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Abstract: Viruses evolve in the background of host immune systems that exert selective pressure
and drive viral evolutionary trajectories. This interaction leads to different evolutionary patterns
in antigenic space. Examples observed in nature include the effectively one-dimensional escape
characteristic of influenza A and the prolonged coexistence of lineages in influenza B. Here, we use
an evolutionary model for viruses in the presence of immune host systems with finite memory to
obtain a phase diagram of evolutionary patterns in a two-dimensional antigenic space. We find
that, for small effective mutation rates and mutation jump ranges, a single lineage is the only stable
solution. Large effective mutation rates combined with large mutational jumps in antigenic space
lead to multiple stably co-existing lineages over prolonged evolutionary periods. These results
combined with observations from data constrain the parameter regimes for the adaptation of viruses,
including influenza.

Keywords: co-evolution, viral-immune dynamics, stochastic modeling

1. Introduction

Different viruses exhibit diverse modes of evolution [1–4], from relatively slowly evolving viruses
that show stable strains over many host generations such as measles [5], to co-existing serotypes
or strains such as noroviruses [6] or influenza B [7,8], and quickly mutating linear strains such as
most known variants of influenza A [9]. Despite the different patterns of evolutionary phylogenies
and population diversity, all viruses share the common feature that they co-evolve with their hosts’
immune systems. The effects of the co-evolution depend on the mutation timescales of the viruses and
the immune systems, the ratio of which varies for different viruses. However, in the simplest setting,
the population of hosts exerts a selective pressure on the viral population, resulting in the evolution
of the viral population towards more distant areas of antigenic space from the host population.
Here, we explore this mutual dynamics in a model of viruses that evolve in the background of host
immune systems. While several previous studies of pathogen-immune dynamics have focused on
specific systems [2,4,5,8,10–16], here we study generic evolutionary patterns [3,17]. Specifically, we are
interested in how the host immune cross-reactivity and memory control the patterns of viral diversity.

These evolutionary processes lead to joint dynamics that has often been modeled by so-called
Susceptible-Infected-Recovered (SIR) approaches to describe the host population [18,19], possibly
coupled with a mutating viral population. In their simplest form, these models have successfully
explained and predicted the temporal and historical patterns of infections, such as measles [5], where
there are little mutations, or dengue, where enhancement between a small number of strains can lead
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to complex dynamics [20]. These methods have been important in helping develop vaccination and
public health policies.

Apart from a large interest in the epidemiology of viruses [10], a large extension of SIR models
has also tackled questions on the role of complete and partial cross-coverage, and how that explains
infection patterns for different viruses [2,11], the role of spatial structure on infections [8], as well as
antigenic sin [12,21]. Most of these questions were asked with the goal of explaining infection and
evolutionary patterns of specific viruses, such as dengue [11,12], influenza [4,13–15] or Zika [16]. Here,
we take a more abstract approach, aimed at understanding the role of immunological cross-reactivity
and mutation distance in controlling the evolutionary patterns of diversity.

At the same time, the wealth of samples collected over the years, aided by sequencing technologies,
has allowed for data analysis of real evolutionary histories for many types of viruses. One of the
emerging results is the relatively low dimensionality of antigenic space—an effective phenotypic
space that recapitulates the impact of host immune systems on viral evolution. Antigenic mapping,
which provides a methodology for a dimensionality reduction of data [9] based on phenotypic titer
experiments, such as Hemaglutanin Inhibition (HI) assays for influenza [22], has shown that antigenic
space is often effectively low-dimensional. For example, influenza A evolution is centered on a
relatively straight line in antigenic space [15]. This form suggests that at a given time influenza A
strains form a quasispecies of limited diversity in antigenic space, with escape mutations driven by
antigenic pressure moving its center of mass [3,8,17].

We focus on a simplified model of viral evolution in a finite-dimensional space that delineates
evolutionary patterns with different complexity of coexisting lineages. Recent models of these
dynamics have focused only on the linear evolutionary regime relevant of influenza A [8] or have used
an infinite-dimensional representation of antigenic space [3]. Here, we also model immune memory in
more detail, while keeping a simplified infection dynamics with a small number of model parameters.
Unlike in previous approaches, we assume a finite memory timescale. While our treatment does not
account for many features of host-immune dynamics (as discussed in Sections 2 and 4), it offers a
stepping stone to future more in-depth analysis of the role of host repertoires.

Our analysis is motivated by different evolutionary trends observed in influenza: the single strain
of influenza A compared to the two stably co-existing lineages of influenza B. Using these observations
as a starting point, we study a generic model which assumes that immune receptors can recognize and
remember several viruses, additionally to virus mutation and immune-driven selection and we show
that these elements are sufficient to obtain specific evolutionary patterns. This model is stripped of
many of the details that are undoubtably important for the specific case of influenza, such as seasonal
variability, geographic and temporal niches, cross-infections between species, etc. However, thanks to
its generality, our model shows that the different evolutionary trends can be obtained without calling
upon niches or subpopulations, and it can be generalized to a range of fast-evolving viruses that cause
acute, single species host infections. Our goal is not to model the evolution of any specific virus but to
identify the conditions under which different evolutionary trends emerge.

2. Methods

2.1. The Model

We implement a stochastic agent based simulation scheme to describe viral evolution in the
background of host immune systems. Its main ingredients are sketched in Figure 1. We fix the
number of hosts to describe a large reservoir N = 107 and do not consider host birth–death dynamics.
The number of hosts is chosen to be large, since we are not considering the possibility of extinction of
the host reservoir. Hosts can get infected by a given viral strain if they are not already infected by it
(equivalently to susceptible individuals in SIR models) in a way that the infection probability depends
on the hosts’ infection history. Hosts are defined by the set of immune receptors they carry.
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We work in a two-dimensional, antigenic space, where each viral strain and each immune receptor
in every host is a point in a 2D phenotypic space. This phenotypic space is motivated both by antigenic
maps [9] and shape space used in immunology to describe the effective distance between immune
receptors and antigen [23–29]. The recognition probability of viruses by immune receptors is encoded
in a cross-reactivity kernel f (r) that depends on the distance between the virus and the receptor in
this effective 2D space. We take f (r) = e−r/d to be an exponential function with parameter d that
determines the cross-reactivity—the width of immune coverage given by a specific receptor [14].
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Figure 1. Phenotypic space and key ingredients of the evolutionary model. During an infection,
a virus attempts to infect on average R0 hosts, however not all infections are successful. The immune
repertories of some hosts can clear the virus (case of host 3) since their cross-reactivity kernels
from existing memory receptors confer protection. However, if the host does not have protection
against the infecting virus (case of host 2), the host becomes infected. After the infection, this host
acquires immunity against the infecting virus. Since the virus can mutate within a given host (host 1),
the infecting virus can be a mutated variant (case of host 2) with probability Pmut = 1− e−µtI and the
ancestral strain that infected host 1 with rate 1− Pmut = e−µtI (case of host 3). The cross-reactivity
kernel is taken to be an exponential function f (r) = exp(− r

d ), meaning that viruses are recognized
by receptors if they are closer in phenotypic space. Jumps are in a random direction and their size is
distributed according to a Gamma distribution of mean σ and shape parameter 2. The dimensionless
raio σ/d controls the ability of viruses to escape immunity. We assume no selection within one host.

All hosts start off with naive immune systems, implemented as a uniformly zero immune coverage
in phenotypic space. If a host is infected by a virus, after the infection, a new immune receptor is
added to the host repertoire with a phenotypic position equivalent to the position of the infecting viral
strain. Hosts have finite memory and the size of the memory pool of each host immune system M
determines the maximum number of receptors in a host repertoire, corresponding to the last M viral
strains that infected that host. This constraint can also be seen as the amount of resources that can be
allocated to protect the host against that particular virus. In this work we set M=5.

A new infection lasts a fixed time of tI = 3 days before the infected host tries to infect a certain
number of new hosts (among those that are not already infected), drawn from a Poisson distribution
with average R0. The timescale of three days is motivated by the fact that an acute infection typically
lasts about a week, but transmission usually occurs early on during the infection. At this time, the
infection in the initial host is cleared and a memory immune receptor is added to its repertoire as
explained above. During an infection, a virus can mutate in the host with a rate µ. Since we concentrate
on the low mutation limit, µtI � 1, we limit the number of per-host mutations to at most one.
Following [8,17], a mutation in a virus with phenotype a produces a mutant with phenotype b with
probability density ρ(a → b) = (1/2π)(4rab/σ2)e−2rab/σ (Gamma distribution with shape factor 2),
where rab is the Euclidean distance between a and b, so that the average mutation effect is σ. As a
result, the newly infected individual can be infected with the same (“wild-type”) virus that infected
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the previous individual with Poisson rate e−µtI , or by a mutant virus with probability Pmut = 1− e−µtI

for each infection event.
Not all transmission attempts lead to an infection. When a virus attempts to infect a host,

an infection takes place with probability f (r), where f is the cross-reactivity kernel defined above and
r is the distance in the 2D phenotypic space between the infecting viral strain and the closest receptor
in the host repertoire. If the host repertoire is empty, the infection takes place with probability one.
The viral mutation jump size and the cross-reactivity kernel set two length scales in the phenotypic
space, σ and d (Figure 1). Their dimensionless ratio σ/d is one of the relevant parameters of the
problem. In this work, we kept d fixed and then varied σ to explore their ratio. We do not explicitly
consider competition between immune receptors within hosts, or complex in-host dynamics.

Table 1 summarizes the variables used in the model and the main equations.

Table 1. List of definitions of the model parameters and relevant equations, described in detail in
the text.

Model Variables and Equations

number of hosts N
maximum number of receptors per host M

transmission time tI
cross-reactivity width d

average mutation effect σ
mutation rate µ

target fraction of infected hosts f̄i
probability of infection after exposure to the virus p f

cross-reactivity kernel f (r) = exp(− r
d )

jump size distribution ρ(a→ b) = (1/2π)(4rab/σ2)e−2rab/σ

probability of transmitting a mutated virus Pmut = 1− e−µtI

average attempted transmissions per infection R0 = 1
〈p f 〉 +

f̄i− fi

f̄i

2.2. Initial Conditions and Parameter Fine-Tuning

We simulate several cycles of infection and recovery, keeping track of the phenotypic evolution of
viruses and immune receptors throughout time by recording the set of points describing viruses and
receptors in phenotypic space at each time, as well as what immune receptors correspond to each host.
Once every 360 days, we save a snapshot with the coordinates of all the circulating viruses. In addition,
we save the phylogenetic tree of a subsample of the viruses.

In order to quickly reach a regime of co-evolution with a single viral lineage tracked by immune
systems, we set initial conditions so that the viral population is slightly ahead of the population of
immune memories. Details of the initial conditions are given in Appendix A.1).

Viruses can survive for a long time only because of an emergent feedback phenomenon that
stabilizes the viral population when R0 is fixed, as explained in Section 3.2. Even with that feedback,
R0 needs to be fined-tuned to obtain stable simulations. With poorly tuned parameters, viruses go
extinct very quickly after an endemic phase, as also noted in [8]. The detailed procedure for setting R0

is described in Appendix A.2. Roughly speaking, R0 needs to be chosen so that the average effective
number of infected people at each transmission event is equal to 1, or R0 p f = 1, where p f is the
average probability that each exposure leads to an infection. We further require that the fraction of
infected hosts tends towards a target value, f̃i, which acts as an additional parameter in our model.
To do this, R0 is first adaptively adjusted at each time as:

R0 =
1
〈p f 〉

+
f̄i − fi

f̄i
, (1)
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where 〈p f 〉 is averaged over the past 1000 transmission events, and fi the current fraction of infected
hosts. After that first equilibration stage, R0 is frozen to its last value. Despite the explicit feedback
(∝ f̄i − fi) being removed, the population size is stabilized by the emergent feedback. As a result,
the virus population is stable for long times for a wide range of parameter choices (see Section 3.2).

To have more control over our evolution experiment, we also analyze a variant of the model
where we keep constraining the viral population size, constantly adjusting R0 using Equation (1)
for the whole duration of the simulation (100 years). In this way, the fraction of infected hosts fi is
stabilized around the average f̄i.

Simulations were analyzed by grouping viral strains into lineages using a standard clustering
algorithm, as described in Appendix C.1. The traces in each lineage were analyzed to evaluate their
speed and variance in phenotypic space, as well as their angular persistence time (see Appendix C.2
for details). We built phylogenetic trees from subsamples of strains as detailed in Appendix C.3.

2.3. Detailed Mutation Model

We also considered a detailed in-host mutation model, in which we explicitly calculate the
probability of producing a new mutant within a host. We present this model in detail in Appendix B
for the case where only one mutant reaches a high frequency during the infection time and we compare
the results of this model to the simplified fixed mutation rate model described above.

The general idea is that we consider a population of viruses that replicate with rate α and mutate
with rate µ resulting in a non-homogeneous Poisson mutation rate µeαt. The replication rate is the
same for all mutants, i.e., there is no selection within one host and the relative fraction of the mutants
depends only on the time at which the corresponding mutation arose.

For the case when only one mutation impacts the ancestral strain frequency, we simply calculate
the time of the mutation event and use it to find the probability that an invader mutant reaches a
certain frequency at the end of the infection. We then randomly sample the ancestral or mutant strain
according to their relative frequencies at the end of the infection to decide which one infects the
next host.

3. Results

3.1. Modes of Antigenic Evolution

Typical trajectories in phenotypic space show different patterns depending on the model
parameters. In the following, we describe a ballistic (Figure 2A(i–iii)), a diffusive (Figure 2B(i–iii)),
a transient splitting (Figure 2C(i–iii)), and a stable splitting (Figure 2D(i–iii)) regime and delineate the
corresponding regions of the µ− σ parameter space. Here, we present these four regimes and show
sample evolutionary trajectories and corresponding phylogenic trees. We quantify these trajectories
and describe the parameter regimes in which these appear in Figure 3 and 4.

Ballistic regime. In this regime of one-dimensional evolution, viruses mutate locally forming a
concentrated cluster of similar individuals, called a lineage. Successful mutation events, which take the
viral strains away from the regions of antigenic space protected by host immune systems, progressively
move the lineage forward (Figure 2A). For small values of the mutation rate and small mutation jump
sizes, the trajectory in phenotypic space is essentially linear, with new mutants always growing as
far away as possible from existing host immune systems, which themselves track viruses but with a
delay. The delayed immune pressure creates a fitness gradient for the virus population, which forms a
traveling fitness wave [3,30,31] fueled by this gradient. A similar linear wave scenario was studied in
one dimension by Rouzine and Rozhnova [17].

Diffusive regime. As we increase the mutation jump range, the trajectories lose their persistence
length and the trajectories in phenotypic space start to turn randomly, as new strains are less sensitive
to the pressure of host immune systems (Figure 2B).
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Both ballistic and diffusive regimes lead to phylogenetic trees with one main trunk and a short
distance to the last common ancestor (Figure 2A(ii,iii) and Figure 2B(ii,iii)). The mean time to the
most common ancestor 〈TMRCA〉 is the same in these two regimes (Figure 2A(iii) and Figure 2B(iii)).
This trend is characteristic of influenza A evolution and has been discussed in detail in Ref. [8].

0

20

40

T
M

R
C

A
 (

y
rs

)

0

20

40

T
M

R
C

A
 (

y
rs

)

0

20

40

T
M

R
C

A
 (

y
rs

)

0 25
time (yrs)

0

20

40

T
M

R
C

A
 (

y
rs

)

D Stable splitting

C Transient splitting

B Diffusive

A Ballistic
i ii iii

Figure 2. Modes of antigenic evolution: (A) ballistic regime, (B) diffusive regime, (C) transient splitting
regime, and (D) stable splitting regime. (i): examples of trajectories of the population in phenotypic
space (in units of d); (ii): the time to most recent common ancestor (TMRCA); (iii): phylogenetic
tree of the population across time. In (iii), we give the mean TMRCA for the plotted sample trees.
When viruses evolve in a single lineage, the phylogenetic tree shows a single trunk dominating
evolution. When viruses split into more lineages, the phylogenetic tree shows different lineages
evolving independently. Each lineage diffuses in phenotypic space with a persistence length that
depends itself on the model parameters. In these simulations, viral population size is not constrained,
but parameters are tuned to approach a target fraction of infected hosts, f̄i = 10−3. Parameters are
(A) µ = 10−3, σ/d = 10−2, (B) µ = 10−2, σ/d = 3× 10−4 (C) µ = 10−2, σ/d = 3× 10−3, (D) µ = 0.1,
σ/d = 10−4.

Transient splitting regime. Alternatively, we observe a bifurcation regime, where at a certain point
in time two mutants form two new co-existing branches, roughly equidistant from both each other and
the ancestral strain in antigenic space (Figure 2C). Each branch has similar characteristics as the single
lineage in the one-dimensional, evolution of Figure 2A(i) and B(i). These co-existing branches give rise
to phylogenetic trees with two trunks (Figure 2C(iii)). In the example shown in Figure 2C(iii), the two
lineages stably co-exist for ~20 years, leading to a linear increase of the distance to the last common
ancestor, until one of them goes extinct, returning the evolution to one dominant lineage with small
distances to the last common ancestor (Figure 2C(ii)).



Pathogens 2019, 8, 115 7 of 22

10 4 10 1

/d

10 4

10 3

10 2

10 1

 (1
/d

ay
)

i 
f i = 5×10 4

extinction time (years)

10 4 10 1

/d

ii 
f i = 8×10 4

10 4 10 1

/d

iii 
f i = 10 3

10 4 10 1

/d

iv 
f i = 1.2×10 3

20
50
100
200
500
1000

Figure 3. The mean extinction time depends on model parameters. Mean viral extinction time (years) as
a function of µ and σ. In these simulations viral population size is not constrained, and (i) f̄i = 5× 10−4,
(ii) f̄i = 8× 10−4, (iii) f̄i = 10−3, (iv) f̄i = 1.2× 10−3. For each parameter point we simulated 100
independent realizations.
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Figure 4. Phase diagram of the single- to multiple lineage transition as a function of mutation rate µ,
mutation jump size σ, and f̄i. (A) average number of lineages, (B) fraction of time where viruses are
organized in a single lineage, (C) rate of lineage splitting (per lineage), and (D) average coalescence
time. In these simulations, viral population size is not constrained, and the target fraction of infected
individuals f̄i is 5× 10−4, 8× 10−4, 10−3, 1.2× 10−3, from left to right , (panels i to iv). For each
parameter point, we simulated 100 independent realizations.

Stable splitting regime. The two branches can stably co-exist for over ~80 years (Figure 2D, only the
first 50 years are shown), starting with similar trends as in the example in Figure 2C(i), not returning
to the one dominant lineage regime, but even further branching in a similar equidistant way at later
times (not shown). This trend leads to evolutionary trees with multiple stable trunks (Figure 2D(iii)),
with local diversity within each of them and a linear increase of the distance to the last common
ancestor over long times (Figure 2D(ii)).
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3.2. Stability

The mean extinction time of viral populations depends on the parameter regime (Figure 3).
A stable viral population is achieved in the σ� d regime thanks to stabilizing feedback [3]: if viruses
become too abundant, they drag the immune coverage onto the whole viral population, and the number
of viruses decreases since infecting a new host becomes harder. As a result, the relative advantage
of the fittest strains with respect to the bulk of the population decreases as more hosts are protected
against all viruses. This feedback slows down the escape of viruses to new regions of antigenic space
and the adaptation process. Conversely, when the virus abundance drops, the population immune
coverage is slower in catching up with the propagating viruses. The fittest viral strains gain a larger
advantage with respect to the bulk and this drives viral evolution faster towards new antigenic regions
and higher fitness, increasing the number of viruses.

This stabilizing feedback is very sensitive to the speed and amplitude of variation. Abrupt changes
or big fluctuations in population size can drive the viral population to extinction. Because of this,
viruses often go extinct very quickly after an endemic phase [3,8], as is proposed to have been the
fate of the Zika epidemic [3]. Here, we focus on the stable evolutionary regimes, starting from a well
equilibrated initial condition as explained in Section 2.2.

3.3. Phase Diagram of Evolutionary Regimes

Our results depend on three parameters: the mutation rate µ, the mutation jump distance
measured in units of cross-reactivity σ/d, and the target fraction of infected individuals in the
population, f̄i. The observed evolutionary regimes described in Figure 2 depend on the parameter
regimes, as summarized in the phase diagrams presented in Figure 4 for various fractions of infected
hosts f̄i (panels i–iv).

The mean number of distinct stable lineages increases with both the mutation rate and the
mutation jump distance (Figure 4A). Because the process is stochastic, even in regimes where multiple
lineages are possible, particular realizations of the process taken at particular times may have one or
more lineages. The fraction of time when the population is made of a single lineage (chosen rather than
the fraction of runs with a single lineage, which strongly depends on simulation time) decreases with
mutation rate and jumping distance (Figure 4B), while the rate of formation of new lineages increases
(Figure 4C). All three quantities indicate that large and frequent mutations promote the emergence of
multiple lineages. This multiplicity of lineages arises when mutations are frequent and large enough
so that two simultaneous escape mutants may reach phenotypic positions that are distant enough from
each other so that their sub-lineages stop feeling each other’s competition and become independent.

Increasing the mutation rate or the mutation jump distance alone is not always enough to
create a multiplicity of lineages. For small f̄i = 5× 10−4 (Figure 4A(i)) and moderate jump sizes,
the single-lineage regime is very robust to a large increase in the mutation rate, meaning the
cross-immunity nips in the bud any attempt to sprout a new lineage from mutations with small
effects, however frequent they are.

Coalescence times (Figure 4D) give a measure of the number of mutations to the last common
ancestor, and are commonly used in population genetics to characterize the evolutionary dynamics.
In the case of a single lineage, coalescence times are short, corresponding to the time it takes for
an escape mutation furthest away from the immune pressure to get established in the population.
However, when there are multiple lineages, the coalescence time corresponds to the last time a single
lineage was present. Such an event can be very rare when the average number of lineages is high,
leading to very large coalescence times. Accordingly, the coalescence time increases with lineage
multiplicity, and thus with mutation rate and jump size.

In general, large target fractions of infected hosts, f̄i, lead to more lineages on average and a higher
probability to have more than one lineage. Increasing the number of infected individuals increases
the effective mutation rate and allows the virus to explore evolutionary space faster. This rescaling
allows more viruses to find niches and increases the chances of having co-existing lineages. While
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an increased fraction of infected hosts may also limit the virgin exploration space where viruses can
attack non-protected individuals, this effect may be negligible when the target fractions f̄i are small as
considered here.

3.4. Incidence Rate

When viruses split into lineages, the implicit feedback mechanism described earlier to explain
stability remains valid for each cluster independently (unless the number of independent lineages
exceeds the immune memory pool M). As a result each lineage can support roughly a fraction f̄i
of the hosts, which defines a “carrying capacity” of each lineage. As a result, the viral population
size, also known as incidence rate, is proportional to the number of lineages (Figure 5). However, the
incidence fluctuates with time, with clear bottlenecks when a new cluster is founded.
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Figure 5. The average number of viruses is proportional to the number of independent clusters.
The total number of viruses (green curve) and of lineages (red curve) as a function of time for f̄i = 10−3,
µ = 10−2, σ/d = 3× 10−3. The initial single lineage splits into two lineages at t ≈ 59 years and then
into three lineages at t ≈ 67 years (dashed vertical lines), and the number of viruses first doubles and
then triples following the lineage splittings.

3.5. Speed of Adaptation and Intra-Lineage Diversity

Whether there is a single lineage or multiple ones, each lineage moves forward in phenotypic
space by escaping the immune pressure of recently infected and protected hosts lying close behind.
We examined the speed of adaptation and the diversity of lineages of viral diversity present at a given
time (Figure 6). We calculated the speed of adaptation in units of cross-reactivity radii d per year by
taking, for each lineage, the difference in the two-dimensional phenotypic coordinate of the average
virus at time points one year apart. We quantified the diversity by approximating the density of
each lineage at a given time by a Gaussian distribution in two-dimensional phenotypic space and
calculating its variance along the direction of the lineage adaptation in phenotypic space.

The speed of adaptation increases with the mutational jump size σ, and also shows a weak
dependence on the mutation rate µ. The variance in the viral population also increases with the jump
size, and in general scales with the speed of adaptation. Fisher’s theorem states that the speed of
adaptation is proportional to the fitness variance of the population. A correspondance between speed
and variance in phenotypic space is thus expected if fitness is linearly related to phenotypic position.
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While such a linear mapping does not hold in general in our model, the immune pressure does create
a nonlinear and noisy fitness gradient, which can explain this scaling between speed and diversity.
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Figure 6. Speed of adaptation and the within-cluster diversity. Phase diagrams as a function of
mutation rate µ and mutation jump size σ for (A) the average speed of the evolving viral lineages
and (B) the variance of the size of the cluster in the direction parallel to the direction of instantaneous
mean adaptation for different values of the target infected fraction f̄i = 5× 10−4, 8× 10−4, 10−3,
and 1.2 × 10−3 from left to right, (panels i to iv). For each parameter point, we simulated 100
independent realizations.

3.6. Antigenic Persistence

While lineage clusters tend to follow a straight line, their direction fluctuates as escape mutants
can explore directions that are orthogonal to the main direction of the immune pressure. For this
reason, while the phylogenetic trees in the ballistic and diffusive regimes in Figure 2A,B are very
similar (quantified by the same value of 〈TMRCA〉 compared to the transient splitting and stable
splitting regimes), the sample evolutionary trajectories look very different. In Figure 7, we plot the rate
at which trajectories turn, changing their direction by at least 30 degrees (see Appendix C.2). As noted
in Figure 2, small mutation jump sizes σ favor long periods of linear motion and low turn rates. As σ

increases, the turn rate increases.
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Figure 7. Turn rate. Phase diagrams as a function of mutation rate µ and mutation jump size σ for rate
of turns (defined as a change of direction of at least 30 degrees) of the trajectories, for different values
of the mean number of infected individuals f̄i: 5× 10−4, 8× 10−4, 10−3, 1.2× 10−3, from left to right,
(panels i to iv).

Several factors affect the turn rate as measured from the simulations. A lineage splitting induces
a turn, and regions of phase space where multiple lineages are possible favor short persistence times.
The same goes for population extinction: regimes where the population extinction rate is higher do not
allow us to observe long persistence times, masking the dependence of the turn rate on µ. Generally,
we expect lineage clusters to undergo more angular diffusion in phenotypic space as mutations become
more important (large σ). Mutants can explore new regions of the phenotypic space, causing the
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population to stochastically turn while keeping a cohesive shape. On the other hand, lower mutation
rates may mean that fewer mutants will do this exploration, increasing stochasticity in cluster dynamics
and effectively increasing the turn rate. In this regime of stochastic turning, predicting the phenotype
of future viral strains is much harder than in the linear regime.

3.7. Dimension of Phenotypic Space

We explored the effect of phenotypic space dimensions on our results. In Figure 8, we plot
the average number of neighbors of a given viral strain within distance r from that strain (for short
distances so that only pairs from the same lineage are considered). This measure scales as rD for the
cumulative number of neighbors plotted in Figure 8, where D = 2 is the dimension of phenotypic space,
as expected for a uniformly distributed cluster of strains in finite dimension. By contrast, that number
would be expected to scale exponentially with r for a neutral process in infinite dimensions. These
results suggest, that in low dimensions, which seem to be the experimentally valid limit, the dimension
of the space does restrict the dynamics and cannot be neglected. However, we are unable to separate
the effects of selection and phenotypic space dimensionality. It also implies that lineages form dense,
space-filling clusters in phenotypic space. We expect this result to hold for any reasonably low
dimension, and will break down in high dimension.
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Figure 8. Effect of phenotypic space dimensionality on viral evolution. Cumulative average number
of neighbors of a given viral strain as a function of phenotypic distance r to that strain for f̄i = 10−3,
µ = 10−2, σ/d = 3 × 10−3. The average number of neighbors depends on the dimension of the
phenotypic space as rD, where r is the distance and D = 2 the dimension of phenotypic space
(dotted line).

3.8. Robustness to Details of Intra-Host Dynamics and Population Size Control

To test whether a detailed treatment of intra-host viral dynamics would affect our results, we also
considered a detailed mutation model, where we calculate the probability of producing a mutation
within each individual (see Appendix B). Specifically, we compare the model that calculates the
probability of having a mutated strain given in Equation (A11) to the simplified model with the
mutation rate implemented as discussed above. As we see from Figures 9 and 10, the general
evolutionary features are the same as for the simplified model: the probability of multi-lineage
trajectories increases with increasing µ and σ, as does the lineage splitting rate and the speed of
adaptation. The diversity in phenotypic space in the direction parallel (Figure 10B) to the direction of
motion increases with the mutation jump size, as expected, as well as the turn rate (Figure 9D).

Lastly, we asked how our results would be affected by strictly constraining the viral population
size (as explained in Section 2.2), rather than letting it fluctuate under the control of the emergent
negative feedback. The corresponding phase diagrams show the same evolutionary regimes as a
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function of µ and σ/d (Figure A1), and the same general dependencies on model parameters of the
speed of adaptation (Figure A2) and turn rate (Figure A3), as with a fluctuating population.

Figure 9. Phase diagram for the detailed intra-host mutation model. As a function of the mutation rate
µ and mutation jump size σ, we plot (A) the mean number of co-existing lineages, (B) the fraction of
time with one lineage, (C) the lineage splitting rate and (D) the lineage turn rate. In these simulations,
viral population size is not constrained, and f̄i = 10−3. For each parameter point, we simulated 100
independent realizations.
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Figure 10. Phase diagram for speed of adaptation and within cluster diversity of the detailed intra-host
mutation model. As a function of the mutation rate µ and mutation jump size σ, we plot (A) the mean
speed of adaptation, and (B) the variance in the cluster size in the direction parallel to the direction
of motion. In these simulations, viral population size is not constrained, and f̄i = 10−3. For each
parameter point, we simulated 100 independent realizations.
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4. Discussion

Our model describes regimes of viral evolution with different complexity: one strain dominates
(Figure 2A,B), two dominant strains coexist over timescales longer than the host lifetime (Figure 2C),
or multiple strains coexist in a stable way (Figure 2D). The single-strain regime clearly maps onto
influenza A. Influenza B evolution, which is split into the Victoria or Yamagata sublineages, is consistent
with prolonged (Figure 2C) or stable coexistence (Figure 2D). We can use our results to characterize
the differences in the evolutionary constraints acting on the adaptive processes of influenzas A and
B. Our results suggest that the combination of mutation rate and effective mutation jump distance
in influenza A must be smaller than in influenza B. Since the mutation rates are similar, this means
that the effect of mutations at sites in influenza B has a larger phenotypic effect. Alternatively,
the effective number of infected individuals per transmission event (R0 in classical SIR models, equal
to R0 p f in our model) could be larger in influenza B than influenza A. Another possibility is that,
since lineage splitting happens stochastically, the difference between the two species is just due to
different random realizations.

Our goal was to show that a simple model without additional elements such as the introduction
of geographic, demographic or spatial niches can reproduce different evolutionary trends observed
in fast evolving viruses. If we consider any specific virus, these specific elements become important
for explaining the detailed patterns of evolution. For example, for the flu virus, the seasonal and
geographical correlations, as well as the existence of animal reservoirs for human infections and the
travel patterns of humans are necessary to predict the global spread of the virus. These additional
features lead to a wealth of specific behaviors, but our analysis shows that the stable co-existence
of different strains emerges from evolutionary considerations without the need to invoke these
additional features.

Our model has the following ingredients: infected hosts pass on infections, viruses mutate,
we work in two-dimensional phenotypic space, immune receptors can recognize different viruses
(are cross-reactive) and the immune system updates its memory based on the viruses it has
seen. Eliminating cross-reactivity and immune memory would result in viruses growing freely,
without feeling the immune pressure. In this situation, we would not observe the lineage splitting
caused by avoiding immune hosts. Similarly, a one-dimensional model cannot lead to lineage
splitting [17,30,31].

We note that co-existing lineages can be obtained in models of evolving populations with weekly
interacting niches without any selection pressure (of immune origin or any other)—the number of
lineages will simply correspond to the number of niches we assume, each population will evolve
according to neutral (e.g., Wright–Fisher) dynamics and the distance between the niches will depend on
where we locate them. Unless there is a niche substructure, we will not observe additional within niche
splittings. Therefore, observing subsequent lineages within data (which to the best of our knowledge
has not been observed) would suggest selection-induced splitting as opposed to pure niches. Our goal
was not to explore such niche-induced lineages.

Based on the evolutionary regime, it has been observed that our model could be used to constrain
unknown parameters—in particular viral systems, such as the mutation rate or typical effect of
mutations. The evolutionary mode also depends crucially on the cross-immunity range d, which could
be tested using neutralization assays.

A more detailed comparison between our models and data, which includes virus-specific features,
would require refining the mapping between sequence data and phenotypic space. Antigenic maps are
a step in this direction, as well as high-throughput genotype–phenotype experiments that map viral
strains into virulence phenotypes and similar experiments that map immune receptor sequences into
measures of antigen recognition [32]. For our model, the mean extinction times of viruses are plotted
in Figure 3. For example, for a mutation rate of µ ≤ 0.001, mutation jump size σ/d < 0.05 and a mean
number of infected individuals of f̄i = 10−3, viruses survive on average less than 50 years.
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Multiple co-existing lineages have been observed in the flu [7]. The question remains if the
multiple lineages are self-generated due to population level immune pressure. One test of this scenario
is to map the evolutionary regimes where we expect splitting. However, this may not directly validate
or falsify the idea due to the mapping problems described above, and also the fact that lineage splitting
is a stochastic event, so a lack of splitting in one sample does not mean it cannot happen. An alternative
test of the idea of self-generated niches could be performed in synthetic clustered regularly interspaced
short palindromic repeats (CRISPR)-phage synthetic evolutionary systems [33]. Averaging over many
realisations of the evolutionary experiments, and varying the protection level of the bacteria could
help make the mapping between the parameters and increase the observation rate of splitting events.

Our model is applicable to acute infections that spread within one species due to a rapidly
evolving virus at the population level and the host clears within a short timescales compared to its
lifetime. For this reason, it is a possible model of flu spreading but neither of HIV evolution, which
mainly evolves in hosts, nor DNA viruses or slow evolving RNA viruses such as measles. Here,
we mainly discuss our results in the context of influenza evolution; however, a detailed comparative
study of how often the different evolutionary trends are observed across fast evolving viruses is an
interesting future direction.

Our model shares similarities with previously considered models of viral evolution [3,8],
while focusing on distinct questions. Among differences in modeling details, our hosts have finite
memory capacity and forget past strains after some time, compared to infinite memory assumed
in past work. Comparing our simulations with Ref. [3,8] in their relevant regimes, we do not see
noticeable differences in the main trends of evolution, which suggests that the effects of losing memory
are quantitative rather than qualitative at the population scale, at least for the parameters’ regimes that
were inspected. The need for revaccination against certain even slowly evolving viruses (although
these are not the type of studies here) suggests that the timescales for memory loss can be variable
and some antigens stimulate lifelong memory, while the memory repertoire against other antigens
decays more rapidly. We assume exponentially decaying cross-reactivity, similarly to [3] (although
it is linearized in their analysis). By contrast, the authors in [8] use a linear cross-reactivity, but this
minor difference is unlikely to influence the results. The authors in [8] focused specifically on the
question of explaining the single dominant lineage in influenza A evolution. While the existence of
lineage bifurcations was acknowledged in Ref. [8], this regime was not explored. Instead, a more
detailed geographical model was considered, with migrations between different geographical zones.
For the single lineage regime, with the addition of seasonal niches, the authors in [8] report a decreased
extinction rate compared to our model, as one would expect from classical models. The authors in [3]
asked a similar question that we did about the conditions under which strain bifurcations may occur,
but in the context of an infinite antigenic space. The general trends seem to be independent of the
dimensionality of the space, since both models recover the same behavior. However, the exact scaling
laws reported in Ref. [3] seem to be more sensitive to the model assumptions. Lastly, while we also
considered a more detailed model of intra-host influenza evolution, we found that it could be mapped
onto an effective model of viral transmission with mutations, with little impact on the results.

Two main effective parameters control the evolutionary patterns: the effective mutation rate and
the mutational jump size, measured in units of the cross-reactivity radius. The effective mutation rate
is a combination of the actual mutation rate per host, and the mean number of infected hosts at each
cycle: larger fractions of infected individuals lead to more opportunities for the virus to escape host
immunity, and faster viral adaptation as a whole. Additionally, a feedback mechanism is observed
between the host immune systems and the viruses: too successful viruses infect many hosts, effectively
speeding up the rate at which the susceptible host reservoir is depleted, and mounting up the immune
pressure. Our model does not include host death, since we assume we are in the limit of very large host
reservoirs. Accounting for host extinction may lead to a different interesting problem that has been
explored using SIR models [5,34]. In the context of our model, however, host death would effectively
amount to reducing the hosts’ immune memory capacity M.
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The effects of dimensionality on the observed evolutionary trajectories are worth discussing
in more detail. The infinite dimensional model is similar in spirit to the infinite sites model of
sequence evolution: infinite dimensions mean that there is always a direction for the virus to escape
to. Conversely, low dimensions result in an effectively stronger feedback of the host immune systems
on the possible trajectories of the escaping virus. This generates effective mutation and jump rates
that depend on the primary parameters in a nonlinear way, with possibly different effects in different
parameter regimes. We also observe a breakdown of the scaling of observables such as the coalescence
time and the mean number of co-existing lineages with µσ2 (see Figure A4), as would be predicted by
the diffusion limit of the traveling wave framework [31,35]. These results indicate that the discreteness
of mutations matter. The effective dimensionality of the phenotypic space depends on the parameters,
going from effectively one in the linear regime to the dimension of the phenotypic space in the
splitting regime. We expect that our results generalize to higher dimensions than 2, with each splitting
event leading to a new direction in phenotypic space and increasing the effective dimension of the
viral population.

In summary, a detailed exploration of the mutation rate and jump distance, as well as the fraction
of infected individuals, allowed us to understand the constraints that lead to different modes of
antigenic evolution and, in particular, lineage splitting at different rates and with different survival
times of new (sub-)lineages. Observed bifurcations are rare in nature, which puts an evolutionary
constraint on the adaptation process.
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Appendix A. Simulation Details

Appendix A.1. Initialization

We initialize all simulations in an immune coverage background that favors the evolution of one
dominant antigenic lineage. We draw viral positions uniformly from a rectangle with bottom-left
and top-right corners positioned at (−3σPmut, 0) and (3σPmut, σ). Each host is initialized with one
immune receptor as a point in antigenic space, which grants localized protection. The initial memory
repertoires of the different hosts are drawn uniformly from a rectangle with bottom-left and top-right
corners positioned at (−3σPmut,−5 σ

f̄i
Pmut) and (3σPmut, 0), where f̄i is the target fraction of infected

hosts, determining the number around which the viral population is stabilized (see Section 2.2) and the
timescale with which all hosts add (or renew) an immune receptor to their repertoire. In order to lose
memories of the artificial initial conditions, we let the system evolve until 99% of the host population
have been infected by a virus, so that most hosts have added at least one strain to their repertoires
before recording any data.

Appendix A.2. Control of the Number of Infected Hosts

We studied two versions of the same model, one constraining the viral population size strictly,
the other letting it fluctuate. In the latter case, we still have to constrain population size for an initial
transient in order to reach a well equilibrated initial condition.

We control the virus population size through the fraction of infected hosts around a target value
of f̄i. We modify R0—the average number of new hosts that are drawn to be infected in a given
transmission event—based on the current fraction of infected hosts fi at each time:
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R0 =
1
〈p f 〉

+
f̄i − fi

f̄i
, (A1)

where p f is the probability of a successful infection at a transmission event, i.e., the probability that a
new host is susceptible to the infecting viral strain. We evaluate its average 〈p f 〉 over segments of 1000
transmission events.

On average,
〈 fi(t + tI)〉 ≈ 〈 fi(t)〉R0〈p f 〉. (A2)

Using Equation (A1), we find that the average fraction of infected hosts 〈 fi(t)〉 is governed by a
logistic map with fix point f̄i, effectively producing a process where the viral population growth is
limited by an effective carrying capacity N f̄i.

Appendix B. Detailed Mutation Model

We present the detailed in-host mutation model, in which we explicitly find the probability of
producing a new mutant within an infected host. We assume that the immune system responds only to
the first viral strain it sees, and that all viruses see the immune system in the same way, undergoing the
same deterministic dynamics, i.e., evolution is neutral within one host. This intra-host neutral selection
holds if the characteristic mutation jump size is smaller than the cross reactivity length, σ� d, which
is the case for our simulations. We consider this mutation-proliferation process up to time tI .

We call the total viral population vtot, the first viral invader that is the first viral strain infecting
one host, v0, and the new mutants, appearing with size 1, vj. These three quantities (neglecting the
discreteness of the process) grow deterministically as function of time t as:

vtot(t) = eαt, (A3)

v0(t) = eαt −∑
i0

eα(t−ti0 )Θ(t− ti0), (A4)

vj(t) = eα(t−tj) −∑
ij

e
α(t−tij

)
Θ(t− tij), (A5)

where ij denotes the indexes of the viral mutants originated from mutant j (if any) and tij indicates the
times at which such mutations arose (Θ(x) is the Heaviside function, = 0 for x < 0 and 1, otherwise).
Each mutation jumps to new phenotypic coordinates. From these equations, the relative mutants
fractions are

x0 = 1−∑
i0

e−αti0 Θ(t− ti0), (A6)

xj = e−αtj −∑
ij

e
−αtij Θ(t− tij). (A7)

The mutation process from any virus present in the viral pool is a non homogeneous Poisson
process with rate µeαt. The probability of having n mutations up to the time t is:

P(n, t) =
(Λ(t))n

n!
e−Λ(t), (A8)

with

Λ(t) =
∫ t

0
dt′µeαt′ =

µ

α
(eαt − 1) . (A9)

The time t1 of the first mutation event is distributed as:

ρ(t1) = µeαt1−Λ(t1). (A10)
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In our simulations, we assume that all mutations other than the first are negligible, that is, we can
have more than one mutation, but those after the first do not significantly affect the relative fraction,
therefore we have only one mutant. The mutant fraction in the population is x1(t) = e−αt1 if t > t1.
Knowing the distribution of the first mutation times t1, we can calculate the probability distribution of
the mutant fraction x1 at the time of the transmission event tI :

ρ(x1, tI) = e−Λ(tI)δ(x1) +
µe−

µ
α (

1
x1
−1)

αx2
1

Θ(x1 − e−αtI ) . (A11)

In the simulations, we fixed the growth rate to α = 4 day−1.

Appendix C. Analysis of Simulations

Appendix C.1. Lineage Identification

In order to analyze the organization of viruses in phenotypic space, for each saved snapshot,
we take the positions of a subset of 2000 viruses and then cluster them into separate lineages through the
python scikit-learn DBSCAN algorithm [36,37] with the minimal number of samples min_samples = 10.
The ε parameter defines the maximum distance between two samples that are considered to be in the
neighborhood of each other. We perform the clustering for different values of ε and select the value that
minimizes the variance of the 10th nearest neighbor distance (the clustering results are not sensitive to
this choice). From the clustered lineages, we can easily obtain a series of related observables, such as
the number of lineages and the fraction of time in which viruses are clustered in a single lineage
(Figure 4). A split of a lineage into two new lineages is defined when two clusters are detected where
previously there was one, and the two new cluster centroids are farther away than the sum of the
maximum distances of all the points in each cluster from the corresponding centroid. We impose this
extra requirement in order to reduce the noise from virus subsampling and the clustering algorithm.
A cluster extinction is defined when a cluster ceases to be detected from one snapshot to the next.

Appendix C.2. Turn Rate Estimation

We estimate the turn rate by detecting turns in the trajectories of lineage centroids in phenotypic
space. This is done by calculating the trajectory’s angle between subsequent centroid recordings and
smoothing it with a five-year averaging window. A turn is detected when the angle difference with
respect to the initial direction reaches 30 degrees, and the time before the turn is recorded as the
persistence time. Then, the procedure is repeated until the end of the trajectory. In order to have
enough timepoints in the trajectory, we limit this analysis to lineages that last more than 20 years.
The procedure was carried out for all lineages’ trajectories in all realizations. Finally, to estimate
the turn rate, we divide the total number of detected turns by the sum of the durations of all the
analyzed trajectories.

Appendix C.3. Phylogenetic Tree Analysis

From the model simulations, we record a subsample of the viral phylogenetic tree. For every
recorded strain, apart from some descendants, we also save their extinction events. To compute the
coalescence time, we take all the strains recorded that year that have not yet gone extinct. Then,
we calculate the time to their most recent common ancestor, and finally we average over all these
TMRCAs calculated year after year, for all the realizations. Phylogenetic tree analysis and rendering
are done using the Python open software ETE Toolkit [38].
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Figure A1. Phase diagram for a fixed population size of the single- to multiple lineage transition, as a
function of mutation rate µ and mutation jump size σ. The figure is similar to the one presented in the
main text in Figure 4 but assuming a fixed fraction of infected hosts f̄i = 8× 10−4, 10−3, and 1.5× 10−3

(from left to right, panels i to iii). (A) average number of lineages, (B) fraction of time where viruses are
organized in a single lineage, (C) rate of lineage splitting, and (D) the average coalescence time.
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Figure A2. Speed of adaptation and within-cluster diversity; the same phase diagram as in Figure 6 of
the main text but with a constant fixed fraction of infected hosts f̄i = 8× 10−4, 10−3, and 1.5× 10−3

(from left to right, panels i to iii). Phase diagrams as a function of mutation rate µ and mutation jump
size σ for (A) the average speed of the evolving viral clusters and (B) the phenotypic variance in the
direction parallel to the direction of instantaneous mean adaptation.
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Figure A3. Persistence time; the same phase diagram as in Figure 7 of the main text but with constant
fixed population size f̄i = 8× 10−4, 10−3, and 1.5× 10−3 (from left to right, panels i to iii). Phase
diagrams as a function of mutation rate µ and mutation jump size σ for rate of turns of the trajectories.
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Figure A4. Single- to multiple lineage transition a function of rescaled diffusivity µσ2; the same
quantities as in Figure 4 of the main text, but as a function of the effective diffusivity µσ2, showing the
absence of collapse as a function of that parameter for various values of the mutation rate µ. (A) average
number of lineages, (B) fraction of evolution time where viruses are organized in a single lineage,
(C) rate of lineage splitting (per lineage), and (D) average coalescence time.

References

1. Gog, J.R.; Grenfell, B.T. Dynamics and selection of many-strain pathogens. Proc. Natl. Acad. Sci. USA 2002,
99, 17209–17214. [CrossRef] [PubMed]

2. Gandon, S.; Day, T.; Metcalf, C.J.E.; Grenfell, B.T. Forecasting Epidemiological and Evolutionary Dynamics
of Infectious Diseases. Trends Ecol. Evol. 2016, 31, 776–788. [CrossRef] [PubMed]

3. Yan, L.; Neher, R.A.; Shraiman, B.I. Phylodynamics of rapidly adapting pathogens: Extinction and speciation
of a Red Queen. arXiv 2018, arXiv:1810.11918 .

4. Koelle, K.; Kamradt, M.; Pascual, M. Understanding the dynamics of rapidly evolving pathogens through
modeling the tempo of antigenic change: Influenza as a case study. Epidemics 2009, 1, 129–137. [CrossRef]
[PubMed]

5. Grenfell, B.T.; Bjornstad, O.; Finkenstadt, B.F. Dynamics of measles epidemics: Scaling noise, determinism,
and predictability with the TSIR model. Ecol. Monogr. 2002, 72, 185–202. [CrossRef]

6. White, P.A. Evolution of norovirus. Clin. Microbiol. Infect. 2014, 20, 741–745. [CrossRef]
7. Rota, P.A.; Wallis, T.R.; Harmon, M.W.; Rota, J.S.; Kendal, A.P.; Neromet, K. Lineages of Influenza Type B

Virus since 1983. Virology 1990, 68, 59–68. [CrossRef]
8. Bedford, T.; Rambaut, A.; Pascual, M. Canalization of the evolutionary trajectory of the human influenza

virus. BMC Biol. 2012, 10, 38. [CrossRef]
9. Smith, D.J.; Lapedes, A.S.; Jong, J.C.D. Mapping the Antigenic and Genetic. Science 2004, 305, 371–377.

[CrossRef]
10. Keeling, M.J.; Danon, L. Mathematical modelling of infectious diseases. Br. Med. Bull. 2009, 92, 33–42.

[CrossRef]

http://dx.doi.org/10.1073/pnas.252512799
http://www.ncbi.nlm.nih.gov/pubmed/12481034
http://dx.doi.org/10.1016/j.tree.2016.07.010
http://www.ncbi.nlm.nih.gov/pubmed/27567404
http://dx.doi.org/10.1016/j.epidem.2009.05.003
http://www.ncbi.nlm.nih.gov/pubmed/21352760
http://dx.doi.org/10.1890/0012-9615(2002)072[0185:DOMESN]2.0.CO;2
http://dx.doi.org/10.1111/1469-0691.12746
http://dx.doi.org/10.1016/0042-6822(90)90186-U
http://dx.doi.org/10.1186/1741-7007-10-38
http://dx.doi.org/10.1126/science.1097211
http://dx.doi.org/10.1093/bmb/ldp038


Pathogens 2019, 8, 115 21 of 22

11. Reich, N.G.; Shrestha, S.; King, A.A.; Rohani, P.; Lessler, J.; Kalayanarooj, S.; Yoon, I.-K.; Gibbons, R.V.;
Burke, D.S.; Derek, A.T. Cummings Interactions between serotypes of dengue highlight epidemiological
impact of cross-immunity. J. R. Soc. Interface 2013, 10, 20130412. [CrossRef]

12. Ben-Shachar, R.; Koelle, K. Minimal within-host dengue models highlight the specific roles of the immune
response in primary and secondary dengue infections. J. R. Soc. Interface 2014, 12, 20140886. [CrossRef]

13. Boni, M.F.; Gog, J.R.; Andreasen, V.; Feldman, M.W. Epidemic dynamics and antigenic evolution in a single
season of influenza A. Proc. R. Soc. B Biol. Sci. 2006, 273, 1307–1316. [CrossRef]

14. Luksza, M.; Lässig, M. A predictive fitness model for influenza. Nature 2014, 507, 57–61. [CrossRef]
15. Fonville, J.M.; Wilks, S.H.; James, S.L.; Fox, A.; Ventresca, M.; Aban, M.; Xue, L.; Jones, T.C.; Le, N.M.H.;

Pham, Q.; et al. Antibody landscapes after influenza virus infection or vaccination. Science 2014, 346,
996–1000. [CrossRef]

16. O’Reilly, K.M.; Lowe, R.; Edmunds, W.J.; Mayaud, P.; Kucharski, A.; Eggo, R.M.; Funk, S.; Bhatia, D.; Khan, K.;
Kraemer, M.U.G.; et al. Projecting the end of the Zika virus epidemic in Latin America: A modelling analysis.
BMC Med. 2018, 16, 180. [CrossRef]

17. Rouzine, I.M.; Rozhnova, G. Antigenic evolution of viruses in host populations. PLoS Pathog. 2018,
14, e1007291. [CrossRef]

18. Kermack, W.; McKendrick, A. A contribution to the Mathematical Theory of Epidemics. Proc. R. Soc. Lond.
Ser. A 1927, 115, 700–721. [CrossRef]

19. Anderson, R.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford Science Publications:
Oxford, UK, 1991.

20. Ferguson, N.; Anderson, R.; GUpta, S. The effect of antibody-dependent enhancement on the transmission
dynamics and persistence of multiple-strain pathogens. Proc. Natl. Acad. Sci. USA 1999, 96, 790–794.
[CrossRef]

21. Mongkolsapaya, J.; Dejnirattisai, W.; Xu, X.N.; Vasanawathana, S.;Tangthawornchaikul, N.; Chairunsri, A.;
Sawasdivorn, S.; Duangchinda, T.; Dong, T.; Rowland-Jones, S.; et al. Original antigenic sin and apoptosis in
the pathogenesis of dengue hemorrhagic fever. Nat. Med. 2003, 9, 921–927. [CrossRef]

22. Hirst, G.K. Studies of antigenic differences among strains of influenza A by means of red cell agglutination.
J. Exp. Med. 1943, 78, 407–423. [CrossRef] [PubMed]

23. Perelson, A.; Oster, G. Theoretical Studies of Clonal Selection: Minimal Antibody Repertoire Size and
Reliability of Self-Non-self Discrimination. J. Theor. Biol. 1979, 81, 645–670. [CrossRef]

24. Perelson, A.; Weisbuch, G. Immunology for physicists. Rev. Mod. Phys. 1997, 69, 1219–1268. [CrossRef]
25. Chakraborty, A.K.; Kosmrlj, A. Statistical mechanical concepts in immunology. Annu. Rev. Phys. Chem. 2010,

61, 283–303. [CrossRef] [PubMed]
26. Wang, S.; Mata-Fink, J.; Kriegsman, B.; Hanson, M.; Irvine, D.J.; Eisen, H.N.; Burton, D.R.; Wittrup, K.D.;

Kardar, M.; Chakraborty, A.K. Manipulating the Selection Forces during Affinity Maturation to Generate
Cross-Reactive HIV Antibodies. Cell 2015, 160, 785–797. [CrossRef] [PubMed]

27. Nourmohammad, A.; Otwinowski, J.; Plotkin, J.B. Host-Pathogen Coevolution and the Emergence of Broadly
Neutralizing Antibodies in Chronic Infections. PLoS Genet. 2016, 12, e1006171. [CrossRef] [PubMed]

28. Mayer, A.; Balasubramanian, V.; Mora, T.; Walczak, A.M. How a well-adapted immune system is organized.
Proc. Natl. Acad. Sci. USA 2015, 112, 5950–5955. [CrossRef] [PubMed]

29. Mayer, A.; Balasubramanian, V.; Walczak, A.M.; Mora, T. How a well-adapting immune system remembers.
Proc. Natl. Acad. Sci. USA 2019, 116, 8815–8823. [CrossRef]

30. Desai, M.M.; Fisher, D.S. Beneficial mutation selection balance and the effect of linkage on positive selection.
Genetics 2007, 176, 1759–1798. [CrossRef]

31. Neher, R.A.; Hallatschek, O. E (14). Proc. Natl. Acad. Sci. USA 2013, 110, 437–442. [CrossRef]
32. Adams, R.M.; Mora, T.; Walczak, A.M.; Kinney, J.B. Measuring the sequence-affinity landscape of antibodies

with massively parallel titration curves. eLife 2016, 5, 1–27. [CrossRef]
33. Chabas, H.; Lion, S.; Nicot, A.; Meaden, S.; van Houte, S.; Moineau, S.; Wahl, L.M.; Westra, E.R.; Gandon, S.

Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol. 2018,
16, e2006738. [CrossRef]

34. Allen, L.J.S.; Lahodny , G.E., Jr. Extinction thresholds in deterministic and stochastic epidemic models.
J. Biol. Dyn. 2012, 6, 590–611. [CrossRef]

http://dx.doi.org/10.1098/rsif.2013.0414
http://dx.doi.org/10.1098/rsif.2014.0886
http://dx.doi.org/10.1098/rspb.2006.3466
http://dx.doi.org/10.1038/nature13087
http://dx.doi.org/10.1126/science.1256427
http://dx.doi.org/10.1186/s12916-018-1158-8
http://dx.doi.org/10.1371/journal.ppat.1007291
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1073/pnas.96.2.790
http://dx.doi.org/10.1038/nm887
http://dx.doi.org/10.1084/jem.78.5.407
http://www.ncbi.nlm.nih.gov/pubmed/19871338
http://dx.doi.org/10.1016/0022-5193(79)90275-3
http://dx.doi.org/10.1103/RevModPhys.69.1219
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093537
http://www.ncbi.nlm.nih.gov/pubmed/20367082
http://dx.doi.org/10.1016/j.cell.2015.01.027
http://www.ncbi.nlm.nih.gov/pubmed/25662010
http://dx.doi.org/10.1371/journal.pgen.1006171
http://www.ncbi.nlm.nih.gov/pubmed/27442127
http://dx.doi.org/10.1073/pnas.1421827112
http://www.ncbi.nlm.nih.gov/pubmed/25918407
http://dx.doi.org/10.1073/pnas.1812810116
http://dx.doi.org/10.1534/genetics.106.067678
http://dx.doi.org/10.1073/pnas.1213113110
http://dx.doi.org/10.7554/eLife.23156
http://dx.doi.org/10.1371/journal.pbio.2006738
http://dx.doi.org/10.1080/17513758.2012.665502


Pathogens 2019, 8, 115 22 of 22

35. Cohen, E.; Kessler, D.A.; Levine, H. Front propagation up a reaction rate gradient. Phys. Rev. E Stat.
Nonlinear Soft Matter Phys. 2005, 72, 1–11. [CrossRef] [PubMed]

36. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12,
2825–2830.

37. Ester, M.; Kriegel, H.; Sander, J.; Xu, X. A Density Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise; AAAI Press: Menlo Park, CA, USA, 1996; pp. 226–231.

38. Huerta-Cepas, J.; Serra, F.; Bork, P. ETE 3: Recon- struction, Analysis, and Visualization of Phylogenomic
Data. Mol. Biol. Evol. 2016, 33, 1635–1638. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.72.066126
http://www.ncbi.nlm.nih.gov/pubmed/16486029
http://dx.doi.org/10.1093/molbev/msw046
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods 
	The Model
	Initial Conditions and Parameter Fine-Tuning
	Detailed Mutation Model

	Results
	Modes of Antigenic Evolution
	Stability
	Phase Diagram of Evolutionary Regimes
	Incidence Rate
	Speed of Adaptation and Intra-Lineage Diversity
	Antigenic Persistence
	Dimension of Phenotypic Space
	Robustness to Details of Intra-Host Dynamics and Population Size Control

	Discussion 
	Simulation Details
	Initialization
	Control of the Number of Infected Hosts

	Detailed Mutation Model
	Analysis of Simulations 
	Lineage Identification
	Turn Rate Estimation
	Phylogenetic Tree Analysis

	References

