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Abstract: Forward modeling of diffraction peaks is a potential way to compare the results of 13 
theoretical mechanical simulations and experimental X-Ray Diffraction data recorded during in situ 14 
experiments. As the input data are the strain or displacement field within a representative volume 15 
of the material containing dislocations, a computer-aided efficient and accurate method to generate 16 
these fields is necessary. With this aim, a current and promising numerical method is based on the 17 
use of the Fast Fourier Transform (FFT) method. However, classic FFT-based methods present some 18 
numerical artifacts due to the Gibbs phenomenon or ‘‘aliasing’’ and to ‘‘voxelization’’ effects. Here, 19 
we propose several improvements: first, a consistent discrete Green operator to remove ‘’aliasing” 20 
effects and second, a method to minimize the voxelization artifacts generated by dislocation loops 21 
inclined with respect to the computational grid. Then we then show the effect of these 22 
improvements on theoretical diffraction peaks. 23 

Keywords: Dislocations; diffraction; FFT-based method; Discrete Green operator; voxelization 24 
artifacts; sub-voxel method; simulated diffraction peaks; scattered Intensity 25 

 26 

1. Introduction 27 

X-Ray diffraction is one of the most powerful non-destructive tools to investigate materials, as 28 
their wavelength is commensurate with the distance between atoms within a crystal [1–9]. Successive 29 
improvements of both the X-Ray sources (from X-Ray tubes to third generation synchrotrons) and 30 
detectors (from photographic plates and gas counters to fast two-dimensional arrays) have led to a 31 
tremendous increase in the quantity of data recorded per unit time, allowing real time in situ or in 32 
operando measurements [10,11]. It is now possible to determine the 3D grain microstructure of a bulk 33 
material with a submicron resolution (using Topo-Tomography), to follow the evolution of the elastic 34 
strain state of the grains of a polycrystal during mechanical tests (3D-XRD, far field diffractometry), 35 
or to measure the distribution of strains within a few grains in real time (2D diffractometry) 36 
[12,13].Such experiments result in terabytes of data recorded within a few days, which need to be 37 
efficiently analyzed. In fact, only a low fraction of those data is actually treated because scientists lack 38 
both time and software for further analysis [14].  39 

The classical techniques used to analyze the 1D or 2D diffraction patterns recorded during tests 40 
performed on polycrystalline specimens such as the Rietveld method, the square sines method to 41 
measure internal stresses, or CMWP fitting for dislocations content often rely on simplified and 42 
mathematically tractable models of a microstructure. Calculations which may involve simplifying 43 
hypothesis lead to a general formula which can be used to fit one or several parameters of the 44 
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microstructure (dislocation densities and type, internal stress tensor…) to the diffraction pattern 45 
(peak profiles, variation of the 2θ_B angle with orientation…) 46 

During the last ten years, several authors proposed the opposite approach: forward modeling 47 
[15–22]. This requires the design of a microstructure and the simulation of its behavior (often under 48 
process or thermo-mechanical solicitation), the computation of the elastic strain field or the 49 
displacement field. The last step is the generation through a ‘virtual diffractometer’ of a theoretical 50 
diffraction pattern (different G vectors and different orientations of the lattice planes), which can be 51 
compared with the experimental one.  Depending on the size of the simulated representative 52 
volume of matter and the experimental conditions such as the X-Ray beam coherence, different 53 
assumptions can be done such as a coherent beam (where the amplitudes scattered by different points 54 
add) or an incoherent beam (scattered intensities add), or for a partially coherent beam where a full 55 
calculation may be necessary. Such modeling can be quite successful and can be used to validate the 56 
different steps involved, mainly the microstructure and the constitutive law used to simulate the 57 
material’s behavior. 58 

However, as diffraction peaks contain information on different scales of a specimen: from 59 
average quantities such as Type I (average) stresses related to the peaks’ positions, Type II (at grain 60 
level) stresses related to its width, and Type III stresses (near the core of defects such as dislocations) 61 
related to the peaks’ tails, a realistic simulation of a diffraction peak requires a description of a 62 
material’s Representative Volume Element with a very fine mesh, i.e. a huge amount of CPU time 63 
with classical methods used for simulations such as the Finite Element Method.  64 

Numerical approaches based on the FFT for calculating the stress and strain fields within a 65 
composite material received a surge of interest since the pioneering work of Moulinec and Suquet 66 
[23,24]. They were first developed to compute effective properties and mechanical field of linear 67 
elastic composites[23–26] and were extended to heterogeneous materials with eigenstrains 68 
(dislocations, thermal strains…) [14,27–30]. They are also used for conductivity problems [31] , non-69 
linear materials [25,27], viscoplastic or elastoviscoplastic polycrystals [32–36]. Today, FFT based 70 
approaches represent alternative to finite element method because they are rather attractive in terms 71 
of computation time [32]. 72 

However initial tests indicate that the displacement field computed (essential for diffraction 73 
pattern generation) with FFT algorithms presents some numerical artifacts. These numerical artifacts 74 
are due to Gibbs phenomenon or ‘‘aliasing’’ and to voxelization. The accuracy of the calculated strain 75 
or displacement field is strongly influenced by these shortcomings and the simulated peaks may 76 
provide wrong information on mechanical behavior or material characteristics. Therefore, it is 77 
important to control these artifacts to simulate correct diffraction pattern in the case of a 78 
microstructure containing different phases, grains, and crystal defects.   79 

The aim of this paper is to improve the accuracy of the displacement field for diffraction peak 80 
generation. This improvement is based on the introduction of a consistent discrete periodized Green 81 
operator associated with the displacement field in order to take explicitly into account the 82 
discreteness of the discrete Fourier Transform method [37]. The improvement of the voxelization in 83 
FFT-method is performed through a sub-voxelization method will be described for inclined 84 
dislocation loops. These improvements are reported and discussed. In the section 2, the FFT-based 85 
method to compute the displacement field in a periodic medium is described.  In section 3, the 86 
treatment of voxelization problems in FFT-based approaches by a sub-voxelization method is 87 
detailed in the case of slip plane not conforming to FFT grid. In the section 4, simulation of diffraction 88 
peaks is reported and discussed. 89 

2. Displacement field  90 

2.1. FFT-based algorithm and mechanical fields  91 

Let us consider a homogeneous elastic medium with eigenstrain assuming a periodic unit cell 92 
discretized in 𝑁 × 𝑁 × 𝑁 voxels and subjected to an uniform overall strain tensor denoted 𝑬. Here, 93 
this overall strain is the spatial average of the strain field in the unit cell (with external loading and a 94 
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given eigenstrain field). The unit cell contains dislocations (line defects) which are modeled with an 95 
eigenstrain tensor. These dislocations create a displacement field during their motion along various 96 
slip systems and thus generates strain/stress field [38]. 97 

The displacement vector is denoted 𝒖  and in the forthcoming equations, 𝒙  denotes any 98 
position vector within the unit cell. All vectorial and tensorial fields will be written using bold 99 
characters. 100 

Starting from the equation for mechanical equilibrium, 𝑑𝑖𝑣 𝝈(𝒙) = 0 , and using elastic 101 
equations, the displacement field is given at every positions by [39]: 102 

                              𝒖(𝒙) = (𝑩 ∗ 𝒄𝟎: 𝛆∗)(𝒙)                                (1) 103 
Where the symbol ∗ denotes the spatial convolution product, 𝒄𝟎 is the homogeneous linear elastic 104 
stiffness,  𝜺∗ is the eigenstrain field and 𝑩 is a third order Green operator defined in Fourier space 105 
as: 106 

                             𝐵𝑖𝑗�̂�(𝝃) =
𝑖

2
(𝐺𝑖�̂�𝜉𝑘 + 𝐺𝑖�̂�𝜉𝑗)                             (2) 107 

in which �̂� is the Fourier transform of 𝑩 and �̂� is the Fourier transform of the elastic Green 108 
tensor [39]. Therefore, using the Fourier transform of spatial convolution product, Equation (1) can 109 
be written in Fourier space as: 110 

                             �̂�(𝛏) =  �̂�(𝛏): 𝐜𝟎: 𝛆∗̂(𝛏)                                 (3) 111 
Several numerical results showed that the use of the third order operator �̂�  derived from the 112 

classic Green �̂� leads to spurious oscillations on the computed displacement field near materials 113 
discontinuities. The Discrete Fourier transform (DFT) used in this algorithm indeed transforms a 114 
periodic function in real space into a periodic function in reciprocal space. However, the operator �̂� 115 
commonly used is the continuous analytic operator truncated to the size of the unit cell of the 116 
reciprocal space: it is not periodic function. To fix this problem, we a periodized consistent discrete 117 

Green operator using the DFT. The Fourier transform of this new operator 𝑩′̂ is written as function 118 
of �̂� (the mathematical details about its derivation are given in [37]) and reads: 119 

�̂�′(𝜉𝑖𝑗𝑘) = 𝐴𝑖𝑗𝑘 ∑
(−1)𝑚+𝑛+𝑝

(𝑚𝑁 + 𝑖)

+∞

𝑚,𝑛,𝑝=−∞

1

(𝑛𝑁 + 𝑗)

1

(𝑝𝑁 + 𝑘)
�̂�(𝜉𝑚𝑁+𝑖,𝑛𝑁+𝑗,𝑝𝑁+𝑘)  120 

             With     𝐴𝑖𝑗𝑘 = (
𝑁

𝜋
)

3

𝑠𝑖𝑛 (
𝑖𝜋

𝑁
) 𝑠𝑖𝑛 (

𝑗𝜋

𝑁
) 𝑠𝑖𝑛 (

𝑘𝜋

𝑁
)                              (4) 121 

Discrete frequency appearing in this equation is given when N is even by (T is the unit cell period): 122 
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Here the sum on the �̂� operator is extended to the whole reciprocal space (in practice for 𝑚, 𝑛, 𝑝 124 
up to a few tens) and folded up onto the unit cell of the DFT with suitable coefficients. The inverse 125 
transform of �̂�(𝝃) gives the displacement field at the center of each voxel. 126 

We can also compute the displacement field at each voxel’s corner with a shifted operator using the 127 

shift theorem:  128 

𝑩′̂′(𝜉𝑖𝑗𝑘) = 𝐴𝑖𝑗𝑘𝑒𝑝𝜋
𝒊+𝒋+𝒌

𝑁 ∑
1

(𝑚𝑁 + 𝑖)

+∞

𝑚,𝑛,𝑝=−∞

1

(𝑛𝑁 + 𝑗)

1

(𝑝𝑁 + 𝑘)
�̂�(𝜉𝑚𝑁+𝑖,𝑛𝑁+𝑗,𝑝𝑁+𝑘)           (5) 129 

2.2. Numerical examples 130 

Let us consider a homogeneous material with isotropic elastic constant: Young’s modulus 𝐸 =131 
333.4 𝐺𝑃𝑎  and the Poisson ration 𝜗 = 0.26 . This approximately corresponds to the room 132 
temperature elastic constants of single crystalline Ni-based Superalloys. The unit cell (Figure 1a) is 133 
discretized in 128 × 128 × 128  voxels and contains a square-shaped inclusion discretized in 134 
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32 × 32 × 1 voxels corresponding to an Eshelby-like square prismatic loop perpendicular to the z-135 
axis. In order to generate a shift of the upper surface of the inclusion relative to its lower surface by a 136 
Burgers vector 𝒃(0, 0, 𝑏3) the voxels within the inclusion are submitted to an eigenstrain: 𝜺𝑖𝑗

∗ = 0  137 

except  𝜺33
∗ = 1 .  We thus have 𝑏3 = 𝑡 × 𝜺33

∗  where 𝑡  the thickness of the inclusion in the z-138 
direction (i.e. the voxel size). This displacement field computed with the FFT algorithm using the 139 
different periodized discrete Green operators is represented along z-axis in figure 1.  140 

 141 

  142 

Figure 1: (a) Simulation of a squared dislocation in plane (001) by a platelet with eigenstrain; (b) 143 
Component 𝑢3 of the displacement field (normalized by 𝑏3) along the z axis (arrow) computed with 144 
the Green operator 𝑩 and showing oscillations; (c) Same component correct 𝑢3 computed with 𝑩′ 145 
The displacement at voxel (64,64,64) is zero in the center of the inclusion (c) and 𝑏3 2⁄  on its surface 146 
(c). (d) Same component correct 𝑢3 computed with 𝑩′′. 147 

When computed along a line crossing a dislocation loop, the displacement field exhibits a 148 
discontinuity with a jump equal to Burgers vector 𝒃. This is indeed observed in figure 1. However, 149 
the displacement field computed with the usual Green operator 𝑩 (figure 1b) also shows oscillations, 150 
while which are not observed with the periodized operators 𝑩′ and 𝑩′′. An artificial damping of the 151 
oscillations in figure 1b (such as a low pass filtering) might smooth these oscillations, but it would 152 
also smooth the discontinuity.  153 

2.3. Voxelization effect on the displacement field. 154 

While the displacement field computed for dislocation loops having their planes parallel to the 155 
faces of the simulated volume, artifacts appear for inclined loops, as shown in figure 2 for a 156 
dislocation loop with a [01̅1]  Burgers vector lying in a (111)  slip plane of a fcc crystal. The 157 
eigenstrain tensor is constrained in the region occupied by the dislocation loop (transformed voxels) 158 
and is given by: 159 
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                          𝜀𝑖𝑗
∗ =

𝐴𝑠

2𝑉
(𝑛𝑖𝑏𝑗 + 𝑛𝑗𝑏𝑖)                                         (6) 160 

where 𝐴𝑠 is the area on which planes with normal 𝒏(𝑛1,𝑛2, 𝑛3) has slipped by a relative amount 161 

𝒃(𝑏1,𝑏2, 𝑏3) and 𝑉 is the volume occupied by the loop [40,41]. As before, the dislocation loop is 32 162 
voxels wide in the x and y directions, and 1 voxel thick but now with a z position such that 𝑥 + 𝑦 +163 
𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. The displacement has been computed at the center of voxels with the periodized 164 
operator 𝑩′ along z (figure 2b). As in figure 1c, the displacement in the center of a voxel belonging 165 
to the loop plane (black dot in the reddish transformed voxel in figure 2b) is zero. The displacement 166 
in the first neighboring voxels (red dot in figure 2b) are shifted relative to the expected position, so 167 
that the displacement difference between these voxels is significantly lower than b, see figure 2c. It 168 
can be checked in figure 2b that each of these voxels shares three faces with a transformed voxel. A 169 
more detailed analysis shows that the second neighbors (which share three edges with transformed 170 
voxels) are also slightly shifted in the opposite direction. The result is shown in figure 2d with: a 171 
strong localized oscillation of the phase (taken here as the displacement modulo b). 172 

Although the amplitude of this shift is small (less than 10% of the Burgers vector) it has 173 
unwanted consequences on the diffraction peak simulation: 174 
• The dislocation loops are surrounded by four impaired layers of voxels: As the scattered X-Ray 175 

amplitude is proportional to the Fourier transform of G∙u (see equation (8) in section 4) we can 176 
expect a phantom streak in the intensity in a direction perpendicular to the loop plane. 177 

• The displacement field near the edges of the loop (near the dislocation line) will be quite different 178 
from its expected value, and the strain field will not vary with the distance 𝑟 to the dislocation 179 
line as 1 𝑟⁄  . This will strongly affect the tails of the diffraction peaks 180 

181 

  182 

Figure 2. (a) Modeling of a squared dislocation loop in a (111) plane as a layer of voxels with 183 
eigenstrain; (b) position of the computed points relative to the transformed voxels with eigenstrains; 184 
(c) Plot of the displacement field 𝑢3 (normalized by 𝑏3) along the z direction for dislocation loop 185 
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illustrated on figure 2. (d) Local oscillation of the phase due to the voxelization of the dislocation loop 186 
(the representation is made for 32 voxels centered in the unit cell along z direction). The red line is 187 
approximately equal to the phase expected for this displacement field. 188 

3. Sub-voxelization method to correct voxelization effects. 189 

3.1. Sub-voxelization method 190 

The (conceptually) simplest way to remove this voxelization artifact would be to work on a 191 
multiple grid (to multiply the number of voxels along each direction by 2, 4, or more), then to 192 
downsample the displacement field data. In that case, FFT algorithms would lose much of their 193 
interest due to these more demanding computational efforts. We show below that this can be done 194 
in a more economical way by applying a patch to the FFT-computed displacement field. The basic 195 
method is to compute on the same grid the difference vector: 196 

                    ∆𝑖(𝒙) = 𝑢𝑖
𝑠𝑢𝑏(𝒙) − 𝑢𝑖

ℎ𝑜𝑚(𝒙)                                          (7) 197 

where 𝑢𝑖
𝑠𝑢𝑏(𝒙)  is the displacement vector calculated for voxels where this eigenstrain is 198 

concentrated on a single plane of sub voxels (figure 3b) and 𝑢𝑖
ℎ𝑜𝑚 the displacement field in direction 199 

i of voxels with a uniform eigenstrain (figure 3a). For the sake of clarity, we use 2D diagrams in Figure 200 
3, but here the technique is applied to real 3D problems. 201 

Figure 3. 2D representation of a dislocation loop in a tilted plane on a (8 × 8) FFT grid. (a) With a 202 
homogeneous eigenstrain in the voxels occupied by the dislocation loop. (b) With each voxel 203 
subdivided into 4*4 sub-voxels, only 4 of which are eigenstrained. 204 

In order to compute the displacement due to sub-voxels, we use a 𝑁 × 𝑁 (𝑁 × 𝑁 × 𝑁) grid for 205 
2D (resp. 3D) problems where each voxel can be subdivided into 𝑛 × 𝑛 (𝑛 × 𝑛 × 𝑛) sub voxels. Only 206 
n (𝑛 × 𝑛) sub voxels are submitted to an eigenstrain field. At a point 𝑨 of the grid (black dots, figure 207 

4a), we need to compute the sum of the displacements 𝒖𝒊
𝒋
 due to the n (𝑛 × 𝑛) sub voxels j (center 208 

𝑩𝒋) within a voxel centered at point 𝑶. This sum is equivalent to the sum of the displacements due 209 

to a strained sub voxel at point 𝑶 on the grid points 𝑨𝒋 such as 𝑶𝑨𝒋= 𝑩𝒋𝑨 (figure 4b). It is also 210 

equivalent to the sum of the displacements 𝒖′𝒊
𝒋
 due to a full voxel at point 𝑶 on the initial grid on 211 

points 𝑨′𝒋 such as 𝑶𝑨′𝒋= 𝑛𝑩𝒋𝑨 (figure 4c). The only difference between these last two sums is due to 212 

the long-range strain field, and approximately results in a linear drift of the displacement. As the end 213 
of the vectors 𝑶𝑨′𝒋 does not lie on the grid points (voxel centers) but on the corners of the voxels, the 214 

𝒖′𝒊
𝒋
 displacements must be calculated with the shifted operator 𝑩′′ (equation (5)). A last point is the 215 

scaling of the 𝒖𝒊
𝒋
 and 𝒖′𝒊

𝒋
 sums during the operations of figure 4. To keep the one Burgers vector 216 

jump between both sides of the sub voxels plane in Figure 4a, the eigenstrain in the sub voxels must 217 
be multiplied by n. The backwards change of scale requires a division by n: there is no scaling factor 218 

between 𝑢𝑖
ℎ𝑜𝑚 and 𝑢𝑖

𝑠𝑢𝑏 = ∑ 𝑢′𝑖
𝑗. 219 

a b 
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  220 

Figure 4. (a). 2D representation of the computational grid. Black dots correspond to the voxels center. 221 
A voxel with center O is discretized in 4 × 4 in 2D (4 × 4 × 4 in 3D) sub-voxels. Some sub-voxels 222 
contain an eigenstrain (red sub-voxels). We want to compute the displacement field at voxel centered 223 
at point A, due to these deformed sub-voxels centered at 𝐵𝑗 . (b) Effect of one deformed sub-voxel 224 
centered at O on a row of sub-voxels centered at 𝐵𝑗  such as 𝑶𝑨𝒋= 𝑩𝒋𝑨. The sum of these effects is 225 
equal to the previous displacement field. (c) Effect of deformed voxels centered at O on a row of voxels 226 
(computed at corners 𝑨′𝒋  using Green operator 𝑩′′ ) such as 𝑶𝑨′𝒋 =  𝑛𝑩𝒋𝑨 . This sum is equal to 227 

previous wanted sum. 228 

We need to compute ∆𝑖𝑗_𝑝𝑙(𝒙) the difference in displacement in direction i due to a voxel which 229 

belongs to the plane “pl” (for fcc ‘’pl’’ is equal to (111), (1̅11), (11̅1), (111̅) ) of a dislocation loop 230 
with a Burgers vector j at a position x relative to the transformed voxel. In practice, in a material with 231 
cubic symmetry, it is sufficient to compute ∆13_(111)(𝒙) and ∆33_(111)(𝒙), and to use the symmetries 232 

of the cube (fourfold [001] axis, threefold [111] axis, and (11̅0)  symmetry plane) (and suitable 233 
exchanges of the components of 𝒙) to obtain the required components. As it can be seen in figure 2b, 234 

∆𝑖𝑗_𝑝𝑙(𝒙) is non-zero only for the neighbors of the transformed voxel, except the drift due to the long 235 

range strain alluded above. The final recipe to compute ∆𝑖𝑗_𝑝𝑙(𝒙) and use the patch becomes: 236 

• Compute the field 𝒄𝟎: 𝛆∗   defined in equation (1) for an isolated voxel with the eigenstrain 237 
associated to a dislocation loop (equation (6)) with a Burgers vector [001] in a (111) plane (see 238 
figure 2). 239 

• Compute the displacement field in directions x(𝒖𝟏
𝒉𝒐𝒎) and z (𝒖𝟑

𝒉𝒐𝒎) at the voxels’ center around 240 
the transformed voxel by convolution with the discrete periodized operator 𝑩′ (equation (4)) 241 

• Compute the displacement field in directions x and z at the voxels’ corners around the 242 
transformed voxel by convolution with the shifted operator 𝑩′′ (equation (5)) 243 

• Calculate the 𝒖𝟏
𝒔𝒖𝒃 = ∑ 𝒖′𝟏

𝒋
 and 𝒖𝟑

𝒔𝒖𝒃 = ∑ 𝒖′𝟑
𝒋
 sums (𝑛 × 𝑛 terms for each sum) as in figure 4c, 244 

then the raw ∆13(111)(𝒙) and  ∆33_(111)(𝒙) for (𝑥1, 𝑥2, 𝑥3) going from -3 to 3 times the voxel size 245 

t. 246 
• Use the farthest voxels to correct the drift of the components so that all terms for large 𝒙 are 247 

zero, and keep only the terms for the first three neighbors non zero. . 248 
The patch can then be applied on the raw (FFT-based) displacement field by adding the 249 

convolution of all transformed voxels of the different slip systems by the relevant ∆𝑖𝑗_𝑝𝑙(𝒙). 250 

 

 

   

a b c 
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3.2. Results 251 

For tests, we used the same 128 × 128 × 128  grid as above, and the transformed voxel was 252 
divided into 8*8*8 sub voxels (using a reference medium with the same elastic constants as before). 253 
Only the final values in units of b (after drift correction) of ∆13_(111)(𝒙) and  ∆33_(111)(𝒙) are used 254 

and others components are obtain by symmetries (Appendix A). 255 

  256 

Figure 5. (a) Plot of the displacement field 𝑢3 (normalized by 𝑏3) along the z direction for dislocation 257 
loop illustrated on figure2. Artifacts are removed by sub-voxel method described above. (b) the phase 258 
(i.e. the displacement modulo a Burgers vector). With this correction, the phase is almost continuous. 259 

The patch was used on the same configuration as in figure2. Figure 5a shows the resulting 260 
displacement field and figure 5b the phase (i.e. the displacement modulo a Burgers vector) in Burgers 261 
vector units. As it can be observed from figure 5a, the artifacts of the displacement field have 262 
disappeared. In addition, the resulting phase varies smoothly even during the crossing of the 263 
dislocation loop, see figure 5b. 264 

4. Application on diffraction peak simulation 265 

In this section, we show simulated diffraction peaks in order to point the effects of voxelization 266 
artifacts and of the patch on numerical results. Under kinematical conditions and assuming a 267 
coherent beam, the amplitude of a diffracted wave at a position 𝒒 in the vicinity of a reciprocal 𝑮 268 
lattice vector is  [14,18,42–44]: 269 

             𝐴(𝒒) = 𝐹𝑇[𝐴0(𝒓) × 𝐹(𝑮, 𝒙) × 𝑒𝑥𝑝 (−2𝑖𝜋 𝑮 ∙ 𝒖(𝒙))]                            (8) 270 

where 𝒙 is the position of the scattering atom, 𝐴0(𝒙) is the amplitude of the incidence wave, 𝐹(𝑮, 𝒙) 271 
is the local structure factor and 𝒖(𝒙) the displacement field. The scattered intensity is 𝐼(𝒒)= |𝐴(𝒒)|2. 272 
For a face-centered cubic crystal, this intensity is non zero when G (h, k, l) is such as h, k, and l have 273 
the same parity. Here two diffraction vectors G (200) and G (002) are used. They respectively 274 
correspond to G∙b = 0 and G∙b = 1. The 3D diffracted intensity has been calculated using the FFT 275 
instead of the continuous Fourier Transform, then summed in the planes perpendicular to the G 276 
vector to obtain a linear plot along G equivalent to a I(2θ) plot. In figures 6a (G (200)) and 6c (G(002)), 277 
we show the diffracted intensity (logarithmic scale) as a function of the pixel position 𝑖, and in figures 278 
6b and 6d a logarithmic/logarithmic plot of the intensity vs. |𝑖 − 𝑖0| where 𝑖0 is the center of the 279 
peak. In order to only study the effect of the displacement fields, we set A0(𝒙) = 1 and F(𝐆, 𝒙) = 1 280 
for these simulations. 281 
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Figure 6. Simulated diffracted intensity as a function of the pixel position (logarithmic scale) . 3D 284 
configuration is represented in 1D plot by making sum in each plane along an x-axis. Different way 285 
for computing the displacement fields are studied for a dislocation loop with a [01̅1] Burgers vector 286 
lying in a (111) slip plane . (a) Diffracted vector studied is G (200) corresponding to G∙b = 0. (b) 287 
log/log representation of the intensity vs. |𝑖 − 𝑖0| . (c) and (d) Same as (a) et (b) but the studied 288 
diffracted vector is G (002). 289 

The peak shape near the top of the peaks is the same for both computing methods. It is perfectly 290 
symmetric in the G∙b = 0 case and exhibits a bump on the right side for G∙b = 1. Their long-range 291 
behavior is however quite different. When the displacement field has been calculated with the usual 292 
truncated operator (black line), a phantom peak is observed at large |𝑖 − 𝑖0| (at large q), which is due 293 
to the short period oscillations near the displacement field discontinuity (Figure 1a). The behavior of 294 
the peak calculated with the modified Green operator (blue curve) is only slightly better: the intensity 295 
at large q is underestimated in one case and overestimated in the other. When the intensity has been 296 
calculated with the sub voxel patch (red curve) the long range intensity follows the expected 297 
𝐼0|𝑖 − 𝑖0|−3  law [45,46]: the peak tails are indeed related to the highly distorted zones near the 298 
dislocations’ cores. However, the red curve saturates at very large q. We suppose this is due to the 299 
use of the Fast Fourier Transform instead of the continuous Fourier Transform in the calculation of 300 
the scattered amplitude (equation (8)): The plot of figure 6 represents only one period in Fourier 301 
space, and is repeated over and over on all Fourier space. We can now calculate the intensity of the 302 
tails of these repetitions:  303 

                           𝐼𝑛𝑒𝑖𝑏. = ∑ 𝐼0|𝑖 − 𝑖0 − 128𝑚|−3                             (9) 304 
where m varies from -5 to 5 (zero excluded). We obtain the pink curve at the bottom of figures 5a and 305 
5c. If we now plot the difference between the red intensity curve and this pink background line, we 306 
obtain the green curve. On the log./log. plots, figure 6b and 6d it can be checked that this curve follows 307 
the 𝐼0|𝑖 − 𝑖0|−3 law to the end. Thus, the residual error in the intensity computed by FFT results of 308 
the FFT itself, and not from a residual error on the sub voxel corrected displacement field. If the 309 
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number of voxels is increased to 5123 or 10243 while keeping the physical size of the Representative 310 
Volume constant this residual error should fall down to undetectable levels. 311 

5. Conclusions 312 

In this paper, we showed that although the use of a periodized Green operator in the FFT-based 313 
method improves the final displacement field solution in a Representative Volume containing 314 
discontinuities (dislocation loops), artifacts due to the voxelization of the dislocation loop planes are 315 
still present with respect to analytical solutions. These artifacts have unwanted consequences on the 316 
tails of diffraction peaks simulated by using this displacement field as input data. 317 

We have introduced a patch which corrects these artifacts by simulating the displacement field 318 
which would be obtained with a much finer voxelization without need to do the computations on a 319 
finer grid. A simple construction method for this patch has been given and the patch can be used in 320 
a single post-processing step to modify the initial FFT-based displacement field. 321 

The modified displacement field has been used to simulate one-dimensional diffraction peaks. 322 
The procedure strongly improves the shape of the peaks’ tails, i.e. it gives a good description of the 323 
displacement field near the dislocation lines.  324 
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Appendix A 335 

∆𝟑𝟑_(𝟏𝟏𝟏)(𝒙𝟏, 𝒙𝟐, 𝒙𝟑) and ∆𝟏𝟑_(𝟏𝟏𝟏)(𝒙𝟏, 𝒙𝟐, 𝒙𝟑) have these symmetries due to the permutation 336 

properties of the plan (𝟏𝟏𝟏) 337 

∆33_(111)(𝑥1, 𝑥2, 𝑥3) = ∆33_(111)(𝑥2, 𝑥1, 𝑥3) 338 

                          ∆33_(111)(𝑥1, 𝑥2, 𝑥3) = −∆33_(111)(−𝑥1, −𝑥2, −𝑥3) 339 

                          ∆13_(111)(𝑥1, 𝑥2, 𝑥3) = −∆13_(111)(−𝑥1, −𝑥2, −𝑥3) 340 

The others values of ∆𝑖𝑗_(111)(𝒙) are given as function of ∆33_(111)(𝑥1, 𝑥2, 𝑥3) and ∆13_(111)(𝑥1, 𝑥2, 𝑥3): 341 

∆11_(111)(𝑥1, 𝑥2, 𝑥3) = ∆33_(111)(𝑥3, 𝑥2, 𝑥1)    ∆12_(111)(𝑥1, 𝑥2, 𝑥3) = ∆13_(111)(𝑥1, 𝑥3, 𝑥3)     342 

∆22_(111)(𝑥1, 𝑥2, 𝑥3) = ∆33_(111)(𝑥1, 𝑥3, 𝑥2)    ∆31_(111)(𝑥1, 𝑥2, 𝑥3) = ∆13_(111)(𝑥3, 𝑥2, 𝑥1)   343 

∆32_(111)(𝑥1, 𝑥2, 𝑥3) = ∆13_(111)(𝑥3, 𝑥1, 𝑥2)    ∆21_(111)(𝑥1, 𝑥2, 𝑥3) = ∆13_(111)(𝑥1, 𝑥3, 𝑥2)     344 

∆23_(111)(𝑥1, 𝑥2, 𝑥3) = ∆13_(111)(𝑥2, 𝑥1, 𝑥3)     345 

The value of ∆33(𝑥1, 𝑥2, 𝑥3)  and ∆13(𝑥1, 𝑥2, 𝑥3)  for the remaining plane (1̅11), (11̅1), (111̅)  are 346 
obtained using these symmetries: 347 

∆33_(1̅11)(𝑥1, 𝑥2, 𝑥3) = ∆33_(111)(𝑥2, −𝑥1, 𝑥3)            ∆13_(1̅11)(𝑥1, 𝑥2, 𝑥3) = ∆13_(111)(−𝑥1, 𝑥2, 𝑥3)  348 

∆33_(11̅1)(𝑥1, 𝑥2, 𝑥3) = ∆33_(111)(−𝑥2, 𝑥1, 𝑥3)            ∆13_(11̅1)(𝑥1, 𝑥2, 𝑥3) = ∆13_(111)(𝑥1, −𝑥2, 𝑥3)  349 

∆33_(111̅)(𝑥1, 𝑥2, 𝑥3) = −∆33_(111)(𝑥2, 𝑥1, −𝑥3)          ∆13_(111̅)(𝑥1, 𝑥2, 𝑥3) = −∆13_(111)(𝑥1, 𝑥2, −𝑥3)  350 
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