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Epistasis in a fitness landscape defined by 
antibody-antigen binding free energy 

 
Summary 

 Epistasis is the phenomenon by which the 
effect of a mutation depends on its genetic 
background. While it is usually defined in terms 
of organismal fitness, for single proteins it must 
reflect physical interactions among residues. 
Here, we systematically extract the specific 
contribution pairwise epistasis makes to the 
physical affinity of antibody-antigen binding 
relevant to affinity maturation, a process of 
accelerated Darwinian evolution. We find that, 
among competing definitions of affinity, the 
binding free energy is the most appropriate to 
describe epistasis. We show that epistasis is 
pervasive, accounting for 25-35% of variability, 
of which a large fraction is beneficial. This work 
suggests that epistasis both constrains, through 
negative epistasis, and enlarges, through positive 
epistasis, the set of possible evolutionary paths 
that can produce high-affinity sequences during 
repeated rounds of mutation and selection. 
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Introduction 
To ensure a reliable response and to neutralize foreign pathogens, 

the adaptive immune system relies on affinity maturation. In this 
process, antibody receptors expressed by B cells undergo an 
accelerated Darwinian evolution through random mutations and 
selection for affinity against foreign epitopes (Cobey et al., 2015). 
Mature antibodies can accumulate up to 20% hypermutations from 
their germline sequence (Marcou et al., 2018), leading to up to a 10,000 
fold improvement in binding affinity (Eisen and Siskind, 1964). 
Affinity maturation also produces broadly neutralizing antibodies that 
target conserved regions of the pathogen, of particular importance for 
vaccine design against fast evolving viruses (Corti and Lanzavecchia, 
2013). Despite extensive experimental and theoretical work, the key 
determinants of antibody specificity and evolvability are still poorly 
understood, mainly because the sequence-to-affinity relationship is 
difficult to measure comprehensively or to predict computationally 
(Esmaielbeiki et al., 2016). 

A major confounding factor in characterizing the sequence 
dependence of any protein function, including affinity, is the 
pervasiveness of epistasis, the phenomenon by which different 
mutations interact with each other (Phillips, 2008). Theory (Carter 
et al., 2005; Good and Desai, 2015; Paixão and Barton, 2016) and 
genomic data (Breen et al., 2012) suggest that inter- and intragenic 
epistasis plays a major role in molecular evolution, by constraining the 
set of accessible evolutionary trajectories towards adapted phenotypes 
(Weinreich et al., 2006; Poelwijk et al., 2007; Gong et al., 2013; 
Anderson et al., 2015; Podgornaia and Laub, 2015), enhancing 
evolvability through stabilizing mutations (Bloom et al., 2006, 2010), 
or slowing down adaptation by the law of diminishing returns (Chou 
et al., 2011; Kryazhimskiy et al., 2014). Evidence for epistasis in 
antibody affinity include direct observations of cooperativity between 
mutations (Midelfort et al., 2004; Koenig et al., 2015), the dependence 
of mutational effects on sequence background (Boyer et al., 2016), and 
statistical co-variation of residues in large sequence datasets (Mora 
et al., 2010; Asti et al., 2016). 

Intragenic epistasis has mostly been studied either by measuring the 
fitness of all possible mutational intermediates between two variants 
(Weinreich et al., 2006; Schenk et al., 2013; Szendro et al., 2013; 
de Visser and Krug, 2014), or by comparing the effect of mutations in 
different backgrounds (Jacquier et al., 2013; Bank et al., 2015; Boyer 
et al., 2016). Many such studies rely on a particular measure of fitness 
rather than a well-defined physical phenotype. Deep mutational scans 
(DMS) (Fowler and Fields, 2014; Sarkisyan et al., 2016) can 
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comprehensively map out the epistatic landscape of many genetic 
variants (Araya et al., 2012; Olson et al., 2014; Podgornaia and Laub, 
2015). However, most DMS methods do not measure the biophysical 
quantity of interest directly (Vodnik et al., 2011), introducing both 
nonlinearities and noise that could be misinterpreted as epistasis. 

Here we analyze the detailed epistatic landscape of an antibody’s 
binding free energy, which we define as the logarithm of the Tite-Seq 
measurement of the dissociation constant, to its cognate antigen (the 4-
4-20 antibody fragment against fluorescein), using data previously 
obtained by Tite-Seq, a recently introduced DMS variant that 
accurately measures protein binding affinity in physical units of 
molarity (Adams et al., 2016). By comparing to a simple additive 
model of mutations on the binding free energy, and carefully 
controlling for measurement noise and nonlinearities, we find that 
epistasis significantly contributes to the antibody’s affinity. This 
epistasis is not uniformly distributed, but instead favors certain residue 
pairs across the protein. We use our results to analyze how epistasis 
both constrains and enlarges the set of possible evolutionary paths 
leading to high-affinity sequences. 

Results 

Position Weight Matrix model of affinity 
We analyzed data from (Adams et al., 2016) 
(https://github.com/jbkinney/16_titeseq), where Tite-
Seq was applied to measure the binding affinities of variants of the 4-4-
20 fluorescein-binding scFv antibody, henceforth called ‘wildtype’. 
Libraries were generated by introducing mutations to either the 
CDR1H or CDR3H domains restricted to 10 amino acid stretches 
called 1H and 3H (Fig. 1A). All single amino acid mutants, 1100 
random double amino acid mutants, and 150 triple amino acid mutants 
were generated in multiple synonymous variants and measured, 
(Fig. 1B). Using a combination of yeast display and high-throughput 
sequencing at various antigen concentrations, Tite-Seq yielded the 
binding dissociation constant Kd (in M or mol/L) of each variant with 
the fluorescein antigen. 

We first tried to predict the Kd of double and triple mutants from 
single mutant measurements. Mutations are expected to act on the 
binding free energy in an approximately additive way (Wells, 1990; 
Olson et al., 2014). One may thus write the free energy of binding, 
F = ln Kd c0( )  (defined up to constant in units of kBT), as a sum over 

mutations in the mutagenized region, s = s1,...,sl( ):  
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 F s( ) ≈ FPWM s( ) = FWT + hi si( )
i=1

l

∑    (1) 

where FWT  is the wildtype sequence energy, and hisi  is the effect of a 

mutation at position i to residue si . The elements of the Position-

Weight Matrix (PWM) hi si( )  are obtained from the Kd of single 

mutants shown in Fig. 1C. Since Tite-Seq measurements are limited to 
values of Kd ranging from 10-9.5 to 10-5, for consistency PWM 
predictions outside this range were set to the boundary values. The 
PWM was a fair predictor of double and triple mutants (Fig 1D), 
accounting for 62% (p<10-61, F-test) of the variance for 1H mutants and 
58% (p<10-48, F-test) of the variance of 3H mutants. In contrast, a 
simple model based on BLOSUM62 scores (łuksza et al., 2017) 
achieved far lower R2 scores of 22 and 3% for the CDR-1H and 3H 
domains, respectively (see Fig. S1). 

The unexplained variance missed by the PWM model may have 
four origins: convolution with expression, nonlinear effects, 
measurement noise, epistasis. Tite-seq was developed specifically to 
separate the measurement Kd and expression. From Pearson’s 
correlation between expression and log(Kd), we find that expression 
explains 6 and 12% of the R2 for CDR1H and CDR3H, respectively 
(Fig. S2). Furthermore, the residual from the PWM prediction, 
F − FPWM, had almost no correlation with expression (R2<0.1% for 1H, 

R2<0.2% for 3H, see Fig. S2). Log transformed expression values 
yielded similar but smaller contributions. The second “nonlinear 
effects" case corresponds to the hypothesis of additivity not being valid 
for F = ln Kd c0( ) , but for some other nonlinear transformation of F. 

Such a nonlinearity, also called “scale,” can lead to spurious epistasis 
(Fisher, 1918; Phillips, 2008). We first checked that additivity did not 
apply to the untransformed dissociation constant, Kd: a PWM model 
learned from Kd instead of F could only explain 34% of the variance of 
all 1H and 3H multiple mutants, down from 62% when learning from F 
(Fig. S3). Refitting Tite-seq values with no boundary constraints 
yielded much worse PWM models, largely attributable to poor 
estimates of poorly binding antibodies (Fig. S4). We then looked for 
the non-linear transformation E(F) that would give the PWM model 
with the best predictive power (Methods and Fig. S5). This 
optimization yielded only a modest improvement to 65% of the 
explained variance. In addition, the optimal function E was very close 
to the logarithm (R2=97%, Fig. S6). Since nonlinear effects do not play 
a significant role, henceforth we only consider the PWM model defined 
on the free energy. 
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Epistasis affects affinity  
To identify epistasis, we estimated the difference between the 
measured binding free energies of double and triple mutants, F(s), and 
the PWM prediction, FPWM s( )  (Fig. 2A). However, these small 

differences can be confounded by measurement noise (see Fig. S7), 
which can be mistaken for epistasis. To control for this noise, we 
defined Z-scores between two estimates of the free energy, Fa  and Fb , 

as Z = Fa − Fb( ) / σ a
2 +σ b

2 , where σ a
2 and σ b

2 are their estimates of 

uncertainty. Uncertainty was either measured as variance from replicate 
measurements and synonymous mutations, or as the sum of variances 
from additive PWM contributions depending on context. We first 
computed Z-scores between independent estimates of the same free 
energy using synonymous variants (Zerror, Methods). Excluding 

mutants at the reliable readout boundary (10−9.5M ≤ Kd ≤10−5M ), we 

found that the distribution of Zerror was normal with variance ≈1 

(Fig. 2B, orange line), as expected from Gaussian measurement noise. 
A comparison between Tite-seq measurements and clones Kd measured 
from flow cytometry was also approximately normal with variance ≈1 
(Fig. S8), meaning that Tite-Seq introduced no systematic errors in 
addition to those estimated from replicates. 

We then estimated the effect of epistasis by calculating Z-scores (
Zepi) from the difference between the PWM prediction, FPWM (Eq. 1), 

and the measured F. The resulting distributions of Z-scores (Fig. 2A, 
blue and red lines) had much larger variances than expected from 
measurement noise (standard deviation 1.76 for 1H, and 3.18 for 3H), 
indicating strong epistasis. These epistatic effects were on average 
slightly beneficial (positive Z): 18% of double mutants inside the 
reliable readout boundaries (10−9.5M ≤ Kd ≤10−5M ) showed significant 

beneficial epistasis (Zepi >1.64, corresponding to p<0.05 in a one-sided 

Z-test), and 12% significant deleterious epistasis ( Zepi < −1.64). 

Comparing the variance of Zepi with that of Zerror gives a large fraction 

of the unexplained variance that is attributable to epistasis, 
1−Var Zerror( ) /Var Zepi( ) = 60% for 1H, and 88% for 3H. While clones 

at the reliable readout boundaries under-estimated measurement error, 
their inclusion yielded more extreme results (Fig. S9). PWMs trained 
from optimal transformations had almost no effect on epistasis 
estimates (Fig. S10). 

To determine whether certain positions along the sequence 
concentrated epistatic effects, we computed the mean squared Z-score 
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for all double mutations at each pair of positions (excluding median 
boundary values), revealing a complex and heterogeneous landscape of 
epistasis (Fig. 2C, see Fig. S11 for the epistasis magnitude 
superimposed on the wildtype’s crystal structure). CDR3H, which 
interacts directly with the antigen, is observed to have more 
epistatically interacting sites than CDR1H. Interestingly, the three most 
epistatic pairs in 3H — between positions 101, 106 and 108 — are 
mutated in the previously described super-optimized 4m5.3 antibody 
(Boder et al., 2000) (mutations shown in green in Fig. 1B), consistent 
with previous suggestions that positions 101 and 106 interact together 
and with position 108 via hydrogen bonds (Midelfort et al., 2004; 
Adams et al., 2016). Epistasis is usually expected between residues that 
are in contact in the protein structure (Romero et al., 2013; Morcos 
et al., 2011; McLaughlin et al., 2012; Zhang et al., 2013; Melamed 
et al., 2013), as for instance between positions 101 and 106. However, 
the mean squared Z-score is only weakly correlated with residue 
distance (r=−0.13,p=0.22 for 1H, r=−0.27,p=0.022 for 3H, Fig. S12). 
Additionally, while distance to antigen have been shown to predict how 
strongly mutations affect binding affinity (Brenke et al., 2012; Kepler 
et al., 2014), we did not detect a strong relationship between epistatic 
contributions and distance to antigen (r=−0.24,p=0.511 for 1H, 
r=0.19,p=0.603 for 3H, Fig. S12F). This may be due in part to this 
study’s mutated region being too close to the antigen to detect an 
association: 12 out of the 20 mutated residues are within 10 Å of the 
antigen, and all 20 are within 16 Å.  

We next looked for evidence of “sign epistasis,” where one 
mutation reverses the sign of the effect of another mutation (Fig. 2A). 
Sign epistasis can constrain evolution by blocking paths to fit 
sequences (Weinreich et al., 2006; Poelwijk et al., 2011; Weinreich 
et al., 2005). We defined a Z-score for a single mutation A quantifying 
the beneficial effect of that mutation relative to the noise,  
ZA = FWT − FA( ) /σ A , where FWT  and FA  are the wildtype and mutant 

free energies, and σ is the measurement error estimated as before. Since 
we are only interested in the sign of the effect, we kept single mutants 
at the reliable readout boundary. An equivalent Z-score was defined for 
a mutation A in the background of an existing mutation B: 

ZA|B = FB − FAB( ) / σ A
2 +σ AB

2 , where FAB is the free energy of the 

double mutant AB. Significant sign epistasis was defined by  
ZA|BZA < 0 and ZA|B , ZA >1.64, and reciprocal sign epistasis by the 

additional symmetric condition A↔ B. 
With a 5% false discovery rate (Benjamin Hochberg procedure) we 

found 52 significant sign epistasis examples. These are listed in 
S1_table_sign_epistasis.csv and summarized in Tables S1 
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and S2. Deleterious sign epistasis was exceptional, with 3 instances in 
1H and 6 in 3H. These cases, as well as the four most significant cases 
of benefecial sign epistasis are depicted in Fig. S13. These mutants 
represent evolutionary trajectories blocked due to the poor binding 
affinity of their single mutations.  Among cases where both single 
mutations were deleterious, we found 4% (p <10−15, Binomial test) of 

mutants in 1H and 0.8% (p <10−7 , Binomial test) in 3H with 
significant beneficial epistasis, versus 0.06% expected by chance (the 
null expectation, which takes into account the constraint that  
ZA + ZB|A = ZB + ZA|B, is defined in the Methods); 1% (p <10−15, 

Binomial test) were reciprocal in 1H, and 0.4% (p <10−10, Binomial 
test) in 3H, versus 0.01% expected by chance. To evaluate how these 
epistatic interactions may affect affinity maturation, we estimated how 
often “viable” double mutants were separated from the wildtype by 
nonviable single mutants, where viability is defined by Kd < 10-6 M 
(Batista and Neuberger, 1998; Foote and Eisen, 1995; Roost et al., 
1995), forming possible roadblocks to affinity maturation. This strong 
instance of “rescue” epistasis occurred in roughly half of the mutants 
with beneficial sign epistasis (Table S1 and S2).  

Modeling epistasis and its impact on affinity 
maturation 
To integrate the observed epistatic interactions into a predictive model 
of affinity, we introduced a model of binding free energy as:  

F s( ) ≈ Fpairwise s( ) = FPWM s( ) + Jij si,sj( )
i< j

∑ ,      (2) 

where Jij  is the interaction strength between residues at positions i and 

j. To avoid overfitting and allow for independent validation (in the 
absence of a sufficient number of triple mutants), we grouped residues 
into 4 biochemical categories (Voet and Voet, 2011) (polar, nonpolar, 
acidic, basic, see Methods) and let the entries of J only depend on that 
category. 

We trained the model on the 1208 1H or 1216 3H double and triple 
mutants, using a Lasso penalty to control for overfitting. The optimal 
penalty was set by 10 fold cross-validation, i.e. by maximizing the 
explained variance of a subset comprising 1/10 of the mutants by using 
a model trained on the remaining 9/10, averaged over the 10 subsets 
(Fig. S14A and Methods). Interacting pairs with posterior probabilities 
>0.95 as determined by Bayesian Lasso (Park and Casella, 2008) are 
shown in Figs. 2D and E. 



8 

Out of the 360 possible terms, 52 1H and 45 3H interaction terms 
were identified by this method. Although these interactions, whose 
number is limited by the number of measured variants, only modestly 
improved the explained variance relative to the PWM in all multiple 
mutants (from 62% to 64% for 1H and from 58% to 60% for 3H), it 
substantially improved the affinity prediction of the mutants with 
significant epistasis (R2 from 27% to 50% in 1H, from 13% to 44% for 
3H, Fig. S14B-C). In contrast, a null linear regression model based on 
the Miyazawa-Jernigen matrix had negligible improvement on R2 (see 
Fig. S15) (George et al., 2017) Notably, two mutations of the super-
optimized 4m5.3 antibody are predicted by the model to have epistatic 
interactions: a slightly deleterious effect between A101 and L108, and a 
strongly beneficial one between S102 and L108. While these results show 
some generalizability of biochemical properties, the corresponding 
model only accounts for a small faction of the variance explainable by 
epistasis. A more sophisticated approach may be warranted for fully 
predicting epistatic contributions. 

Next we used our models to estimate the diversity, or 
“degeneracy”, of antibodies with good binding affinity. Specifically, 
we evaluated the degeneracy volume V of high-affinity sequences as 
the number of sequences with Kd <B, using either the PWM (Eq. 1) or 
pairwise (Eq. 2) models, using a combination of exhaustive and Monte-
Carlo sampling (Methods). Compared to the coarse-grained pairwise 
model trained previously, the interaction strength J was learned directly 
for each residue pair, without grouping by biochemical category and 
with no Lasso penalty. The volume of 1H mutants was larger than that 
of 3H mutants (Fig. 2F), in agreement with the fact that CDR3H plays 
a more important role in binding affinity. Epistasis increased the 
recognition volume for both domains, consistent with the previous 
observation that epistatic effects are, on average, more beneficial than 
deleterious. To explore the diversity of evolutionary paths leading to 
recognition, we computed the neutral mutational flux A in and out of 
the high-affinity region as the probability that a random mutation in a 
high-affinity sequence (Kd < B) causes loss of recognition (Kd > B), 
summed over all high-affinity sequences (Methods). Again, our models 
show increased mutational flux due to epistasis, even after normalizing 
by volume, A/V (Fig. 2G). The effect is small, but only reflects the 
impact of epistasis from the limited, randomly chosen set of double 
mutations that we measured, which comprises only �7% of all possible 
double mutations of a 10 amino acid sequence (1058 for CDR1H, and 
1066 for CDR3H, out of 16245). We speculate that differences in flux 
arising from all epistatic interactions may be up to 15 fold stronger. 
Adding explicit selection to the mutational model would also affect the 
results, but would require to make additional assumptions about how 
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binding affinity and selection are linked. The neutral mutational flux 
analysis allows for comparisons that do not depend on such an explicit 
model of selection. 

We checked that these differences were robust to sampling noise 
and overfitting by performing a jackknife analysis ( p <10−5  for the 
difference in A and V between the PWM and pairwise models, see 
Methods), and verified that similar conclusions were obtained based on 
the optimized non-linear transformation (Fig. S16).  

Discussion 
By analyzing massively parallel affinity measurements obtained by 
Tite-Seq, we obtained a detailed picture of epistasis in a well-defined 
physical phenotype — the binding free energy of an antibody to an 
antigen. Here we define the free energy as the logarithm of the 
dissociation constant as measured by Tite-Seq and the yeast display 
assay. While our analysis of epistasis strictly applies to that measured 
phenotype and not directly to the free energy, these two quantities are 
believed to be equivalent (Van Antwerp and Wittrup, 2000). We 
showed that antibody sequences contain many epistatic interactions, 
and that many of these interactions increase affinity. Our approach 
involves first training an additive (PWM) model as a baseline, and 
identifying departures from that model as epistasis. In this comparison, 
a crucial step was to correct for the two issues of scale and 
measurement noise. 

The first issue, identified by Fisher (Fisher, 1918) and also called 
unidimensional epistasis (Szendro et al., 2013), is the idea that an 
epistatic trait becomes additive upon a different parametrization (Sailer 
and Harms, 2017a). For instance, protein stability, which often 
determines fitness, is a nonlinear function of the folding free energy 
difference, which is expected to be roughly additive (Bloom et al., 
2005; Bershtein et al., 2006; Jacquier et al., 2013; Gong et al., 2013; 
Serohijos and Shakhnovich, 2014; Bank et al., 2015; Sarkisyan et al., 
2016). This leads to both a law of diminishing returns (Bank et al., 
2015) and robustness to mutations when the protein is very stable 
(Bloom et al., 2005). To disentangle these potential artifacts, we 
defined our PWM on the binding free energy, which we expect to be 
additive in sequence content, and we checked that this parametrization 
was close to minimizing epistasis. 

To tackle the second and perhaps more important issue of noise, 
especially in the context of deep mutational scans where many variants 
are tested (Araya et al., 2012), we developed a robust methodology 
based on Z-scores to identify epistatic interactions as significant 
outliers. This analysis showed that the variability in binding free energy 
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consists of �60% of additive effects, �25-35% of epistatic effects, and 
the rest of experimental noise, making the epistatic contribution to the 
phenotype substantial compared to that of single mutations. A large 
fraction of that epistasis was beneficial, in contrast with previous 
reports of mostly negative epistasis owing to the concavity of the scale 
(Bershtein et al., 2006; Schenk et al., 2013; Bank et al., 2015), which 
we here circumvent by directly considering the free energy. 

Epistasis is key to understanding the predictability and 
reproducibility of evolutionary paths (Lässig et al., 2017; 
Kryazhimskiy et al., 2014). Previous studies have shown that much of 
the unexplained phenotypic variance could be explained by second-
order epistatic terms, although specific evolutionary trajectories may be 
sensitive to higher order epistatic terms (Sailer and Harms, 2017b; 
Poelwijk et al., 2017). Our results show how second-order epistasis 
could constrain the space of possible hypermutation trajectories during 
affinity maturation, with important consequences for antibody and 
vaccine design, as the importance of eliciting responses of antibodies 
that are not just strongly binding but also evolvable is being 
increasingly recognized (Wang et al., 2015). Targeting epistatic 
interactions may provide an alternative strategy for optimizing 
antibody affinity: among the 2 epistatic hotspots in CDR1H and 11 in 

CDR3H that we identified (Zepi
2

1
2 > 3), 4 involved positions mutated 

in the super-optimized 4m5.3 antibody sequence, with a higher 
epistatic contribution than expected by chance. This is consistent with a 
previous study where an antibody with multiple conformations 
acquired mutations that stabilized the antibody structure, resulting in a 
single conformation (Wedemayer et al., 1997). We also identified 3 
cases of beneficial sign epistasis, in which the double mutant was fit 
despite the single mutant being deleterious. For instance, the D108E 
mutations in 4m5.3 is deleterious by itself but is rescued beyond the 
wildtype value by the S101A mutation (Midelfort et al., 2004), which 
occurred first in the directed evolution process (Boder et al., 2000). We 
report 15 extreme cases of viable (Kd <10-6 M) double mutants whose 
single-mutant intermediates are nonviable, possibly blocking affinity 
maturation. However, our analysis of the volume and mutational flux 
of the region of low binding free energies in sequence space suggests 
that epistasis facilitates the evolution of high-affinity antibodies (Fig. 
2F,G). Therefore, we speculate that interactions with the non-mutated 
parts of the sequence and evolution of the antigen binding partner can 
either add further constraints or open up additional paths.  

Antibodies pose unique questions about the evolvability of 
evolution (Wagner and Altenberg, 1996). What sort of sequence space 
would favor quick accessibility while maintaining a small number of 
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viable sequences (Perelson and Oster, 1979)? A landscape could 
contain small, permeable, easily evolvable recognition spaces, or could 
contain large, hard to access, and robust sequences depending on the 
prevalent epistatic contributions (Carter et al., 2005). Such a bias could 
suggest that the tradeoff of an epistatic landscape would include fast 
initial evolution, followed by slow incremental evolution (Good and 
Desai, 2014). Our observations, deviating around a viable antibody 
variant, support a model where epistasis plays a lesser role in 
determining binding affinity than PWM terms, but could still have far 
ranging impacts. These impacts would include fast initial/slow long 
term evolution, the blocking of paths to beneficial mutations, while 
paradoxically an increase in the accessibility of antigen recognizing 
sequences.  

Taken together, our results show the importance of taking into 
account epistasis when predicting antibody evolution and guiding 
vaccine design. We note that, while the yeast display system we studied 
is highly correlated to alternative measures of affinity (Gai and 
Wittrup, 2007), antibodies could behave differently under alternative 
environments. Specifically, a soluble antibody may experience 
different interactions with the environment and be subject to different 
constraints than an antibody expressed on a cellular surface. 
Nevertheless, our systematic approach for identifying and quantifying 
epistasis, which controls for scale and noise, can be used by other 
investigators to analyze deep mutational scans of protein function in a 
wide variety of biological contexts.  

Acknowledgements 
We would like to thank Yuanzhe Guan and Carlos Talaveira for their 
suggestions. R.M.A., T.M. and A.M.W. were supported by grant 
ERCStG n. 306312. JBK was supported by NIH Cancer Center Support 
Grant 5P30CA045508. 

Author Contributions 
Conceptualization R.M.A, J.B.K., A.M.W., T.M; Methodology 
R.M.A.; Software R.M.A.; Validation R.M.A; Formal Analysis R.M.A, 
A.M.W., T.M..; Data Curation R.M.A.; Writing – Original Draft 
R.M.A., A.M.W., T.M.; Writing – Review & Editing J.B.K., A.M.W., 
T.M; Visualization R.M.A.; 

Declaration of Interests 
R.M.A. was employed by Novozymes at time of publication. 



12 

References 
Adams, R. M., Mora, T., Walczak, A. M. and Kinney, J. B. (2016). Measuring 
the sequence-affinity landscape of antibodies with massively parallel titration 
curves. eLife  5, e23156. 
Andersen, M. S., Dahl, J. and Vandenberghe, L. (2013). CVXOPT: A Python 
package for convex optimization, version 1.1. 6. Available at cvxopt. org  54. 
Anderson, D. W., McKeown, A. N. and Thornton, J. W. (2015). Intermolecular 
epistasis shaped the function and evolution of an ancient transcription factor and 
its DNA binding sites. Elife  4, 1–26. 
Araya, C. L., Fowler, D. M., Chen, W., Muniez, I., Kelly, J. W. and Fields, S. 
(2012). A fundamental protein property, thermodynamic stability, revealed 
solely from large-scale measurements of protein function. Proc. Natl. Acad. Sci. 
109, 16858–16863. 
Asti, L., Uguzzoni, G., Marcatili, P. and Pagnani, A. (2016). Maximum-Entropy 
Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity. 
PLOS Comput. Biol. 12, e1004870. 
Bank, C., Hietpas, R. T., Jensen, J. D. and Bolon, D. N. A. (2015). A Systematic 
Survey of an Intragenic Epistatic Landscape. Mol. Biol. Evol. 32, 229–238. 
Batista, F. D. and Neuberger, M. S. (1998). Affinity Dependence of the B Cell 
Response to Antigen: A Threshold, a Ceiling, and the Importance of Off-Rate. 
Immunity  8, 751–759. 
Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. and Tawfik, D. S. (2006). 
Robustness-epistasis link shapes the fitness landscape of a randomly drifting 
protein. Nature  444, 929–932. 
Bloom, J. D., Gong, L. I. and Baltimore, D. (2010). Permissive Secondary 
Mutations Enable the Evolution of Influenza Oseltamivir Resistance. Science 
(80-. ). 328, 1272–1275. 
Bloom, J. D., Labthavikul, S. T., Otey, C. R. and Arnold, F. H. (2006). Protein 
stability promotes evolvability. Proc. Natl. Acad. Sci. 103, 5869–5874. 
Bloom, J. D., Silberg, J. J., Wilke, C. O., Drummond, D. A., Adami, C. and 
Arnold, F. H. (2005). Thermodynamic prediction of protein neutrality. Proc. 
Natl. Acad. Sci. 102, 606–611. 
Boder, E. T., Midelfort, K. S. and Wittrup, K. D. (2000). Directed evolution of 
antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. 
Natl. Acad. Sci. 97, 10701–10705. 
Boyer, S., Biswas, D., Kumar Soshee, A., Scaramozzino, N., Nizak, C. and 
Rivoire, O. (2016). Hierarchy and extremes in selections from pools of 
randomized proteins. Proc. Natl. Acad. Sci. 113, 3482–3487. 
Breen, M. S., Kemena, C., Vlasov, P. K., Notredame, C. and Kondrashov, F. a. 
(2012). Epistasis as the primary factor in molecular evolution. Nature  490, 
535–538. 
Brenke, R., Hall, D. R., Chuang, G.-Y., Comeau, S. R., Bohnuud, T., Beglov, 
D., Schueler-Furman, O., Vajda, S. and Kozakov, D. (2012). Application of 
asymmetric statistical potentials to antibody-€“protein docking. Bioinformatics  
28, 2608–2614. 
Carter, A. J. R., Hermisson, J. and Hansen, T. F. (2005). The role of epistatic 
gene interactions in the response to selection and the evolution of evolvability. 
Theor. Popul. Biol. 68, 179–196. 
Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D. and Marx, C. J. (2011). 
Diminishing Returns Epistasis Among Beneficial Mutations Decelerates 
Adaptation. Science  332, 1190–1192. 



13 

Cobey, S., Wilson, P., Iv, F. A. M. and Cobey, S. (2015). The evolution within 
us. Phil. Trans. R. Soc. Lon. B  370. 
Corti, D. and Lanzavecchia, A. (2013). Broadly Neutralizing Antiviral 
Antibodies, vol. 31,. Annual Reviews. 
de Visser, J. A. G. M. and Krug, J. (2014). Empirical fitness landscapes and the 
predictability of evolution. Nat. Rev. Genet. 15, 480–490. 
Eisen, H. N. and Siskind, G. W. (1964). Variations in Affinities of Antibodies 
during the Immune Response. Biochemistry  3, 996–1008. 
Esmaielbeiki, R., Krawczyk, K., Knapp, B., Nebel, J. C. and Deane, C. M. 
(2016). Progress and challenges in predicting protein interfaces. Brief. 
Bioinform. 17, 117–131. 
Fisher, R. (1918). The Correlation between Relatives on the Supposition of 
Mendelian Inheritance. Trans. R. Soc. Edinburgh  52, 399–433. 
Foote, J. and Eisen, H. N. (1995). Kinetic and affinity limits on antibodies 
produced during immune responses. Proc. Natl. Acad. Sci. 92, 1254–1256. 
Fowler, D. M. and Fields, S. (2014). Deep mutational scanning: a new style of 
protein science. Nat. Methods  11, 801–807. 
Gai, S. A. and Wittrup, K. D. (2007). Yeast surface display for protein 
engineering and characterization. Curr. Opin. Struct. Biol. 17, 467–473. 
George, J. T., Kessler, D. A. and Levine, H. (2017). Effects of thymic selection 
on T cell recognition of foreign and tumor antigenic peptides. Proc. Natl. Acad. 
Sci. 114, E7875–E7881. 
Gong, L. I., Suchard, M. A. and Bloom, J. D. (2013). Stability-mediated 
epistasis constrains the evolution of an influenza protein. Elife  2013, 1–19. 
Good, B. H. and Desai, M. M. (2014). The Impact of Macroscopic Epistasis on 
Long-Term Evolutionary Dynamics. Genetics  199, genetics.114.172460. 
Good, B. H. and Desai, M. M. (2015). The impact of macroscopic epistasis on 
long-term evolutionary dynamics. Genetics  199, 177–190. 
Jacquier, H., Birgy, A., Le Nagard, H., Mechulam, Y., Schmitt, E., Glodt, J., 
Bercot, B., Petit, E., Poulain, J., Barnaud, G., Gros, P.-A. and Tenaillon, O. 
(2013). Capturing the mutational landscape of the beta-lactamase TEM-1. Proc. 
Natl. Acad. Sci. 110, 13067–13072. 
Kepler, T., Liao, H.-X., Alam, S. M., Bhaskarabhatla, R., Zhang, R., Yandava, 
C., Stewart, S., Anasti, K., Kelsoe, G., Parks, R., Lloyd, K., Stolarchuk, C., 
Pritchett, J., Solomon, E., Friberg, E., Morris, L., Karim, S. A., Cohen, M., 
Walter, E., Moody, M. A., Wu, X., Altae-Tran, H., Georgiev, I., Kwong, P., 
Boyd, S., Fire, A., Mascola, J. and Haynes, B. (2014). Immunoglobulin Gene 
Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive 
Neutralizing Antibodies. Cell Host & Microbe  16, 304–313. 
Koenig, P., Lee, C. V., Sanowar, S., Wu, P., Stinson, J., Harris, S. F. and Fuh, 
G. (2015). Deep Sequencing-guided Design of a High Affinity Dual Specificity 
Antibody to Target Two Angiogenic Factors in Neovascular Age-related 
Macular Degeneration. J. Biol. Chem. 290, 21773–21786. 
Kryazhimskiy, S., Rice, D. P., Jerison, E. R. and Desai, M. M. (2014). Global 
Epistasis Makes Adaptation Predictable Despite Sequence-Level Stochasticity. 
Science  344, 1519–1522. 
Lässig, M., Mustonen, V. and Walczak, A. M. (2017). Predicting evolution. 
Nat. Ecol. Evol. 1, 0077. 
łuksza, M., Riaz, N., Makarov, V., Balachandran, V. P., Hellmann, M. D., 
Solovyov, A., Rizvi, N. A., Merghoub, T., Levine, A. J., Chan, T. A., Wolchok, 
J. D. and Greenbaum, B. D. (2017). A neoantigen fitness model predicts tumour 
response to checkpoint blockade immunotherapy. Nature  551, 517–520. 



14 

Marcou, Q., Mora, T. and Walczak, A. M. (2018). High-throughput immune 
repertoire analysis with IGoR. Nat. Comm. 9, 561. 
McLaughlin, R. N., Poelwijk, F. J., Raman, A., Gosal, W. S. and Ranganathan, 
R. (2012). The spatial architecture of protein function and adaptation. Nature  
491, 138–142. 
Melamed, D., Young, D. L., Gamble, C. E., Miller, C. R. and Fields, S. (2013). 
Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae 
poly(A)-binding protein. RNA  19, 1537–1551. 
Midelfort, K. S., Hernandez, H. H., Lippow, S. M., Tidor, B., Drennan, C. L. 
and Wittrup, K. D. (2004). Substantial energetic improvement with minimal 
structural perturbation in a high affinity mutant antibody. J. Mol. Biol. 343, 
685–701. 
Mora, T., Walczak, A. M., Bialek, W. and Callan, C. G. (2010). Maximum 
entropy models for antibody diversity. Proc. Natl. Acad. Sci. 107, 5405–5410. 
Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D. S., Sander, C., 
Zecchina, R., Onuchic, J. N., Hwa, T. and Weigt, M. (2011). Direct-coupling 
analysis of residue coevolution captures native contacts across many protein 
families. Proc. Natl. Acad. Sci. 108, E1293–E1301. 
Olson, C. A., Wu, N. and Sun, R. (2014). A Comprehensive Biophysical 
Description of Pairwise Epistasis throughout an Entire Protein Domain. Curr. 
Biol. 24, 2643–2651. 
Paixão, T. and Barton, N. H. (2016). The effect of gene interactions on the long-
term response to selection. Proc. Natl. Acad. Sci. 113, 4422–4427. 
Park, T. and Casella, G. (2008). The Bayesian Lasso. J. Am. Stat. Assoc. 103, 
681–686. 
Perelson, A. S. and Oster, G. F. (1979). Theoretical studies of clonal selection: 
Minimal antibody repertoire size and reliability of self-non-self discrimination. 
J. Theor. Biol. 81, 645–670. 
Phillips, P. C. (2008). Epistasis - The essential role of gene interactions in the 
structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867. 
Podgornaia, A. I. and Laub, M. T. (2015). Protein evolution. Pervasive 
degeneracy and epistasis in a protein-protein interface. Science  347, 673–677. 
Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. and Tans, S. J. (2007). Empirical 
fitness landscapes reveal accessible evolutionary paths. Nature  445, 383–386. 
Poelwijk, F. J., Socolich, M. and Ranganathan, R. (2017). Learning the pattern 
of epistasis linking genotype and phenotype in a protein. bioRxiv  , 213835. 
Poelwijk, F. J., Tănase-Nicola, S., Kiviet, D. J. and Tans, S. J. (2011). 
Reciprocal sign epistasis is a necessary condition for multi-peaked fitness 
landscapes. J. Theor. Biol. 272, 141–144. 
Romero, P. A., Krause, A. and Arnold, F. H. (2013). Navigating the protein 
fitness landscape with Gaussian processes. Proc. Natl. Acad. Sci. 110, E193–
E201. 
Roost, H.-P., Bachmann, M. F., Haag, A., Kalinke, U., Pliska, V., Hengartner, 
H. and Zinkernagel, R. M. (1995). Early high-affinity neutralizing anti-viral IgG 
responses without further overall improvements of affinity. Proc. Natl. Acad. 
Sci. 92, 1257–1261. 
Sailer, Z. R. and Harms, M. J. (2017a). Detecting High-Order Epistasis in 
Nonlinear Genotype-Phenotype Maps. Genetics  205, 1079–1088. 
Sailer, Z. R. and Harms, M. J. (2017b). High-order epistasis shapes evolutionary 
trajectories. PLOS Comput. Biol. 13, e1005541. 
Sarkisyan, K. S., Bolotin, D. A., Meer, M. V., Usmanova, D. R., Mishin, A. S., 
Sharonov, G. V., Ivankov, D. N., Bozhanova, N. G., Baranov, M. S., Soylemez, 
O., Bogatyreva, N. S., Vlasov, P. K., Egorov, E. S., Logacheva, M. D., 



15 

Kondrashov, A. S., Chudakov, D. M., Putintseva, E. V., Mamedov, I. Z., 
Tawfik, D. S., Lukyanov, K. A. and Kondrashov, F. A. (2016). Local fitness 
landscape of the green fluorescent protein. Nature  533, 397–401. 
Schenk, M. F., Szendro, I. G., Salverda, M. L. M., Krug, J., De Visser, J. A. 
G. M. and Visser, J. A. G. M. D. (2013). Patterns of epistasis between beneficial 
mutations in an antibiotic resistance gene. Mol. Biol. Evol. 30, 1779–1787. 
Serohijos, A. W. and Shakhnovich, E. I. (2014). Merging molecular mechanism 
and evolution: Theory and computation at the interface of biophysics and 
evolutionary population genetics. Curr. Opin. Struct. Biol. 26, 84–91. 
Szendro, I. G., Schenk, M. F., Franke, J., Krug, J. and De Visser, J. A. G. M. 
(2013). Quantitative analyses of empirical fitness landscapes. J. Stat. Mech. 
Theory Exp. 2013. 
Van Antwerp, J. J. and Wittrup, K. D. (2000). Fine affinity discrimination by 
yeast surface display and flow cytometry. Biotechnol. Prog. 16, 31–37. 
Vodnik, M., Zager, U., Strukelj, B. and Lunder, M. (2011). Phage Display: 
Selecting Straws Instead of a Needle from a Haystack. Molecules  16, 790–817. 
Voet, D. and Voet, J. G. (2011). Biochemistry, 4th Edition. John Wiley& Sons 
Inc  4, 68–69. 
Wagner, G. P. and Altenberg, L. (1996). Perspective: Complex Adaptations and 
the Evolution of Evolvability. Evolution  50, 967–976. 
Wang, S., Mata-Fink, J., Kriegsman, B., Hanson, M., Irvine, D. J., Eisen, H. N., 
Burton, D. R., Wittrup, K. D., Kardar, M. and Chakraborty, A. K. (2015). 
Manipulating the selection forces during affinity maturation to generate cross-
reactive HIV antibodies. Cell  160, 785–797. 
Wedemayer, G. J., Patten, P. A., Wang, L. H., Schultz, P. G. and Stevens, R. C. 
(1997). Structural Insights into the Evolution of an Antibody Combining Site. 
Science  276, 1665–1669. 
Weinreich, D. M., Delaney, N. F., DePristo, M. A. and Hartl, D. L. (2006). 
Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter 
Proteins. Science  312, 111–114. 
Weinreich, D. M., Watson, R. A., Chao, L. and Harrison, R. (2005). 
Perspective:sign epistasis and genetic constraint on evolutionary trajectories. 
Evolution  59, 1165–1174. 
Wells, J. A. (1990). Additivity of mutational effects in proteins. Biochemistry  
29, 8509–8517. 
Zhang, X., Perica, T. and Teichmann, S. A. (2013). Evolution of protein 
structures and interactions from the perspective of residue contact networks. 
Curr. Opin. Struct. Biol. 23, 954–963. 



16 

Main figure legends 
Figure 1 - Additive model of binding affinity. (A) 4-4-20 scFv 
antibody sequence. Six complementarity determining regions (CDR: 
1L, 2L, 3L, 1H, 2H, 3H) are particularly important for antibody 
binding affinity. A library of antibody sequences with mutations in 10 
amino-acid regions around the CDR1H and CDR3H domains were 
expressed using yeast display. (B) Using Tite-Seq, the binding 
constants Kd of all 600 single codon mutants, 1100 random double 
codon mutants, and 150 random triple codon mutants, were measured. 
(C) The Kd of single mutants for 1H and 3H domains were used to 
create position weight matrices (PWMs) to predict the affinity of 
double and triple mutants. Kd measurements were restricted to the 
reliable measurements interval of 10−9.5 −10−5 M. WT sequences are 
marked with purple dots, optimized 4m5.3 mutations are marked in 
green dots. (D) Comparison between the PWM prediction and the 
measurement of Kd on double and triple mutants. PWM predictions 
outside of our reliable readout interval (10−9.5 −10−5 M) were evaluated 
at the interval boundaries. The PWMs explained a significant portion of 
the variance, as quantified by the explained variance R2 ( p <10−61 for 

CDR1H, p <10−48 for CDR3H, F-test for reduction in variance due to 

PWM). PWMs trained from the binding free energy, F = ln Kd c0( ) , 

outperformed PWM trained from Kd (Fig. S3) as well as models 
without boundaries (Fig. S4).  

 
Figure 2 - Quantification of epistasis. A) Epistasis is defined as 
deviation from the PWM model, which assumes an additive effect of 
single mutations on the binding free energy F = ln Kd c0( )  expressed 

in units of kBT. Deleterious epistasis occurs when the measured energy 
exceeds the PWM prediction, beneficial epistasis occurs when the 
energy is less than the PWM prediction. Sign and reciprocal sign 
epistasis examples are shown for a beneficial interaction. (B) 
Distribution of Z-scores, defined as the normalized deviation from the 

PWM prediction, Zepi = FPWM − F( ) / σ 2 +σ PWM
2 , where σ 2 and σ PWM

2  

are the estimated errors on F and FPWM . Kd at boundaries are removed. 

Positive Z-scores indicate epistasis increased affinity. The Z score 
standard deviation was much higher than expected from measurement  
errors (Zerror) for CDR1H (1.78, p <10−16, Levene’s test) and CDR3H 

(3.18, p <10−48), meaning that the discrepancy between the PWM and 
measurement is mainly due to true epistasis. (C) Standard Z-score 
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deviation for each pair of positions along the sequence. This deviation 
is higher at pairs of positions mutated in the super-optimized 4m5.3 
antibody (green dots) in 3H (p=0.005, Mann-Whitney), but not in 1H 
(p=0.36). (D-E) A model of biochemical epistatic interactions between 
polar, nonpolar, acidic, and basic residues was fitted to the data using 
LASSO regularization and tested by cross-validation, yielding D) 34 
beneficial and E) 32 deleterious interaction terms. Line width denotes 
interaction strength. (F) Number V of amino-acid sequences of the 1H 
(blue) and 3H (red) regions with dissociation constant below Kd, as 
estimated by the PWM model (dark color) or the epistatic model (light 
color). Epistasis enlarges the number of variants with good affinity for 
both 1H and 3H. (G) Mutational flux A (defined as the average number 
of random mutation events from all possible sequences to cause the 
dissociation constant to cross Kd), normalized by V, showing that 
epistasis also increases the accessibility of the region of good binders in 
sequence space. Differences between the PWM and epistatic models 
were robust to errors in the estimate of the interaction parameters (
p<10−5 , Jackknife analysis).  
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Contact for reagent and resources sharing 
Further information and requests for resources and reagents should be 
directed to and will be fulfilled by the Lead Contact Thierry Mora 
(tmora@lps.ens.fr). 

Method details 
Values of Kd as measured by Tite-Seq for variants of the 4-4-20 
fluorescein-binding antibody (Adams et al., 2016) can be found at 
https://github.com/jbkinney/16_titeseq. The scripts 
used for the analyses presented here are available at 
https://github.com/rhys-m-adams/epistasis_4_4_20.  

Position Weight Matrix 

The amino-acid sequence of the 10 amino acid stretches of the CDR1H 
or CDR3H domains are denoted by s = s1,� ,s10( ) . The corresponding 

30-long nucleotide sequences are denoted by v. The binding free 
energy F(s) of an amino-acid variant is obtained as the mean over 3 
replicate experiments, and over all its synonymous variants:  

 F s( ) = 1

N s( )
ln Kd v,a( ) / c0( )

v∈Sa s( )
∑

a

∑ , (3) 

where Sa s( )  is the set of measured nucleotide sequences that translate 

to s in replicate a, and N s( ) = Sa s( )
a

∑  a normalization constant. 

The elements of the PWM are defined as hi q( ) = F s i,q( )( ) − FWT , 

where s i,q( )  is the single mutant mutated at position i to residue q, and 
hi q( ) = 0  when q is the wildtype residue at position i. 

Optimal nonlinear transformation of the free energy  

To test whether transforming F through a nonlinear function E(F) 
before learning the PWM could improve its predictive power, we 
defined the nonlinear additive model:  
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 , (4) 

where f = E−1 is the inverse function of E, , and 

E(s) is evaluated similarly to Eq. 3: 

E s( ) = 1/ N s( )( ) E ln Kd v( ) / c0( )





v∈Sa s( )
∑

a

∑ . 

To find the transformation E that gives the highest explained 
variance while avoiding overfitting, we aimed to minimize the 
following objective function:  

O E[ ] = EPWM s( ) − E s( ) 
2

+α dF ′′E F( ) 2

∫
S

∑ ,   (5) 

where the sum in s runs over double and triple mutants, and α is a 
tunable parameter. 

Numerically, we parametrize the function E(F) as piecewise linear: 
E F( ) = Ei × Fi+1 − F( ) /δF + Ei+1 × F − Fi( )δF  for Fi ≤ F ≤ Fi+1 , where Fi  

are equally spaced grid point along F, δF = Fi+1 − Fi , and Ei  the value 

of E at these points. The smoothing penalty is approximated by a sum 
over the squared discretized second derivative:  

df ′′E F( ) 2
≈ Ei+1 + Ei−1 − 2Ei( )2

/δF3

u

∑∫ . 

We minimize O E[ ] ≈ O E1,� ,EN[ ]  as a quadratic function of its 

arguments Ei( ) , while imposing boundary constraints on the PWM 

prediction and the requirement that E is a increasing function of F (i.e. 
Ei+1 > Ei ), using the python package cvxopt (Andersen et al., 2013). 

The hyper-parameter α is evaluated by maximizing the generalized 
cross-validation of the coefficient of determination  

 R2 =1−
EPWM

\ S s( ) − E \S s( ) 
2

s∈S

∑

Vars∈S E \ S s( ) 
S

 (6) 

where E\ S and EPWM
\ S  are learned through optimizing Eq. 5, but after 

removing from the dataset a subset S of the multiple mutants 
comprising one tenth of the total. The average is over ten non-
overlapping subsets S. 

This method was first tested on simulated data. Each PWM element 
 was drawn from a normal distribution of zero mean and variance 

1, and then EPWM s( ) was computed for each of the antibody sequences 
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present in our data. Our simulated “measurement” was defined as a 
function of a noisy realization of E = EPWM +ε  (where ε is some 

Gaussian noise) in three different ways: linear F=E, exponential 
F=exp(E), high-frequency F=2E+sin(2E), and logistic 
F=1/[1+exp(−E)]. ε was drawn from a centered normal distribution 
with 1/2 the standard deviation of EPWM. F was then truncated to the 

200th lowest and 200th highest values, to mimick the boundary cutoff 
in our measurements. Comparing our original EPWM to our fit Ê shows 

that our method is able to infer the true PWM model and a smooth 
nonlinearity from noisy data (Fig. S5).  

We then applied the method to the experimental data. The cross-
validation R2 is represented as a function of the smoothing parameter α 
in Fig. S6A, and the corresponding optimal function E(F) in Fig. S6B. 
The comparison between measurement and the PWM model is shown 
in Fig. S6C. 

Z-scores 

We used synonymous mutants to estimate our measurement error. The 
mean free energy of a nucleotide sequence is defined as the mean over 
replicate measurements: F v( ) = ln Kd v,a( )( )

a
, and the standard error 

σ(v) is defined accordingly as the pooled error over replicates. 
Antibodies with Kd or single mutant PWM contributions having median 
values at the boundary values of 10−9.5 or 10−5 were excluded from the 
analysis since these values artificially cluster at the boundary, leading 
to underestimates of error. 

The error Z-score was calculated between pairs of nucleotide 
sequences with the same amino acid translation: 

Zerror v, ′v( ) = F v( ) − F ′v( )( ) / σ v( )2 +σ ′v( )2
. 

Epistatic Z-scores were estimated by calculating the measurement 
error over both replicates and synonymous variants, as in Eq. 3:  

 σ 2 s( ) =
ln Kd v,a( ) / c0( ) − F s( )





2

v∈Sa s( )
∑

a

∑

N s( ) N s( ) −1( )
 (7) 

and the pooled standard error for a PWM prediction, calculated as the 
sum of measurement errors from single mutations:  

 σ PWM
2 s( ) = σ i

2 si( )
i

∑ , (8) 
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where σ i q( ) = σ s i,q( )( ) , and σ i q( ) = 0 when q is the wildtype residue 

at i. The epistatic Z-score is defined as:  

 Zepi s( ) =
FPWM s( ) − F s( )
σ 2 s( ) +σ PWM

2 s( )
. (9) 

Null model for sign epistasis 

To calculate p-values for sign epistasis, we used the following null 
model for sets of four Z-scores satisfying  ZA + ZB|A = ZB + ZA|B. Calling 
x1 = ZA, x2 = ZB|A, x3 = −ZA|B, x4 = −ZA , the condition becomes that each 

xi  has zero mean and variance one, with the constraint xi = 0
i=1

4

∑ . The 

distribution with maximum entropy satisfying these requirements is a 
centered multi-variate Gaussian uniquely defined by its covariance 
matrix xi

2 =1 and xi x j = −1/ 3 for i≠j. The p-value for sign 

epistasis, ZA >1.65 and ZA|B <1.65, was estimated by Monte Carlo 
sampling under a Gaussian distribution as 
Pr x1 >1.65&x2 >1.65( ) +

Pr x3 >1.65&x4 >1.65( ) −

Pr x1 >1.65&x2 < −1.65&x3 >1.65&x4 < −1.65( )
= 5.6•10−4

, and the probability 

for reciprocal sign epistasis as  

Pr x1 >1.64 &x2 < −1.64 &x3 >1.64 &x4 < −1.64( ) = 9.8•10−5. The 

threshold of 1.65, in contrast to the previous threshold of 1.64, was 
determined by applying the Benjamin-Hochberg method for limiting 
false discovery to 0.05.  

Epistatic model  

The epistatic terms of the pairwise model were made to depend on the 
biochemical categories of the interacting residues, 

, with b(s)=nonpolar for s=AFGILMPVW, 

b(s)=polar for s=CNQSTY, b(s)=acidic for s=DE, and b(s)=basic for 
s=HKR. A fifth category was added to correspond to the wildtype 
residue, so that . The model was 

trained by minimizing the mean squared error with a regularization 
penalty over all matrices :  
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 .  (10) 

The Lasso penalty λ was learned by 10-fold cross-validation, and 
energy terms found in less than 2 sequences were excluded from the fit. 
Posterior values for ̃J terms were calculated using Bayesian Lasso 
(Park and Casella, 2008). 

The volume and mutational flux were defined as:  
 

 V B( ) = Θ B− Kd s( )( )
s

∑    (11) 

 

A B( ) = Θ B− Kd s( )( ) 1

19l
Θ Kd ′s( ) − B( )

′s |d s, ′s( )=1

∑
s

∑ ,  (12) 

where τ(x) is the Heaviside function, i.e. τ(x)=1 if x≥0 and 0 otherwise; 
d(s,s') is the Hamming distance between two sequences; and ℓ=10 is 
the sequence length. The normalization 19×ℓ corresponds to the 
number of mutants s' at Hamming distance 1 from s. The sums over s 
in Eqs. 11-12 have 2010  elements and are computationally intractable. 
To overcome this, we approximated the sum using a mixture of Monte-
Carlo and complete enumeration, depending on the distance of s from 
the wildtype. Calling Cd  the set of sequences s at Hamming distance d 

from wildtype, we used:  

  (13) 

where g(s) is a function of s to be summed such as in V or A in Eqs. 11-
12, and  is a random subset of Cd  of size min Cd ,Pd( ) , with 

Pd = l
d









× P l

d

































+1, where P is the maximum number of 

sequences one is willing to sample completely at each d to perform the 

estimation, and where Cd = l
d









19d . For small d, when Cd ≤ Pd , the 

enumeration is complete, while for large d and Cd > Pd , the sum is 

estimated from a uniformly distributed Monte Carlo sample of Cd . 
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Quantification and Statistical Analysis 
All analyses were performed using Python 3.6. Standard statistical tests 
such as F-test for model comparison (Figure 1C,D), Kolmogorov-
Smirnov test for normality (Figure 2B), Levene’s test for equal 
variance (Figure 2B), Mann-Whitney test for equal epistatic 
contributions by residue position (Figure 2C), and Binomial test for 
enrichment of sign epistasis (Method Details: Null model for sign 
epistasis) were performed using the scipy.stats module. Bayesian Lasso 
(Figure 2D,E), cross-validation (Figure 2D,E), and jackknifing (Figure 
2F,G) estimates of probabilities are described in method details, were 
implemented using Python 3.6, and can be found at 
 https://github.com/rhys-m-adams/epistasis_4_4_20 . 
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