3

2
(87)

(88)

Using Eqs. 66 to 88, the subtitutions due to correspondance between continuous and discrete Fourier
transform derivatives are the following:

iξ1↔
i

δ1
sin
(

2π(k−1)
N1

)
(89)
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iξ2↔
i

δ2
sin
(

2π(l−1)
N2

)
(90)

−ξ
2
1 ↔

2
δ 2

1

(
cos
(

2π(k−1)
N1

)
−1
)

(91)

−ξ
2
2 ↔

2
δ 2

2

(
cos
(

2π(l−1)
N2

)
−1
)

(92)

−ξ1ξ2↔
1

2δ1δ2
cos
(

2π

(
(k−1)

N1
+

(l−1)
N2

))
− 1

2δ1δ2
cos
(

2π

(
(k−1)

N1
− (l−1)

N2

)) (93)

ξ
4
1 ↔

4
δ 4

1

(
cos
(

2π(k−1)
N1

)
−1
)2

(94)

ξ
4
2 ↔

4
δ 4

2

(
cos
(

2π(l−1)
N2

)
−1
)2

(95)

ξ
2
1 ξ

2
2 ↔

4
δ 2

1 δ 2
2

(
cos
(

2π(k−1)
N1

)
−1
)(

cos
(

2π(l−1)
N2

)
−1
)

(96)

ξ
3
1 ξ2↔

2
δ 3

1 δ2
sin
(

2π

(
(k−1)

N1

))
sin
(

2π

(
(l−1)

N2

))
×
(

1− cos
(

2π(k−1)
N1

)) (97)

ξ1ξ
3
2 ↔

2
δ1δ 3

2
sin
(

2π

(
(k−1)

N1

))
sin
(

2π

(
(l−1)

N2

))
×
(

1− cos
(

2π(l−1)
N2

)) (98)

In section 7 of the present paper, the 9-pixel approximation is sufficient to give accurate enough results
for strong gradients of stress/couple stress fields of g-disclinations in comparison with existing analytical
solutions . Higher order pixel approximations may also be developed [41] to further refine the FFT analysis.
In [6], it was shown that the present FFT method with centered-difference based-DFT avoids spurious Gibbs
oscillations occuring with classic FFT techniques, especially when defect densities are prescribed to a single
pixel.

7 Application to infinite straight wedge disclinations

7.1 Materials and numerical data

In the forthcoming applications, the g-disclination densities are prescribed using a regular Gaussian func-
tion. 2D FFT N×N square grids with δ1 = δ2 = δ , N = N1 = N2 and Ntot = N2 are considered. In this
section, the FFT grid will be set to 1024×1024 pixels with pixel size: δ = 0.1b where b is the magnitude
of the Burgers vector. Here, a face-centered cubic metal like Copper is studied, for which the lattice param-
eter is a0 = 0.36151nm. The isotropic elastic constants of Copper (Cu) will be used for the simulations:
µ = 47800MPa, ν = 0.34. The magnitude of the Burgers vector of Cu is b =

√
2a0/2, i.e. b = 0.25563nm.

Following [32] for dislocations, [51], and [49, 16] for disclinations the length scale l is set to b/2 to make
A1 ≈ µb2. For wedge disclinations, it will be seen that the term containing A2 in eq. 54 vanishes.

In [6], the stresses for both pure screw and edge dislocations were already computed to assess the present
numerical spectral method by comparing the FFT solutions to analytical expressions [20, 1] and finite ele-
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ment results. Here, numerical FFT results for disclinations, disclination dipole and walls will be compared
to analytical results reported in [5], [10], [46].

7.2 Two-dimensional equations for g-disclinations

In the following applications, we consider straight g-disclinations such that the defect line lies along the e3
axis. Thus, the elastic fields are invariant with respect to x3. Here, the defect is based on elastic distortion
discontinuities described by non zero JUe

12K and JUe
21K. Thus, in this case, eqs. 16 and 17 simplify into∫

S
π123dS =

∫
S

(
Ge,⊥

122,1−Ge,⊥
121,2

)
dS = JUe

12K (99)∫
S

π213dS =
∫

S

(
Ge,⊥

212,1−Ge,⊥
211,2

)
dS = JUe

21K (100)

Consequently, given π123(xxx) and π213(xxx), the incompatible elastic 2-distortions are solutions of the four
following Poisson-type equations (see eq.26)

Ge,⊥
122,11 +Ge,⊥

122,22 = π123,1 (101)

Ge,⊥
121,11 +Ge,⊥

121,22 = −π123,2 (102)

Ge,⊥
212,11 +Ge,⊥

212,22 = π213,1 (103)

Ge,⊥
211,11 +Ge,⊥

211,22 = −π213,2 (104)

Once Ge,⊥
122, Ge,⊥

121, Ge,⊥
212 and Ge,⊥

211 are obtained, four other Poisson-type equations are needed to find in turn
the incompatible elastic 1-distortions Ue,⊥

11 , Ue,⊥
22 , Ue,⊥

12 and Ue,⊥
21 using eq. 33 (without dislocation densities)

Ue,⊥
12,11 +Ue,⊥

12,22 = −Ge,⊥
121,1 (105)

Ue,⊥
11,11 +Ue,⊥

11,22 = Ge,⊥
121,2 (106)

Ue,⊥
21,11 +Ue,⊥

21,22 = −Ge,⊥
212,2 (107)

Ue,⊥
22,11 +Ue,⊥

22,22 = Ge,⊥
212,1 (108)

All the previous equations will be solved successively in the Fourier space for the particular cases of straight
wedge disclination and wedge disclination dipole. Then, the generalized Navier-type equation is solved
in the Fourier space for the compatible 1- and 2-elastic distortions (compatible elastic strain and elastic
curvature tensors).

7.3 Single straight wedge disclination

First, the case of a pure straight wedge disclination is considered. This corresponds to an elastic distortion
discontinuity in the negative half-plane (x1 = 0,x2 ≤ 0). The only non zero discontinuities are JUe

12K =
Jωe

12K=−JΩ e
3K and JUe

21K= Jωe
21K=+JΩ e

3K, where JΩ e
3K= Ω e

3+−Ω e
3− is the elastic rotation discontinuity

along the e3 axis (the domains (+) and (-) respectively correspond to x1 > 0 and x1 < 0). This g-disclination
is equivalent to a pure disclination with the positive Frank vector component along the e3 axis [46] with
JΩ e

3K = ω . Thus, the discontinuity in the elastic distortion is such that

JΩ
e
3K = ω =

∫
S

π213dS (109)

where π213 = −π123. Thus, only two Poisson equations containing π213 are considered and solved in the
Fourier space. For the simulations, the g-disclination density follows a Gaussian distribution:
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π213 (xxx) =
ω

2πσ2 exp
(
− r2

2σ2

)
if r ≤ r0

π213 (xxx) = 0 if r > r0

(110)

with r =
√

x12 + x22 and σ = 0.1r0.
Then, the non zero incompatible elastic curvature components (equivalent to incompatible elastic 2-

distortions) are obtained as

κ
e,⊥
31 = −Ge,⊥

121 (111)

κ
e,⊥
32 = −Ge,⊥

122 (112)
(113)

By solving the non zero incompatible and compatible elastic curvatures, the elastic curvatures κe
32 =

κ
e,⊥
32 +κ

e,‖
32 and κe

31 = κ
e,⊥
31 +κ

e,‖
31 are computed by inverse FFT on a 2D grid with r0 = 0.5b and ω = 5/6

rad. Therefore, the A2 term in eq. 54 vanishes because of invariance of incompatible elastic curvature along
x3 together with only non zero κ

e,⊥
32 and κ

e,⊥
31 for this particular 2D case. The numerical results are reported

in Fig. 2. The results show that the respective variations of κe
32 and κe

31 along x1 and x2 match exactly the
analytical solutions of [10] or [5]:

κ
e
31 = −

JΩ e
3K

2π

x2

r2 (114)

κ
e
32 =

JΩ e
3K

2π

x1

r2 (115)
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Fig. 2 Elastic curvatures for a single straight wedge disclination: (a) κe
32, (b) κe

31 normalized by ω = JΩ e
3K. Comparisons with

the solutions given by [5, 10] (dashed lines).

Once the elastic curvatures are calculated, the non zero couple stress components mD
31 and mD

32 are ob-
tained using the constitutive relationship (eq. 43), see Fig. 3. The results are consistent with the analytical
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solutions obtained with a couple stress theory with disclinations [5]. Couple stress contours for mD
31 and mD

32
are also reported in Fig. 4.
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Fig. 3 Couple stresses for a single straight wedge disclination: mD
32 (a), mD

31 (b) non zero couple stress components normalized
by µω . Comparisons with the solutions given by [5] (dashed lines).
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Fig. 4 FFT simulations of couple stresses for a single straight wedge disclination: mD
31 (top), mD

32 (bottom) non zero couple
stress components normalized by ω = JΩ e

3K.

7.4 Straight wedge disclination dipole

A second application is the case of a wedge disclination dipole as described in Fig. 5 which is commonly
used to describe tilt grain boundaries as originally proposed by [31] and later improved by Gertsman et
al. [18, 39]. In this representation, the grain boundary is represented in the form of a complex arrangement
of periodic disclination dipole walls associated with the minority structural units (see Fig. 6).

For a pure wedge disclination dipole, the positive (resp. negative) pole is distributed by using the same
Gaussian distribution as in eq. 110 at location (x1 = 0,x2 =+a) (resp. (x1 = 0,x2 =−a)) with disclination
strength JΩ e

3K (resp. −JΩ e
3K).

In order to get stress fields similar to that of an equivalent straight edge dislocation, the semi-length
of the dipole is set to a = b/(2JΩ e

3K) (see e.g. [46]) with JΩ e
3K = 5/6 rad. For the FFT simulations, the

stress components are obtained by inverse FFT on the 2D grid after successively computing in the discrete
Fourier space the incompatible elastic curvatures, the incompatible elastic 1-distortions, the compatible
elastic distortions and the stresses and couple stresses using the constitutive relationships.

Fig. 7 displays the stress components T11, T12 obtained by FFT and normalized by Dω where ω =
JΩ e

3K and D = µ/(2π(1− ν)). Fig. 8 describes the couple stress components mD
31 and mD

32 obtained by
FFT and normalized by µω . Excellent agreement is found with the analytical stress components given
by [10, 46, 5] for wedge disclination dipoles. Normal and shear stresses contour plots normalized by Dω

(D = µ/(2π(1−ν))) are reported in Fig. 9 and couple stress plots normalized by ω are reported in Fig. 10.
It is shown that the present FFT results confirm that the stress contour reported in Fig. 9 respectively, are
similar to that of an edge dislocation (see for instance [46] and [51]).
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Fig. 5 Spatial distribution of G-disclination density in rad.m−2 for a straight wedge disclination dipole with associated positive
and negative rotation jumps: +JΩ e

3K and −JΩ e
3K.

Fig. 6 Example of a disclination Structural Unit Model (DSUM) representation of the [001] Σ149 (10 7 0) θ = 20.02◦ sym-
metric tilt grain boundary. Its structural decomposition is —AABABAB.AABABAB—, with B being the minority structural
unit. The elastic fields of this grain boundary can be constructed as the superposition of three offsetted periodic walls of
disclination dipoles B.
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Fig. 7 Profiles of stress components: (a) T11, (b) T12, for a straight wedge disclination dipole (see Fig. 5) obtained by FFT and
normalized by Dω where D = µ/(2π(1−ν)) (solid lines). Comparisons with the solutions given by [5, 10] (dashed lines).
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Fig. 9 Stress contours for T11 (top) and T12 (bottom) for a straight wedge disclination dipole (see Fig. 5) obtained by FFT (a,c)
and normalized by Dω where ω = JΩ e

3K and D = µ/(2π(1−ν)).
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Fig. 10 Couple stress contours for mD
31 (top) and mD

32 (bottom) for a straight wedge disclination dipole (see Fig. 5) obtained by
FFT (a,c) and normalized by ω where ω = JΩ e

3K.

8 Concluding remarks

A spectral approach for periodic media was developed to solve the elasto-static field equations of g-
disclination mechanics [2, 3] in the framework of a couple stress theory as an extension of the work de-
scribed in [6], which was only dedicated to a Cauchy stress theory. Various results are obtained such as
the solutions of Poisson-type equations in the Fourier space for a medium containing both dislocation
and g-disclination densities. These solutions capture the incompatible part of elastic fields induced by g-
disclinations in the Fourier space. The compatible elastic fields needed to retrieve the stress and couple
stress fields are solved assuming a characteristic internal length scale l involved in the equilibrium equa-
tions and associated with couple stresses. The latter is chosen to be related to the Burgers vector (l = 0.5b) of
the material to give realistic and physical elastic fields. The present discrete Fourier transform method uses
the FFT algorithm and has been adapted to 2D periodic unit cells containing straight wedge disclinations
in isotropic elasticity where defect line is parallel to the third dimension (i.e. x3 axis). The discrete Fourier
transform method is based on differentiation rules up to fourth-order partial derivatives allowing accurate
calculations of stress and couple stress fields in comparison with analytical solutions for single disclina-
tions or associated dipoles. The present theory and FFT implementation may be useful to derive the internal
stress and couple stress fields of grain boundaries seen as DSUM (Disclination Structural Unit Model) [18]
or more generalized defects which may include a combination of stretching and rotation-discontinuities at
the nanoscale. Furthermore, the numerical framework presented in this paper can be easily adapted to elastic
anisotropic materials (see eqs. 58 to 60).
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