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Abstract 

One of the many attributes of 3D printing is the ability to produce particles with independent control of 

morphology and material properties, parameters that are inexorably entwined in naturally occurring geomaterials. 

In this paper we describe the 3D printing of surrogate granular materials, show examples of the particles produced 

and present results showing their ability to capture real soil behaviour. Three approaches are demonstrated for the 

three dimensional generation of model grains. The first method involves the superimposition of a fractal surface 

with higher level stochastic features on the face of a closed volume such as a geodesic spheroid. The second 

method involves the use of Fourier descriptors or fractal geometry generated from 2D cross sections and their 

interpolation to produce simulated geomaterial particles in three dimensions. The third method involves the 

generation of complex particles by the aggregation of polyhedral elements such as cubes or octahedra which is 

suitable for the simulation and fabrication of porous or branching particles. Finally, we discuss applications of the 

fabrication of surrogate materials by 3D printing for use as standardised, printable geomaterials in future up-scaled 

geotechnical experiments and other geomechanical research.  
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1. Introduction 

Understanding the micromechanical origins of the behaviour of granular materials is of increasing interest across 

multiple disciplines in science and engineering. In a broad range of naturally occurring granular materials, 

including soils, sediment particles, sand rocks and minerals, there is a need to establish better relationships 

between the multi-scale particle morphology of these geomaterials and their mechanical, hydrological, and 

rheological performance. This has the potential to enable more efficient utilisation of natural resources and 

improved reliability in geotechnical and environmental applications (Scheel et al., 2008, Salot et al., 2009). Recent 

years have seen increasing research efforts aimed at gaining new insights into such relationships through 

computational and experimental methods (Brisard et al., 2012, Cho et al., 2006, Cavarretta et al., 2010, Mollon 

and Zhao, 2013b). 

The utility and significance of 3D printing techniques for the analysis of granular morphology was demonstrated 

recently in a study by Miskin and Jaeger (Miskin and Jaeger, 2013). In this study idealised printed grains were 

constructed by joining 1 to 4 spherical units with minimum overlaps between the spheres. The growth in the 

capabilities and reducing cost of 3D printing technologies, combined with the availability of computational 

resources that permit high resolution, have made it possible to produce grain morphologies representative of real 

geomaterial particles in large quantities. Furthermore, the range of materials has expanded, facilitating the 

fabrication of complex grains with fixed morphology for different material properties. These capabilities now 

allow independent control of morphology and material properties. 

The simulation of realistic geomaterial grain morphologies is of value, not only in 3D printing but also for discrete 

element method (DEM) models of granular materials (Matsushima et al., 2014). Such methods have often assumed 

simplified geometries such as spherical or circular elements (Persson and Frenning, 2012, Cundall et al., 1979), 

clustered spheres or disks (Thomas and Bray, 1999), polygons (Alonso-Marroquín et al., 2008) or sphero-

polygons (Alonso-Marroquin, 2008, Alonso-Marroquín and Wang, 2009) and polyhedra (Langston et al., 2013). 

While these simplified geometries may be utilised effectively on a case by case basis, the hierarchical origins of 

surface-localised physical behaviour in geomaterials means that more complex approaches are necessary for the 

purposes of describing, predicting or explaining the morphological dependence of these characteristics (Alonso-

Marroquín et al., 2013, Hanaor et al., 2013).  

In naturally occurring geomaterials macroscopically observed properties of friction and contact stiffness between 

grains are, in addition to bulk properties, governed by surface structures, which exhibit self-affine geometries 

showing features across a range of length-scales (Russel, 2014, Hanaor et al., 2014). One can consider surface 

structures of granular material as an extension of hierarchical morphology exhibiting non-integer dimensionality 

(Arasan et al., 2011, Qin et al., 2013). Additionally, cohesion and capillary forces between grains are also 

governed by surface structures (Fraysse et al., 1999), further motivating the development of methods to 

characterise and model natural grain morphologies.  

Methods to describe and classify the morphologies of naturally occurring grains predominantly invoke measures 

of sphericity, roundness, convexity and roughness. These parameters have been defined in a variety of manners, 

and have been the subject of multiple reviews (Blott and Pye, 2008, Barrett, 1980, Pourghahramani and Forssberg, 

2005). Charts put forward by Krumbein and Sloss have frequently been employed for the conventional 

classification of geomaterials over the past six decades (Krumbein and Sloss, 1951). However, the use of these 

morphological descriptors is driven primarily by convenience rather than physical meaning. Geomaterial grains 

are not uniquely defined by this type of descriptor and while these parameters can be extracted from image analysis 

with ever increasing ease (Altuhafi et al., 2012, Liao et al., 2010), they are insufficient for the computational 

generation and printing of simulated geomaterial particles.  

Recent years have seen a growing interest in utilising Fourier descriptors to characterise particle shape on the 

basis of planar grain projections. This approach was first put forward in 1970 (Ehrlich and Weinberg, 1970) and 

utilises the Fourier spectrum of 2D contours to characterise grain morphology in terms of a series of numerical 
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descriptors (Bowman et al., 2001, Thomas et al., 1995). The notable advantage to the use of Fourier descriptors 

is their applicability in grain simulation procedures as pioneered by Mollon and Zhao over recent years (Mollon 

and Zhao, 2012, Mollon and Zhao, 2013a).  

The ability to print surrogate granular material offers new research methods that can assist in establishing the 

micromechanical origins, and the role of morphology and material properties, on the behaviour of granular 

materials. Importantly, the concept of printable granular geomaterials offers an avenue to “standardise” soil for 

quality control and calibration in geotechnical testing.  Currently standard materials in geotechnical laboratories 

are mineral sands and soils from particular geological sources, e.g. Ottawa sands (Tarnawski et al., 2009). This 

limitation could be overcome if the ability to fabricate uniform and consistent geomaterial specimens with 

controlled standardised properties can be attained.  

In order to realise the opportunities afforded by 3D printing techniques in the study of granular materials, two 

identifiable criteria must be met: (i) simulated granular matter must be meaningful and realistic representations of 

the materials of interest; and (ii) parameters utilised in the generation of simulated granular matter should be 

readily acquirable from real materials.  

In this paper we present and discuss methods for the three dimensional simulation of realistic granular materials 

for application in 3D printing of standardised surrogate geomaterials, and show examples of the 3D printed 

particles produced. We further present results showing the ability of a bulk quantity of the printable material to 

capture real sand behaviour under drained triaxial loading conditions, and examine issues relating to the utilisation 

of these methods in the study of micromechanical interactions in granular materials. 

 

2. Materials and methodology: 

For the different approaches presently reported, simulated grains were generated in a Matlab environment and, 

with all methods, individual grains were described by discrete sets of corresponding vertices and faces. 

Additionally, subsequent to scaling, single grains or sets of multiple grains were converted into a Standard 

Tessellation Language (STL) format suitable for visualisation by computed aided design (CAD) software and for 

fabrication by 3D printing methods. Using these methods, grains can be generated in alternative computational 

environments and alternate output formats can be used. Fabrication of the grains reported here was carried out 

using layer by layer photo-polymerisation by means of an Objet Eden 250 poly-jet type 3D printer with a spatial 

resolution of 32μm using Fullcure 720 resin (Stratasys, USA) in a layer by layer printing method. The cured 

polymer has a specific gravity of 1.19 and an elastic modulus of approximately 2 GPa. 

 

2.1. Method 1. Fractal Surface Overlay (FSO) 

Natural materials tend to exhibit multi-scale surface structures featuring statistical self-similarity or fractality. For 

interfaces this fractality is quantified by reference to macroscopically flat surfaces. The same approach can be 

applied to define the morphology of grains by their interface structure across multiple scales overlaid on a 

spheroidal or polygonal macrostructure. 

The Ausloos-Berman type variants of the Weierstrass Mandelbrot function are used for the generation of fractal 

surfaces with stochastic highest level features. In macroscopically flat surfaces this can be used for the simulation 

of realistic surfaces. In such macroscopically planar surfaces the surface height function can be described in polar 

coordinates (ρ,θ) in the following form (Yan and Komvopoulos, 1998, Ausloos and Berman, 1985, Komvopoulos, 

2008, Ciavarella et al., 2008, Hanaor et al., 2015) 
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      (1) 

Here n corresponds to consecutive frequency exponents and, as with previous work, in this approach M and nmax 

define the number of superimposed ridges and frequencies used to construct the surface and it was found that a 

value of M = nmax = 40 gives a sufficiently random surface structure, such that parallel ridge networks are absent 

as observed in the present and prior work (Hanaor et al., 2013). γ corresponds to a scaling factor relating to the 

density of frequencies used to construct the surface and is set at 1.5 similar to previous work  (Ciavarella et al., 

2006, Yan and Komvopoulos, 1998), αm is an arbitrary angle used to offset asperity ridges in the azimuthal 

direction, D is the fractal dimension, and L is a stochastic length parameter.  

In applying this method to the simulation of grain surfaces, varying the stochastic length parameter L, at lower 

values allows for the control of the nodularity, the number of highest scale nodes protruding from the grain, or at 

higher values (L>πr) allows for the control of grain elongation simulated, using a variant of Eq. 1. To implement 

this, a geodesic sphere is simulated at a desired resolution on the basis of an icosahedral primitive unit to yield 

evenly distributed () pairs where  [0 2π] is the coordinate azimuth and  [0 π] is the elevation. The vectors 

representing the surface coordinates are adjusted to give a fractal surface structure overlaid on the geodesic sphere. 

This is done separately for the two hemispheres to avoid symmetry about the equator. For vertices in the first 

hemisphere, having ≤π sphere radii are adjusted in the following form 
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where R0 is the radius of the initial geodesic spheroid,  is a random phase angle and K is an amplitude scaling 

parameter. For coordinates in the second hemisphere, having values of >π radii are adjusted as follows 
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To impart surface structure randomness, a set of randomised phase angles   of the size M × nmax is included, 

given by a uniform distribution )2,0(,  Unm  . To avoid symmetry, for the surface of the lower hemisphere 

where ≤π a second phase angle ζ is included and multiplied by the term cos to give continuity of the surface 

across the equator (where = π A scaling factor K is included in order to normalise the amplitude of the surface 

features to a desired level relative to the initial geodesic spheroid radius R0. 

The results of this grain generation method and the effects of varying the stochastic length parameter are shown 

in Figure 1. By varying the proportional size of L relative to the grain radius, it is possible to create grains with a 

varying number of highest level features which can yield oblong, nodular or rough grain morphologies as shown. 

It can be seen that low L/R values tend to yield unrealistic grains exhibiting a large number of protrusions. 
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Figure 1. Grains simulated using the FSO method with the stochastic length parameter (L) varied relative to grain 

radius from 0.1R to 10R. Fractal Dimension is maintained constant at 2.4. 

For a given value of L/R, the fractal dimension D can be varied to yield controlled surface-structure scaling 

behaviour illustrated in Figure 2. As with the stochastic length parameter excessively high or low fractality values 

leads to unrealistic grain structures in the simulated geomaterials. 

 

 

Figure 2. Grains simulated using the FSO method with the applied fractal dimension (D) varied from 2 to 2.8. Stochastic 

length parameter is constant at L=7R. 

In the present work the precursor shape from which grains are created is a geodesic sphere. However, equivalent 

methodologies can be implemented using geodesic precursors generated by 3D Voronoi tessellation or other 

methods similar to previously reported approaches (Mollon and Zhao, 2012, Mollon and Zhao, 2014, Pena et al., 

2007). By adjusting the magnitude of the barycentric vectors of the primitive geodesic object, particle 

morphologies are created such that all rays emanating from a definable central point within the particle intersect 

the particle surface exactly once. Such morphologies are also referred to as star-like (Robertson, 1936, Natalini et 

al., 2008). Owing to the complexity in fractal surface analysis of granular materials, with this method there are 

difficulties in simulating grains on the basis of parameters extracted from real geomaterials.  

 

2.2. Method 2. Contour rotation interpolation (CRI) 

The morphological characterisation of granular materials using image processing based methods, with initial data 

acquired through electron microscopy or optical methods, frequently yields 2-dimensional grain contours or 

polyhedra as output. These geometries describe planar projections of grains, as described by Cartesian or polar 

coordinates. Additionally, the computational simulation of geomaterial morphology is often conducted towards 
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the generation of such 2D geometries owing to the greater speed with which such algorithms can be implemented 

relative to 3D grain generation. 

A novel computational method for generating realistic 3D grain morphologies on the basis of the interpolation of 

three 2D grain contours was first developed and reported in a recent publication by Mollon and Zhao and has been 

described in greater detail elsewhere (Mollon and Zhao, 2012, Mollon and Zhao, 2013a, Mollon and Zhao, 2014). 

Generating particles by CRI relies in principal on the generation of three closed grain cross sections, like those 

shown in Figure 3, followed by processes of contour correction, revolution, stretching and morphing in order to 

render a morphology that amalgamates the three grain projections into a single 3D object. A variety of methods 

can be used to obtain realistic grain sections. In Figure 3 we show examples generated by a fractal surface profile, 

Fourier descriptors and from a sand grain micrograph. 

This method generates 3D geometries where each surface point is defined by a distinct coordinate (ρ,θ,φ). Thus, 

as with grain generation by FSO, this method yields starlike objects and does not allow for the generation of 

branching or porous morphologies. 

On the basis of Mollon and Zhao’s methods, contours can be generated by means of a Fourier construction, with 

the modes of the amplitude spectrum, known as Fourier Descriptors (FDs). Fourier descriptors 2,3 and 8 have 

been shown to respectively relate to characteristics of elongation, irregularity and roughness, while the remaining 

descriptors are calculated following an assumed regression (Mollon and Zhao, 2012). In order to generate a 

realistic population of non-uniform particles, a randomised set of phase angles, generated in Matlab, is included 

to decompose the Fourier descriptors into the elements of the Fourier spectrum which can then be used to generate 

a unique grain contour , such as that shown in Figure 3(b). The construction of a 3D grain by CRI of FD based 

contours can utilise contours generated with a constant set of descriptors, or may utilise three contours each of 

which is generated using divergent descriptors, to account for anisotropy effects. 

It is important to note that these descriptors can be derived from the Fourier transform of the 2D grain contours 

which can be obtained from the analysis of grain micrographs by SEM or optical microscopy, such as that shown 

in Figure 3(c).  

Additionally, CRI based grain generation can be carried out using fractal surface profiles as input 2D contours. 

These contours, such as that shown in Figure 3(a), can be generated by adjusting radii of a circle following 2D 

variants of Eq. 1, where θ is held constant. 

 

  

 

 

Figure 3. Sample grain contours from three sources, a simulated fractal grain profile, Fourier descriptors based 

contour simulation and a grain micrograph obtained by optical microscopy. 

(a)_ (c)_ (b)_ 
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The integration of three scaled grain contours following the interpolation procedure of Mollon and Zhao results 

in the simulation of 3D grains such as those shown in Figure 4.  This figure shows grains each of which were 

generated from three FD defined contours. In Figure 4(a) contours are generated from three different FD sets 

while in Figures 4(b) and 4(c) all three contours are generated using the same FD set. The grains thus produced 

exhibit irregularity typical of natural particles, however the interpolation method currently employed yields some 

unrealistic parallel ridges. 

 

Figure 4. Sample grains simulated by the CRI method using Fourier descriptor derived contours  

2.3. Method 3. Directed Polyhedra Aggregation (DPA)  

Naturally occurring geomaterials occasionally exhibit morphologies that are not star-like or fully dense and thus 

cannot be described by a unique set of (ρ,θ,φ) coordinates. In soils, sediments, organic matter and precipitates, 

branching and porous forms are often encountered and the morphologies of these particles, which can be described 

as fractal structures are of growing interest in numerous applications (Hanaor et al., 2014). The ability to 

meaningfully simulate this type of particle is of value in enabling the study of the morphological dependence of 

hydrodynamics, mechanics, interfacial interactions and transport phenomena in granular media dominated by non 

star-like particles (surface points are not described by a unique set of vectors). Additionally tools for the simulation 

of porous and/or branching aggregates are of value for the study of particle formation in processes of aggregation, 

precipitation and agglomeration and the dependence of these processes on environmental conditions and system 

parameters (e.g. pH, temperature or surface charge). 

In contrast to methods, such as FSO and CRI, that generate particles by varying the surface structure of initial 

primitive geodesic spheroids or Voronoi type cells, the DPA method employs an aggregation algorithm to 

construct particles of varied porosity and volume fractality from many convex polyhedral primary particles. 

Comparable algorithms for the simulation of 3D and 2D aggregates from spheroidal and cubic primary particles 

have been reported in earlier works (Maggi and Winterwerp, 2004, Schmid et al., 2004, Erlebacher et al., 1993). 

In the presently reported DPA method the morphology of aggregate geomaterial particles was controlled using 

Matlab by the probability for the n-th primary particle to attach to an existing polyhedron with index i (1 ≤ i ≤ n-

1 ) with respect to the history of primary particle addition, where n-1 is the existing number of primary particles. 

Thus, the probability that an existing particle with index a ≤ i ≤ b is chosen to receive a newly placed n-th primary 

polyhedral particle is  

  (4) 
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 The n-th primary particle, described by face/vertex data is then added to one of the unoccupied faces of 

primary particle i . The probability Pr[a ≤ i ≤ b] is a function of the exponent ε; low exponent values result in 

preferential addition onto older primary particles yielding closed sphere-like aggregates, with little or no porosity 

(zero volume porosity is only possible when primary particles are cubic); high exponent values result in 

preferential addition of primary particles onto faces of recently added  particles, which are likely away from the 

aggregated centre of mass yielding branching aggregates. This approach is readily achieved in a Matlab 

environment by applying the exponent ε to a uniformly distributed pseudorandom selection from existing indices.  

The techniques explored here can be applied using various Platonic polyhedral elements (geometries where all 

faces are identical polygons) or Archimedean polyhedra (faces are of two or more types of regular polygon 

meeting at identical vertices) (Torquato and Jiao, 2009a). In the present work we demonstrate the application of 

this method using cubic and octahedral primary particles, shown respectively in Figures 5 and 6. Smoothing of 

sharp corners can be carried out by interpolation of the face-vertex data as illustrated for the aggregates shown in 

Figure 5. For the case of aggregation of octahedral primary particles, illustrated in Figure 6, in addition to the 

selection of a face on which to attach each new particle, the aggregation algorithm includes a step to select one of 

three possible rotational orientations for the newly attached octahedron. Moreover, while cubic aggregation occurs 

in a regular lattice, where sites are either occupied or vacant, for construction from octahedral elements, a further 

step is necessary to ensure that no intrusion into existing particles occurs. The simulation of fully dense aggregates 

is only possible with cubic elements as other Platonic or Archimedean solids do not allow fully dense spatial tiling 

(Torquato and Jiao, 2009b, Torquato and Jiao, 2009a). The use of octahedral or other non-cubic elements yields 

more porous aggregates even at high exponent values.  

 

 

  

Figure 5. Grains simulated using the DPA method with cubes, showing varied values of the exponent ε resulting in 

particles with controllable fractality 
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Figure 6. Grains simulated using the DPA method with octahedra, showing varied values of the exponent ε resulting in 

particles with controllable fractality 

 

3. Results and Discussion 

3.1. Particle simulation and fabrication 

The morphologies obtained by the three methods can be fabricated using 3D printing methods and are further 

utilisable in DEM models. Here we show the 3D printer output from the poly-jet fabrication of particles alongside 

computer renderings of the morphologies. 

Figure 7 shows the results of the 3D printing based fabrication of simulated grains generated by the FSO method. 

All features present in the simulated grain object are captured by the fabrication process employed. With less 

regular smaller scale features some distortion is found to occur about the grain equator for grains where the 

amplitude of roughness features is large relative to the grain radius. The generation of realistic surface 

morphologies necessitates the use of appropriate parameters of fractal dimension (D), stochastic length scale (L) 

and amplitude scaling (K) in the application of Eqs. 2 and 3. Simulated grains can be obtained using the FSO 

method with similitude to many rock and sand geomaterial particles in traditional terms of sphericity, surface 

roughness, convexity/concavity and elongation. However, anisotropic roughness, faceted surface regions, open 

pores and angular vertices are not achievable with this approach. 
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Figure 7. Comparison of printed (left) and simulated grains (right) obtained by the FSO method 

 

Grains simulated and fabricated using the CRI approach are shown in Figure 8. Similar to previously reported 

results obtained from this method, grains show anisotropic features in the form of tangentially parallel surface 

ridges. As with the FSO method this approach shares the disadvantage of not being able to readily facilitate the 

generation of grains with faceted regions and/or angular vertices, frequently encountered in natural geomaterial 

systems. Figures 8(a) and 8(d) were generated on the basis of the mean FDs extracted from the morphological 

characterisation of over 1000 grains of quartz sand. Figures 8(b) and 8(e) were obtained from Garnet sand derived 

FDs while Figures 8(c) and (f) show the CRI generated grain on the basis of 2D contours defined by fractal surface 

profiles. Examination of these objects shows that the particles produced are not representative of the original 

material, lacking facets and angularity and further suggests that the implementation of fractal surface structure 

generation is more appropriately carried out using methods of the FSO type. It should be noted that more recent 

published studies applying random field theory on a 3D grain surface have been shown to facilitate the application 

of grain FDs to generate more realistic grains featuring faceted geometries without the occurrence of parallel 

surface ridges (Mollon and Zhao, 2014). 
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Figure 8. Comparison of printed and simulated grains obtained by the CRI method 

 

Computer rendered and printed aggregate particles generated by the DPA methods described here are shown in 

Figure 9. While a wide range of realistic aggregate particles are obtainable from these methods, printed specimens 

exhibiting a highly branching or fractal structure are found to be fragile, particularly if a small primary particle 

size is employed.  

The morphologies that can be generated by DPA algorithms are applicable in the study of fractal aggregates such 

as the type often encountered in sedimentology. By constructing a calibration curve, it is possible to control the 

value of the exponent ε to yield a desired aggregate fractal dimension (DA) which corresponds to a term of the 

type: 

 (5) 

where V corresponds to the true particle volume and A relates to the mean linear size of the smallest bounding box 

possible. The evaluation of the fractality of aggregate particles in air, soils or aqueous media and the study of the 

physical and mechanical behaviour of such materials in a range of applications has motivated numerous studies 

in recent years (Tang et al., 2003, Tang et al., 2002, Tang and Raper, 2002, Tang et al., 2001, Sorensen, 2011, 
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Ahmadi et al., 2011). The ability to fabricate representative particles of controlled morphology and fractal 

dimension can facilitate the development and implementation of new integrated experimental and computational 

studies into the significance of particle morphology on mechanical properties, reactivity and mobility. Moreover 

DPA algorithms of the type demonstrated here can be adapted to simulate and study the heterogeneous 

precipitation and growth of particles from solute species through chemical and biological processes (Chekroun et 

al., 2004, Cölfen, 2003, Hanaor et al., 2012) and also the surface chemistry dependant growth of fractal particles 

from suspended solid elements through processes of attraction, aggregation, cementation and sedimentation 

(Kranenburg, 1994, Markus et al., 2015).  

 

Figure 9. Comparison of printed (left) and simulated grains (right) obtained by the DPA method 

3.2 Bulk material response 

Grains produced by the CRI method have been subjected to geomechanical testing in a triaxial apparatus to 

investigate their response during compression and shear. The CRI method was chosen to produce grains for this 

study as it allows the input of grain parameters obtained from natural geomaterials.  
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 Figure 10 shows a bulk print of 8,000 grains of mean diameter 2mm, which is sufficient for a triaxial specimen 

with dimensions of 38 mm diameter by 76 mm high. The grains are produced in one print with the same parameters 

so that they all have the same size but some variability in surface roughness. The process of printing and etching 

out this number of particles takes about 1 week. Triaxial tests have been performed using two grain shapes. These 

have been produced using Fourier Descriptors (0,0,0.02) referred to as rough spheres, and FDs (0.15, 0.10, 0.03) 

referred to as rough and angular and shown in the inset to Figure 10. 

The particles were placed dry, loosely and were tamped to form the triaxial specimens, which were then subjected 

to a small confining stress before being saturated by percolation of water followed by back pressure saturation. 

The specimens were then subjected to an effective confining stress of 20 kPa before performing conventional 

drained shearing tests. Figure 11(a) shows the evolution of stress ratio and Figure 11(b) the associated volume 

strains. Values of the void ratios at the start of shearing are indicated on the figures. The results for the rough 

spheres demonstrate shear behaviour typical of sand. The stress ratio (q/p) of the denser specimen rises to a peak, 

before reducing, with associated dilation, towards an ultimate state, while the stress ratio of the looser specimen 

rises gradually and the specimen compresses throughout. An ultimate state with a stress ratio of about 1.5 (friction 

angle of 37o) is suggested by these responses. This may be compared with an ultimate angle of about 38o indicated 

by tilt table tests. Two tests are shown for the rough angular particles and in each the material compressed and the 

stress ratio rose steadily until the tests were terminated at large strain where the specimens were highly distorted. 

The second test was a repeat test using the same particles to confirm the high resistance and also to investigate 

whether changes in shape of the soft particles could be influencing the shear behaviour. Although a few particles 

were noticeably changed, it can be seen that the bulk response is not significantly affected. The friction angle 

implied at the test termination was 55o. While this is unusually high, tilt table tests indicated an ultimate friction 

angle of 43-48o, significantly higher than for the rough spheres and suggesting that larger strains than can be 

applied in the triaxial test are required for this angular material to reach an ultimate state.  Although the shear 

responses are typical of geomaterials, during compression time dependent compressibility was observed as a result 

of the soft polymer comprising the grains, and further advances in material are needed to fully reproduce 

geomaterial properties. 

  

Figure 10. Bulk printed granular material with inset showing rough angular particle 
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Figure 11. Triaxial shear behaviour of printed grains (a) stress ratio, axial strain and (b) volume strain, axial strain 

4. Conclusions 

The generation of geomaterial grain morphologies by techniques such as those described here, facilitates the 

fabrication of surrogate geomaterials by 3D printing. Such materials are utilisable in experimental parametric 

studies where morphology and material can be decoupled. Here we have focused on methods that can be applied 

to generate realistic and printable grain morphologies. Preliminary triaxial tests have confirmed that the printed 

grains are capable of reproducing aspects of shear behaviour and the significant effect that shape can have on the 

bulk material behaviour.  

 

 The relative advantages and drawbacks of the different grain generation methods applied here are outlined in 

table 2: 
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Table 2: Summary of grain generation methodologies investigated in the present work.  

FSO: Superimposition of a simulated fractal surface on a 3D geodesic spheroid  

 Benefits:  Reproduction of natural isotropic multi-scale grain surfaces 

 Grain elongation control by varying highest level wavelength 

 Drawbacks:  Extraction of input parameters from real materials is challenging 

 Absence of smooth facets, angularity and pores 

 Branching morphologies cannot be simulated 

 Computationally intensive 

CRI: Interpolation and morphing of three 2D contours to generate a 3D surface 

 Benefits:  Input parameters can be readily extracted from 2D grain data  

 Captures properties of elongation, roughness and irregularities 

 Appropriate for studying the effect of varying morphology 

 Drawbacks:  Absence of smooth facets, angularity and pores 

 Anisotropic features in the form of parallel ridges 

 Branching morphologies are not represented 

DPA: Controlled assembly of polyhedral elements to yield branching aggregates 

 Benefits:  Reproduction of sediment particles and branching aggregates 

 Control of aggregate fractality by particle selection exponent 

 Input parameters can be extracted from particle characterisation 

 Drawbacks:  Surface roughness is not meaningfully represented 

 Cannot simulate solid monolithic particles 

 Computationally intensive 

 

 

There are two geotechnical research directions that will significantly benefit from the ability to decouple 

morphology and material by means of 3D printing techniques: (i) the variation of bulk constitutive behaviour with 

grain morphology can be studied for constant material properties; and (ii) the variation of constitutive behaviour 

with material properties can be studied while maintaining constant realistic geomorphology. The first direction is 

restricted by printing resolution, which was 32μm in the present work, while the second direction is limited by the 

available range of printing materials. However, we anticipate that rapid progress in 3D printing technology in 

terms of printing resolution, rapidity and material versatility will address these concerns. The capabilities of 

ceramic-material printers is continuously increasing lending to the prediction that rather than just surrogate 

geomaterials, future research involving the synthesis of artificial mineral geomaterials will be made possible 

allowing the fabrication of standardised reference geomaterials for quality control in geotechnical testing with 

further potential applications as a supplementary material in construction and ground improvement. 
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