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Epistasisin a fithess landscape defined by
antibody-antigen binding free energy

Summary

Epistasis is the phenomenon by which the
effect of a mutation depends on its genetic
background. While it is usually defined in terms
of organismal fitness, for single proteins it must
reflect physical interactions among residues.
Here, we systematically extract the specific
contribution pairwise epistasis makes to the
physical affinity of antibody-antigen binding
relevant to affinity maturation, a process of
accelerated Darwinian evolution. We find that,
among competing definitions of affinity, the
binding free energy is the most appropriate to
describe epistasis. We show that epistasis is
pervasive, accounting for 25-35% of variability,
of which a large fraction is beneficial. This work
suggests that epistasis both constrains, through
negative epistasis, and enlarges, through positive
epistasis, the set of possible evolutionary paths
that can produce high-affinity sequences during
repeated rounds of mutation and selection.
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I ntroduction

To ensure a reliable response and to neutralizdgiorpathogens,
the adaptive immune system relies on affinity mation. In this
process, antibody receptors expressed by B celldergn an
accelerated Darwinian evolution through random mota and
selection for affinity against foreign epitopes @y et al., 2015).
Mature antibodies can accumulate up to 20% hypetiomts from
their germline sequence (Marcou et al., 2018),ifeatb up to a 10,000
fold improvement in binding affinity (Eisen and Eisd, 1964).
Affinity maturation also produces broadly neutredg antibodies that
target conserved regions of the pathogen, of pdatidmportance for
vaccine design against fast evolving viruses (Camtl Lanzavecchia,
2013). Despite extensive experimental and the@etork, the key
determinants of antibody specificity and evolvabilare still poorly
understood, mainly because the sequence-to-affirgtgtionship is
difficult to measure comprehensively or to predecimputationally
(Esmaielbeiki et al., 2016).

A major confounding factor in characterizing thequsence
dependence of any protein function, including atiyin is the
pervasiveness of epistasis, the phenomenon by wiiitterent
mutations interact with each other (Phillips, 2008heory (Carter
et al., 2005; Good and Desai, 2015; Paixdao andoBar2016) and
genomic data (Breen etal., 2012) suggest that-irged intragenic
epistasis plays a major role in molecular evolytioy constraining the
set of accessible evolutionary trajectories towadapted phenotypes
(Weinreich etal., 2006; Poelwijk etal., 2007; @oet al., 2013;
Anderson etal., 2015; Podgornaia and Laub, 20¥s)hancing
evolvability through stabilizing mutations (Bloon &., 2006, 2010),
or slowing down adaptation by the law of diminighireturns (Chou
etal., 2011; Kryazhimskiy etal., 2014). Evidenfmr epistasis in
antibody affinity include direct observations ofoperativity between
mutations (Midelfort et al., 2004; Koenig et alQ1%), the dependence
of mutational effects on sequence background (Beyat., 2016), and
statistical co-variation of residues in large seuee datasets (Mora
et al., 2010; Asti et al., 2016).

Intragenic epistasis has mostly been studied eiitheneasuring the
fitness of all possible mutational intermediatesMeen two variants
(Weinreich etal., 2006; Schenk etal.,, 2013; Seenet al., 2013;
de Visser and Krug, 2014), or by comparing theatfed mutations in
different backgrounds (Jacquier et al., 2013; Bankl., 2015; Boyer
et al., 2016). Many such studies rely on a pariicatieasure of fitness
rather than a well-defined physical phenotype. Deepational scans
(DMS) (Fowler and Fields, 2014; Sarkisyan etalQl1@ can



comprehensively map out the epistatic landscapenahy genetic
variants (Araya et al., 2012; Olson et al., 201ddddrnaia and Laub,
2015). However, most DMS methods do not measurdithighysical

qguantity of interest directly (Vodnik et al., 201liptroducing both

nonlinearities and noise that could be misintegutets epistasis.

Here we analyze the detailed epistatic landscapenadntibody’s
binding free energy, which we define as the loparmitof the Tite-Seq
measurement of the dissociation constant, to igsate antigen (the 4-
4-20 antibody fragment against fluorescein), usdeja previously
obtained by Tite-Seq, a recently introduced DMS iardr that
accurately measures protein binding affinity in ghgl units of
molarity (Adams et al., 2016). By comparing to angie additive
model of mutations on the binding free energy, aatefully
controlling for measurement noise and nonlineatize find that
epistasis significantly contributes to the antibsdwaffinity. This
epistasis is not uniformly distributed, but instéadors certain residue
pairs across the protein. We use our results tdyzmdow epistasis
both constrains and enlarges the set of possibtdugenary paths
leading to high-affinity sequences.

Results

Position Weight Matrix model of affinity

We analyzed data from (Adams et al., 2016)
(https://github. com jbkinney/16_titeseq), where Tite-
Seq was applied to measure the binding affinittesadants of the 4-4-
20 fluorescein-binding scFv antibody, henceforthilech ‘wildtype’.
Libraries were generated by introducing mutatioons either the
CDR1H or CDR3H domains restricted to 10 amino asiicetches
called 1H and 3H (Fig. 1A). All single amino acidutants, 1100
random double amino acid mutants, and 150 triplsaracid mutants
were generated in multiple synonymous variants aneasured,
(Fig. 1B). Using a combination of yeast display dngh-throughput
sequencing at various antigen concentrations, Séig- yielded the
binding dissociation constaiy (in M or mol/L) of each variant with
the fluorescein antigen.

We first tried to predict th&qy of double and triple mutants from
single mutant measurements. Mutations are expeictealct on the
binding free energy in an approximately additiveyw#Vells, 1990;
Olson et al., 2014). One may thus write the freergy of binding,
F =In(K,/c,) (defined up to constant in units kT), as a sum over

mutations in the mutagenized regi@s(s,...,§):



F(S) = Fown (S) = Fur +§:h (s) 1)

where F,; is the wildtype sequence energy, ang is the effect of a
mutation at position to residues;. The elements of the Position-
Weight Matrix (PWM) h(s) are obtained from th&y of single

mutants shown in Fig. 1C. Since Tite-Seq measurtsrae limited to
values of Ky ranging from 10° to 10° for consistency PWM
predictions outside this range were set to the dapnvalues. The
PWM was a fair predictor of double and triple musaFig 1D),
accounting for 62%p<10°%, F-test) of the variance for 1H mutants and
58% (<108 F-test) of the variance of 3H mutants. In coriras
simple model based on BLOSUMG62 scores (tuksza .etz017)
achieved far loweR?® scores of 22 and 3% for the CDR-1H and 3H
domains, respectively (see Fig. S1).

The unexplained variance missed by the PWM mode}l have
four origins: convolution with expression, nonlineaeffects,
measurement noise, epistasis. Tite-seq was devklgpecifically to
separate the measuremelly and expression. From Pearson’s
correlation between expression and Kg( we find that expression
explains 6 and 12% of the’ for CDR1H and CDR3H, respectively
(Fig. S2). Furthermore, the residual from the PWNMediction,

F - F.w, had almost no correlation with expressi®<Q.1% for 1H,

R’<0.2% for 3H, see Fig. S2). Log transformed expoesvalues
yielded similar but smaller contributions. The gsmto“nonlinear
effects" case corresponds to the hypothesis otiaiginot being valid
for F=In(K,/c,), but for some other nonlinear transformationFof

Such a nonlinearity, also called “scale,” can léadpurious epistasis
(Fisher, 1918; Phillips, 2008). We first checkedtthdditivity did not
apply to the untransformed dissociation const&gt,a PWM model
learned fronKy instead of could only explain 34% of the variance of
all 1H and 3H multiple mutants, down from 62% wiearning fromF
(Fig. S3). Refitting Tite-seq values with no boundaonstraints
yielded much worse PWM models, largely attributatite poor
estimates of poorly binding antibodies (Fig. S4)e Wen looked for
the non-linear transformatioB(F) that would give the PWM model
with the best predictive power (Methods and Fig.S%his
optimization yielded only a modest improvement t6%6 of the
explained variance. In addition, the optimal fuontE was very close
to the logarithm RP=97%, Fig. S6). Since nonlinear effects do not play
a significant role, henceforth we only consider V&M model defined
on the free energy.



Epistasis affects affinity

To identify epistasis, we estimated the differenicetween the
measured binding free energies of double and tnpléants F(s), and
the PWM prediction, F,,,(s) (Fig. 2A). However, these small

differences can be confounded by measurement rfeese Fig. S7),
which can be mistaken for epistasis. To control tlis noise, we
defined Z-scores between two estimates of thedneggy, F, and F,,

as Z=(F,—-R)/\o;+0;, where g2 and g; are their estimates of

uncertainty. Uncertainty was either measured aawvee from replicate
measurements and synonymous mutations, or as theSwuariances
from additive PWM contributions depending on cohteWe first
computed Z-scores between independent estimatéseosame free
energy using synonymous variant<Z ( , Methods). Excluding

mutants at the reliable readout boundat@{°M <K, <10°M), we
found that the distribution ofZ was normal with variance:1l

error

(Fig. 2B, orange line), as expected from Gaussiaasurement noise.
A comparison between Tite-seq measurements aneésitgmmeasured
from flow cytometry was also approximately normathwariance=1
(Fig. S8), meaning that Tite-Seq introduced no esysitic errors in
addition to those estimated from replicates.

We then estimated the effect of epistasis by catmg Z-scores (
Z,,) from the difference between the PWM predictiég,,, (Eq. 1),

and the measurel. The resulting distributions of Z-scores (Fig. 2A,
blue and red lines) had much larger variances #vgrected from
measurement noise (standard deviation 1.76 forahld,3.18 for 3H),
indicating strong epistasis. These epistatic effagere on average
slightly beneficial (positiveZ): 18% of double mutants inside the
reliable readout boundarie$q*°M < K, <10°M) showed significant
beneficial epistasisZ,; >1.64, corresponding tp<0.05 in a one-sided
Z-test), and 12% significant deleterious epista¢ig,; <-1.64).
Comparing the variance &, with that of Z,  gives a large fraction

of the unexplained variance that is attributable epistasis,
1—Var(Zermr)/Var(Zepi) =60% for 1H, and 88% for 3H. While clones

at the reliable readout boundaries under-estimatedsurement error,
their inclusion yielded more extreme results (H§). PWMs trained
from optimal transformations had almost no effect epistasis
estimates (Fig. S10).

To determine whether certain positions along theusece
concentrated epistatic effects, we computed thennsgaared Z-score



for all double mutations at each pair of positigagcluding median
boundary values), revealing a complex and heteemenlandscape of
epistasis (Fig. 2C, see Fig.S11 for the epistasisgnitude
superimposed on the wildtype’s crystal structutl€PR3H, which
interacts directly with the antigen, is observed have more
epistatically interacting sites than CDR1H. Intéregly, the three most
epistatic pairs in 3H — between positions 101, 06 108 — are
mutated in the previously described super-optimizetb.3 antibody
(Boder et al., 2000) (mutations shown in greenim EB), consistent
with previous suggestions that positions 101 angl ih@ract together
and with position 108 via hydrogen bonds (Midelfettal., 2004;
Adams et al., 2016). Epistasis is usually expebttd/een residues that
are in contact in the protein structure (Romeral.et2013; Morcos
et al., 2011; McLaughlin etal., 2012; Zhang et 2013; Melamed
et al., 2013), as for instance between positiorisdtd 106. However,
the mean squared Z-score is only weakly correlatéth residue
distance 1(=-0.13p=0.22 for 1H,r=-0.27p=0.022 for 3H, Fig. S12).
Additionally, while distance to antigen have bebown to predict how
strongly mutations affect binding affinity (Brenk al., 2012; Kepler
et al., 2014), we did not detect a strong relatigmbetween epistatic
contributions and distance to antigen=40.24p=0.511 for 1H,
r=0.19p=0.603 for 3H, Fig. S12F). This may be due in gartthis
study’'s mutated region being too close to the entigp detect an
association: 12 out of the 20 mutated residuessitén 10 A of the
antigen, and all 20 are within 16 A.

We next looked for evidence of “sign epistasis,” end one
mutation reverses the sign of the effect of anothetation (Fig. 2A).
Sign epistasis can constrain evolution by blockipgths to fit
sequences (Weinreich et al., 2006; Poelwijk et20]11; Weinreich
et al., 2005). We defined a Z-score for a singléation A quantifying
the beneficial effect of that mutation relative the noise,

Z,=(Fwr—Fa)/ 0, whereF,; and F, are the wildtype and mutant

free energies, anglis the measurement error estimated as beforee Sinc
we are only interested in the sign of the effec, kept single mutants
at the reliable readout boundary. An equivalent@rs was defined for

a mutation A in the background of an existing mutatioB:

Zus =(Fs—Fus)/\OA+ 04, Where F,; is the free energy of the
double mutant AB. Significant sign epistasis wasfingel by
Z,6Z, <0 and |Z,g|,|Z,|>1.64, and reciprocal sign epistasis by the
additional symmetric conditiod  B.

With a 5% false discovery rate (Benjamin Hochbamcpdure) we

found 52 significant sign epistasis examples. Thaee listed in
S1 _tabl e_sign_epistasis.csv and summarized in Tables S1



and S2. Deleterious sign epistasis was exceptiaitl, 3 instances in
1H and 6 in 3H. These cases, as well as the fost significant cases
of benefecial sign epistasis are depicted in FIg.SThese mutants
represent evolutionary trajectories blocked dueth® poor binding
affinity of their single mutations. Among caseseamh both single

mutations were deleterious, we found 4%<(10*°, Binomial test) of

mutants in 1H and 0.8% p(<107, Binomial test) in 3H with

significant beneficial epistasis, versus 0.06% eigx by chance (the
null expectation, which takes into account the tamst that

Z,+Zyy=Zy+Z,5, is defined in the Methods); 1%p&107°,
Binomial test) were reciprocal in 1H, and 0.4%<(10"°, Binomial

test) in 3H, versus 0.01% expected by chance. Bluate how these
epistatic interactions may affect affinity matuoatj we estimated how
often “viable” double mutants were separated frdra wildtype by
nonviable single mutants, where viability is definey Kq < 10° M
(Batista and Neuberger, 1998; Foote and Eisen, ;1B@®st et al.,
1995), forming possible roadblocks to affinity maiiion. This strong
instance of “rescue” epistasis occurred in roudid{f of the mutants
with beneficial sign epistasis (Table S1 and S2).

Modeling epistasis and itsimpact on affinity
maturation

To integrate the observed epistatic interactiots anpredictive model
of affinity, we introduced a model of binding freeergy as:

F (S) = Fpairwise(s) = Fowm (S) +ZJ” (S’ 5 )’

i<j
where J; is the interaction strength between residues sitiposi and

j. To avoid overfitting and allow for independentligation (in the
absence of a sufficient number of triple mutanis),grouped residues
into 4 biochemical categories (Voet and Voet, 200iblar, nonpolar,
acidic, basic, see Methods) and let the entriesarfly depend on that
category.

We trained the model on the 1208 1H or 1216 3H toabhd triple
mutants, using a Lasso penalty to control for aiter§. The optimal
penalty was set by 10 fold cross-validation, i.g. rbaximizing the
explained variance of a subset comprising 1/1hefmutants by using
a model trained on the remaining 9/10, averaged the 10 subsets
(Fig. S14A and Methods). Interacting pairs with teosr probabilities
>0.95 as determined by Bayesian Lasso (Park andll&ag008) are
shown in Figs. 2D and E.

(@)



Out of the 360 possible terms, 52 1H and 45 3Hacteon terms
were identified by this method. Although these nattions, whose
number is limited by the number of measured vasiaohly modestly
improved the explained variance relative to the P\wiMall multiple
mutants (from 62% to 64% for 1H and from 58% to 6% 3H), it
substantially improved the affinity prediction ofiet mutants with
significant epistasis)e from 27% to 50% in 1H, from 13% to 44% for
3H, Fig. S14B-C). In contrast, a null linear regiea model based on
the Miyazawa-Jernigen matrix had negligible impmeat onR? (see
Fig. S15) (George et al., 2017) Notably, two muotasi of the super-
optimized 4m5.3 antibody are predicted by the maadéiave epistatic
interactions: a slightly deleterious effect betweégp, andL0s, and a
strongly beneficial one betwe&, andL;os. While these results show
some generalizability of biochemical propertiese tborresponding
model only accounts for a small faction of the &ade explainable by
epistasis. A more sophisticated approach may beamad for fully
predicting epistatic contributions.

Next we wused our models to estimate the diversity,
“degeneracy”, of antibodies with good binding aitfm Specifically,
we evaluated the degeneracy volumef high-affinity sequences as
the number of sequences wkh <B, using either the PWM (Eq. 1) or
pairwise (Eqg. 2) models, using a combination ofeexdtive and Monte-
Carlo sampling (Methods). Compared to the coaraégigd pairwise
model trained previously, the interaction strengjitias learned directly
for each residue pair, without grouping by biocheahicategory and
with no Lasso penalty. The volume of 1H mutants {@ager than that
of 3H mutants (Fig. 2F), in agreement with the fhett CDR3H plays
a more important role in binding affinity. Epistasincreased the
recognition volume for both domains, consistenthwibe previous
observation that epistatic effects are, on averagee beneficial than
deleterious. To explore the diversity of evolutipngaths leading to
recognition, we computed the neutral mutationak #uin and out of
the high-affinity region as the probability thatandom mutation in a
high-affinity sequenceKy < B) causes loss of recognitioK{ > B),
summed over all high-affinity sequences (MethoAg)gin, our models
show increased mutational flux due to epistasisneafter normalizing
by volume, A/V (Fig. 2G). The effect is small, but only refledtse
impact of epistasis from the limited, randomly olosset of double
mutations that we measured, which comprises oo of all possible
double mutations of a 10 amino acid sequence (I®58DR1H, and
1066 for CDR3H, out of 16245). We speculate th#fecences in flux
arising from all epistatic interactions may be opl6 fold stronger.
Adding explicit selection to the mutational modelwid also affect the
results, but would require to make additional agstions about how



binding affinity and selection are linked. The mabimutational flux
analysis allows for comparisons that do not depmnguch an explicit
model of selection.

We checked that these differences were robust nlgag noise

and overfitting by performing a jackknife analygip<10™ for the

difference inA andV between the PWM and pairwise models, see
Methods), and verified that similar conclusions evebtained based on
the optimized non-linear transformation (Fig. S16).

Discussion

By analyzing massively parallel affinity measuretseobtained by
Tite-Seq, we obtained a detailed picture of epistasa well-defined
physical phenotype — the binding free energy ofaatibody to an
antigen. Here we define the free energy as theritbga of the
dissociation constant as measured by Tite-Seq lamdy¢ast display
assay. While our analysis of epistasis strictlyliggpto that measured
phenotype and not directly to the free energy,eéhe® quantities are
believed to be equivalent (Van Antwerp and Wittri#000). We
showed that antibody sequences contain many dpistaéractions,
and that many of these interactions increase &ffif@ur approach
involves first training an additive (PWM) model asbaseline, and
identifying departures from that model as epistdsishis comparison,
a crucial step was to correct for the two issuessoéle and
measurement noise.

The first issue, identified by Fisher (Fisher, 1p38d also called
unidimensional epistasis (Szendro et al., 2013)thes idea that an
epistatic trait becomes additive upon a differeargmetrization (Sailer
and Harms, 2017a). For instance, protein stabilighich often
determines fitness, is a nonlinear function of fbleling free energy
difference, which is expected to be roughly additiBloom et al.,
2005; Bershtein et al., 2006; Jacquier et al., 2@&ng et al., 2013;
Serohijos and Shakhnovich, 2014; Bank et al., 2@dkisyan et al.,
2016). This leads to both a law of diminishing reti(Bank et al.,
2015) and robustness to mutations when the prageivery stable
(Bloom et al., 2005). To disentangle these poterdidifacts, we
defined our PWM on the binding free energy, whioh expect to be
additive in sequence content, and we checked ligparametrization
was close to minimizing epistasis.

To tackle the second and perhaps more importane is$ noise,
especially in the context of deep mutational seanere many variants
are tested (Araya etal., 2012), we developed astomethodology
based on Z-scores to identify epistatic interacticas significant
outliers. This analysis showed that the variabilitpinding free energy



consists of 160% of additive effects,|25-35% of epistatic effects, and
the rest of experimental noise, making the eptstantribution to the
phenotype substantial compared to that of singléatiums. A large
fraction of that epistasis was beneficial, in castrwith previous
reports of mostly negative epistasis owing to thecavity of the scale
(Bershtein et al., 2006; Schenk et al., 2013; Ban&l., 2015), which
we here circumvent by directly considering the feeergy.

Epistasis is key to understanding the predictabiliand
reproducibility of evolutionary paths (Lassig etal 2017,
Kryazhimskiy et al., 2014). Previous studies havewm that much of
the unexplained phenotypic variance could be empthiby second-
order epistatic terms, although specific evolutigrieajectories may be
sensitive to higher order epistatic terms (Sailed &larms, 2017b;
Poelwijk etal., 2017). Our results show how secordkr epistasis
could constrain the space of possible hypermutatmactories during
affinity maturation, with important consequences #mtibody and
vaccine design, as the importance of eliciting oesgs of antibodies
that are not just strongly binding but also evoleabs being
increasingly recognized (Wang etal.,, 2015). Tangetepistatic
interactions may provide an alternative strategy fiptimizing
antibody affinity: among the 2 epistatic hotspatsGDR1H and 11 in

epi

in the super-optimized 4m5.3 antibody sequenceh vét higher
epistatic contribution than expected by chances Thconsistent with a
previous study where an antibody with multiple @ynfations
acquired mutations that stabilized the antibodycstire, resulting in a
single conformation (Wedemayer et al., 1997). Wsp abentified 3
cases of beneficial sign epistasis, in which thebl® mutant was fit
despite the single mutant being deleterious. Fetainte, the D108E
mutations in 4m5.3 is deleterious by itself burascued beyond the
wildtype value by the S101A mutation (Midelfortadt, 2004), which
occurred first in the directed evolution procesed®r et al., 2000). We
report 15 extreme cases of viabl €10° M) double mutants whose
single-mutant intermediates are nonviable, posdibbcking affinity
maturation. However, our analysis of the volume andational flux
of the region of low binding free energies in segeespace suggests
that epistasis facilitates the evolution of highirafy antibodies (Fig.
2F,G). Therefore, we speculate that interactiorth wie non-mutated
parts of the sequence and evolution of the antigeding partner can
either add further constraints or open up additipa¢hs.

Antibodies pose unique questions about the evdityabof
evolution (Wagner and Altenberg, 1996). What sérsexjuence space
would favor quick accessibility while maintainingsanall number of

1
CDR3H that we identified<(z2 >5 >3), 4 involved positions mutated

10



viable sequences (Perelson and Oster, 1979)? Asdapé could
contain small, permeable, easily evolvable recagmispaces, or could
contain large, hard to access, and robust sequelegEnding on the
prevalent epistatic contributions (Carter et &00%2). Such a bias could
suggest that the tradeoff of an epistatic landseapeld include fast
initial evolution, followed by slow incremental dution (Good and

Desai, 2014). Our observations, deviating aroundable antibody

variant, support a model where epistasis plays ssele role in

determining binding affinity than PWM terms, butuds still have far

ranging impacts. These impacts would include fagtal/slow long

term evolution, the blocking of paths to beneficrautations, while

paradoxically an increase in the accessibility ofigen recognizing
sequences.

Taken together, our results show the importanceaking into
account epistasis when predicting antibody evotutend guiding
vaccine design. We note that, while the yeast dispystem we studied
is highly correlated to alternative measures ofinaff (Gai and
Wittrup, 2007), antibodies could behave differentlyder alternative
environments. Specifically, a soluble antibody mayperience
different interactions with the environment anddubject to different
constraints than an antibody expressed on a cellglaface.
Nevertheless, our systematic approach for idengfyand quantifying
epistasis, which controls for scale and noise, loanused by other
investigators to analyze deep mutational scangaiem function in a
wide variety of biological contexts.
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Main figure legends

Figure 1 - Additive model of binding affinity. (A) 4-4-20 scFv
antibody sequence. Six complementarity determinggjons (CDR:
1L, 2L, 3L, 1H, 2H, 3H) are particularly importafior antibody
binding affinity. A library of antibody sequencesthvmutations in 10
amino-acid regions around the CDR1H and CDR3H dosavere
expressed using yeast displayB) (Using Tite-Seq, the binding
constantsky of all 600 single codon mutants, 1100 random deubl
codon mutants, and 150 random triple codon mutavese measured.
(C) The K4 of single mutants for 1H and 3H domains were umed
create position weight matrices (PWMs) to predioe taffinity of
double and triple mutant¥y measurements were restricted to the
reliable measurements interval ®°°-10" M. WT sequences are
marked with purple dots, optimized 4m5.3 mutati@me marked in
green dots. [)) Comparison between the PWM prediction and the
measurement oKq on double and triple mutants. PWM predictions
outside of our reliable readout intervaD(®*-10"> M) were evaluated
at the interval boundaries. The PWMs explainedyaificant portion of

the variance, as quantified by the explained vagaf (p<10° for
CDR1H, p<10™ for CDR3H, F-test for reduction in variance due to
PWM). PWMs trained from the binding free enerdy=In(K,/c,),

outperformed PWM trained fronkKy (Fig. S3) as well as models
without boundaries (Fig. S4).

Figure 2 - Quantification of epistasis. A) Epistasis is defined as
deviation from the PWM model, which assumes an taddeffect of
single mutations on the binding free ener‘@ytln(Kd/co) expressed
in units ofksT. Deleterious epistasis occurs when the measuredygn
exceeds the PWM prediction, beneficial epistasisutec when the
energy is less than the PWM prediction. Sign andprecal sign
epistasis examples are shown for a beneficial aotem. B)
Distribution of Z-scores, defined as the normalidediation from the

PWM prediction, Z,,; = (Fowy = F)/y/0° + 02 . Whereg?® and g3,

are the estimated errors &mand F,,,,. Kq at boundaries are removed.

Positive Z-scores indicate epistasis increasedisffi The Z score
standard deviation was much higher than expectad fneasurement

errors (Z,,,) for CDR1H (1.78,p<10™"°, Levene’s test) and CDR3H

(3.18, p<10™), meaning that the discrepancy between the PWM and
measurement is mainly due to true epistasly. $tandard Z-score
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deviation for each pair of positions along the sgme. This deviation
is higher at pairs of positions mutated in the stgpimized 4m5.3
antibody (green dots) in 3Hp£0.005, Mann-Whitney), but not in 1H
(p=0.36). (D-E) A model of biochemical epistatic iratetions between
polar, nonpolar, acidic, and basic residues waadfito the data using
LASSO regularization and tested by cross-validatielding D) 34
beneficial andE) 32 deleterious interaction terms. Line width deso
interaction strength.H) NumberV of amino-acid sequences of the 1H
(blue) and 3H (red) regions with dissociation canstbelowKy, as
estimated by the PWM model (dark color) or the tapis model (light
color). Epistasis enlarges the number of variants good affinity for
both 1H and 3H.®) Mutational fluxA (defined as the average number
of random mutation events from all possible seqasno cause the
dissociation constant to crod§;), normalized byV, showing that
epistasis also increases the accessibility ofégen of good binders in
sequence space. Differences between the PWM arstagpimodels
were robust to errors in the estimate of the intéva parameters (

p<107, Jackknife analysis).
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Contact for reagent and resources sharing

Further information and requests for resourcesraadents should be
directed to and will be fulfilled by the Lead Cocitalhierry Mora
(tnora@ ps. ens. fr).

Method details

Values of K4 as measured by Tite-Seq for variants of the 4-4-20
fluorescein-binding antibody (Adams et al., 201@n cbe found at
https://github. confjbkinney/ 16 titeseq. The scripts
used for the analyses presented here are availadle
htt ps://github. confrhys-m adans/ epi stasis_4_4_ 20.

Position Weight Matrix

The amino-acid sequence of the 10 amino acid btstof the CDR1H
or CDR3H domains are denoted by (s, ,s,). The corresponding

30-long nucleotide sequences are denotedvbyhe binding free
energyF(s) of an amino-acid variant is obtained as the measr 3
replicate experiments, and over all its synonymargants:

——ZZ In( (v.a)/cy), ©)
a vOS,(s)
where Sa(s) is the set of measured nucleotide sequencesréretiate

tosin replicatea, and N(s) =

a(s)‘ a normalization constant.

The elements of the PWM are defined Iqﬁq):F(s(i‘q))—FWT,

where "9 is the single mutant mutated at positidio residueg, and
h (0) =0 wheng is the wildtype residue at position

Optimal nonlinear transfor mation of the free energy

To test whether transforming through a nonlinear functiok&(F)
before learning the PWM could improve its predietipower, we
defined the nonlinear additive model:
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F(S) = f[EPWM (S)]9 Epyn (S) =Eyr+ Zhi (Si)’ (4)

where f =E™ is the inverse function &, ﬁi(q)=E(s(i’q))—EWT, and

E(s) IS evaluated similarly to Eq. 3:
$)=(L/N(s )Z% ELIn(Kq(v) /<)

To find the transformatiorE that gives the highest explained
variance while avoiding overfitting, we aimed to nimize the
following objective function:

O[] =] Epun(9)-E(9] +a [ aFlEr(F).

where the sum irs runs over double and triple mutants, ands a
tunable parameter.
Numerically, we parametrize the functi&(F) as piecewise linear:

E(F)=E x(F..—F)/JdF+E, x(F-F)dF for F<F<F,, whereF

are equally spaced grid point aloRg oF =F,, —F, and E, the value

of E at these points. The smoothing penalty is appratech by a sum
over the squared discretized second derivative:

[ df[E"(F) = Z(E,+1+E ~2E)*15F°.

We minimize O[E] ~O[E,U ,E,] as a quadratic function of its
arguments(Ei), while imposing boundary constraints on the PWM

prediction and the requirement tlats a increasing function ¢ (i.e.
E.. >E ), using the python package xopt (Andersen et al., 2013).

The hyper-parameter is evaluated by maximizing the generalized
cross-validation of the coefficient of determinatio

Z[EPWM E\S )]

RP=1-( s VR (6)

S

where E'® and E};,, are learned through optimizing Eq. 5, but after

removing from the dataset a subsBtof the multiple mutants
comprising one tenth of the total. The average veroten non-
overlapping subseS

This method was first tested on simulated datahBFA&M element

le.(q) was drawn from a normal distribution of zero mead variance
1, and thenkE,,, (s) was computed for each of the antibody sequences
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present in our data. Our simulated “measurement defined as a
function of a noisy realization oE=E,,,, +& (wheree is some

Gaussian noise) in three different ways: lindsE, exponential
F=expE), high-frequency  F=2E+sin(XE), and logistic
F=1/[1+exp(-E)]. ¢ was drawn from a centered normal distribution
with 1/2 the standard deviation &,,,,. F was then truncated to the

200th lowest and 200th highest values, to mimiekttbundary cutoff
in our measurements. Comparing our origi&a),, to our fit E shows

that our method is able to infer the true PWM modgetl a smooth
nonlinearity from noisy data (Fig. S5).

We then applied the method to the experimental.d&te cross-
validationR? is represented as a function of the smoothingrpetera
in Fig. S6A, and the corresponding optimal functii) in Fig. S6B.
The comparison between measurement and the PWMInsogleown
in Fig. S6C.

Z-scores

We used synonymous mutants to estimate our measatesrror. The
mean free energy of a nucleotide sequence is deinghe mean over

replicate measurements:(v) =<In(Kd (v, a))>a, and the standard error

o(v) is defined accordingly as the pooled error oveplicates.
Antibodies withKy or single mutant PWM contributions having median
values at the boundary valueskf*° or 10~ were excluded from the
analysis since these values artificially clustetha& boundary, leading
to underestimates of error.

The error Z-score was calculated between pairs wfleotide
sequences  with the same amino acid translation:

Zror (Vi V') = (F (V) = F (V) / lo(v)*+a(v)".

Epistatic Z-scores were estimated by calculatireg tteasurement
error over both replicates and synonymous variasta) Eq. 3:

2
> Y [In(Ky(va)/c)-F (9]
0_2 (S) _ .2 vOS,(s) (7)
N(s)(N(s)-1)
and the pooled standard error for a PWM predictaabculated as the
sum of measurement errors from single mutations:

T (9)= iZaf (s). (8)
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where o, (q) :a(s("q)), and 0, (g) =0 wheng is the wildtype residue
ati. The epistatic Z-score is defined as:
Foww () —F () .
T*(8) + T (9)

Z,, (S) = \/ 9

Null model for sign epistasis

To calculate p-values for sign epistas