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LARGE TIME BEHAVIOR OF NONLINEAR FINITE VOLUME SCHEMES FOR
CONVECTION-DIFFUSION EQUATIONS

CLÉMENT CANCÈS∗, CLAIRE CHAINAIS-HILLAIRET† , MAXIME HERDA∗, AND STELLA KRELL‡

Abstract. In this contribution we analyze the large time behavior of a family of nonlinear finite volume schemes for
anisotropic convection-diffusion equations set in a bounded bidimensional domain and endowed with either Dirichlet and /
or no-flux boundary conditions. We show that solutions to the two-point flux approximation (TPFA) and discrete duality
finite volume (DDFV) schemes under consideration converge exponentially fast toward their steady state. The analysis
relies on discrete entropy estimates and discrete functional inequalities. As a biproduct of our analysis, we establish new
discrete Poincaré-Wirtinger, Beckner and logarithmic Sobolev inequalities. Our theoretical results are illustrated by numerical
simulations.

Key words. Finite volume methods, long-time behavior, entropy methods, discrete functional inequalities, logarithmic
Sobolev inequalities.
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1. Introduction. We are interested in the numerical discretization of linear convection diffusion
equations in bounded domain with anisotropic diffusion and mixed Dirichlet-Neumann boundary condi-
tions. More precisely, our aim is the preservation of the large time behavior of solutions at the discrete
level. At the continuous level, the behavior of solutions in the large can be quantified thanks to so-called
(relative) entropies. These global quantities depend on time and involve the solutions to the evolution and
the stationary equations. They usually control a distance between the solution and the steady state. In
dissipative models, thanks to appropriate functional inequalities of Poincaré or convex Sobolev type [1], a
quantitative time decay estimate of the entropy may be established. At the discrete level the challenges
lie in the preservation of the dissipation of the entropy and the derivation of discrete counterparts of the
functional inequalities. In the present contribution, we address both of these issues.

Let T > 0 be a time horizon, Ω be a polygonal connected open bounded subset of R2 and QT =
Ω× (0, T ). The boundary Γ = ∂Ω is divided in two parts Γ = ΓD ∪ΓN , denoted ΓD and ΓN which will be
endowed with respectively non-homogeneous Dirichlet and no-flux boundary conditions. In the following
we are interested in the numerical approximation of the solution u ≡ u(x, t) of

∂tu + divJ = 0 in QT ,(1.1a)
J = −Λ(∇u + u∇V ) in QT ,(1.1b)
J · n = 0 on ΓN × (0, T ) ,(1.1c)
u = uD in ΓD × (0, T ) ,(1.1d)
u(·, 0) = u0 in Ω ,(1.1e)

where n denotes the outward unit normal to ∂Ω. We make the following assumptions on the data.
(A1) The initial data u0 is square-integrable and non-negative, i.e., u0 ∈ L2(Ω) and u0 ≥ 0. In the pure

Neumann case ΓD = ∅, we further assume that the initial data is non-trivial, i.e.

(1.2) M1 =
∫

Ω
u0dx > 0.

(A2) The exterior potential V does not depend on time and belongs to C1(Ω,R).
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(A3) If ΓD 6= ∅, the boundary data uD corresponds to a thermal Gibbs equilibrium, i.e.

(1.3) uD(x) = ρe−V (x), ∀x ∈ ΓD

for some ρ > 0. As a consequence, log uD + V is constant on ΓD.
(A4) The anisotropy tensor Λ is supposed to be bounded (Λ ∈ L∞(Ω)2×2), symmetric and uniformly

elliptic. There exists λM ≥ λm > 0 such that

(1.4) λm|v|2 ≤ Λ(x)v · v ≤ λM |v|2 for all v ∈ R2 and almost all x ∈ Ω.

The large time behavior of solutions to Fokker-Planck equations with isotropic diffusion (namely
(1.1a)-(1.1b) with Λ = I) has been widely studied by Carrillo, Toscani and collaborators, see [13, 35, 12]
thanks to relative entropy techniques. In these papers, the exponential decay of the entropy is established
in the whole space Ω = Rd or for special cases of boundary conditions ensuring that the steady-state u∞
is a Gibbs equilibrium (or thermal equilibrium), which means u∞ = λeV , with λ ∈ R+. The case of more
general Dirichlet boundary conditions and anisotropic diffusion, leading to different steady states has been
recently dealt with by Bodineau et al. in [8]. The method is still based on relative entropy techniques.

When designing numerical schemes for the convection diffusion equations (1.1), it is crucial to ensure
that the scheme has a similar large time behavior as the continuous model. Indeed, it ensures the reliability
of the numerical approximation in the large. Also it upgrades local-in-time quantitative convergence
estimates to global-in-time estimates (see Li and Liu [31]).

The preservation of the long-time behavior at the discrete level starts with a structure-preserving
design of the numerical scheme. This has been widely investigated for Fokker-Planck type models (see,
non-exhaustively, [34, 28, 16, 29, 9, 32, 11, 10, 2, 7, 33, 26]). However the sole preservation of a stationary
state, entropy inequality or well-balanced structure is not sufficient to rigorously derive explicit rates
of convergence to equilibrium. Recently there has been an effort made on the obtention quantitative
estimates with explicit decay rates by the mean of discrete functional inequalities [3, 25, 14, 31, 23, 5]. In
this direction, the case of multi-dimensional anisotropic diffusion and general meshes has essentially not
been dealt with yet, which leads us to the present contribution.

In [14], Chainais-Hillairet and Herda prove that a family of TPFA (Two-Point Flux Approximation)
finite volume schemes for (1.1) with Λ = I satisfies the exponential decay towards the associated dis-
crete equilibrium. This family of B-schemes includes the classical centered scheme, upwind scheme and
Scharfetter-Gummel scheme ([34]). Let us mention that the Scharfetter-Gummel scheme is the only B-
scheme of the family that preserves Gibbs/thermal equilibrium. Unfortunately, the B-schemes are based
on a two-point flux approximation and they can only be used on restricted meshes. In order to deal
with almost general meshes and with anisotropic tensors, Cancès and Guichard propose and analyze a
nonlinear VAG scheme for the approximation of some generalizations of (1.1) in [11]. In [10], Cancès,
Chainais-Hillairet and Krell establish the convergence of a free-energy diminishing discrete duality finite
volume (DDFV) scheme for (1.1) with ΓD = ∅. Some numerical experiments show the exponential decay
of the numerical scheme towards the Gibbs/thermal equilibrium. In the present contribution, we establish
this result theoretically.

In order to prove our main results on the large-time behavior of nonlinear finite volume schemes,
namely Theorem 3.1 and Theorem 3.3 for TPFA schemes and Theorem 4.3 for DDFV schemes, we rely
upon new discrete Poincaré-Wirtinger, Beckner and logarithmic-Sobolev inequalities that are established
in Theorem 5.1. For previously existing results on discrete adaptation of functional inequalities (Poincaré,
Poincaré-Wirtinger, Poincaré-Sobolev and Gagliardo-Nirenberg-Sobolev) for finite volume schemes we re-
fer to the work by Bessemoulin-Chatard et al. [4] and references therein. Concerning convex Sobolev
inequalities (Beckner and log-Sobolev), we refer to Chainais-Hillairet et al. [15] and Bessemoulin-Chatard
and Jüngel [6]. In the previous papers the reference measure in the inequality, which is related to the steady
state of a corresponding convection-diffusion equation, is uniform. Recently there were occurrences of new
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discrete functional inequalities of Poincaré-Wirtinger type associated with discretizations of nontrivial ref-
erence measures (essentially Gaussian), see Dujardin et al. [23], Bessemoulin-Chatard et al. [5] and Li and
Liu [31]. In the present contribution, we deal with the case of discretizations of any absolutely continuous
positive measure (in the bounded domain Ω) with density bounded from above and away from 0.
Outline of the paper. As a first step, we focus on nonlinear TPFA finite volume schemes for (1.1) in
the isotropic case. These schemes can be seen as the reduction of the nonlinear DDFV scheme of [10] to
some specific meshes. In Section 2, we present the schemes and we establish a discrete entropy/dissipation
property and some a priori estimates satisfied by a solution to the scheme. They permit to establish the
existence of a solution to the scheme. Then, Section 3 is devoted to the study of the long time behavior
of the nonlinear TPFA schemes: we establish the exponential decay towards equilibrium. In Section 4,
we consider the nonlinear DDFV scheme introduced in [10] for the anisotropic case and almost general
meshes and we also establish its exponential decay towards equilibrium. Then, in Section 5, we prove the
various functional inequalities which are crucial in the proof of the exponential decay in the case of no-flux
boundary conditions. Finally, Section 6 is dedicated to numerical experiments.

2. The nonlinear two-point flux approximation (TPFA) finite volume schemes. In this
section, we introduce a particular family of finite volume schemes for (1.1) in the isotropic case Λ = I .
They are based on a nonlinear two-point discretization of the following reformulation of the flux

J = −u∇(log u+ V ) .

In the following, we start by presenting the schemes. Then, we establish some a priori estimates, which
finally lead to the existence of a solution to the scheme.

2.1. Presentation of the schemes. Let us first introduce the notations describing the mesh. The
mesh M = (T , E ,P) of the domain Ω is given by a family T of open polygonal control volumes, a family
E of edges, and a family P = (xK)K∈T of points such that xK ∈ K for all K ∈ T . As it is classical for
TPFA finite volume discretizations including diffusive terms, we assume that the mesh is admissible in
the sense of [24, Definition 9.1]. It implies that the straight line between two neighboring centers of cells
(xK ,xL) is orthogonal to the edge σ = K|L.
In the set of edges E , we distinguish the interior edges σ = K|L ∈ Eint and the boundary edges σ ∈ Eext.
Within the exterior edges, we distinguish the Dirichlet boundary edges included in ΓD from the Neumann
(no-flux) boundary edges included in ΓN : Eext = EDext ∪ ENext. For a control volume K ∈ T , we define EK
the set of its edges, which is also split into EK = EK,int ∪EDK,ext ∪ENK,ext. For each edge σ ∈ E , there exists
at least one cell K ∈ T such that σ ∈ EK . Moreover, we define xσ as the center of σ for all σ ∈ E .

In the sequel, d(·, ·) denotes the Euclidean distance in R2 and m(·) denotes both the Lebesgue measure
and the 1-dimensional Hausdorff measure in R2. For all K ∈ T and σ ∈ E , we set mK = m(K) and
mσ = m(σ). For all σ ∈ E , we define dσ = d(xK ,xL) if σ = K|L ∈ Eint and dσ = d(xK , σ), which denotes
the Euclidean distance between xK and its orthogonal projection on the line containing σ, if σ ∈ Eext, with
σ ∈ EK . Then the transmissibility coefficient is defined by τσ = mσ/dσ, for all σ ∈ E . We assume that the
mesh satisfies the following regularity constraint:

(2.1) There exists ζ > 0 such that d(xK , σ) ≥ ζ dσ, for all K ∈ T and σ ∈ EK .

Let ∆t > 0 be the time step. We define NT the integer part of T/∆t and tn = n∆t for all 0 ≤ n ≤ NT .
The size of the mesh is defined by size(T ) = maxK∈T diam(K), where diam(K) = supx,y∈K d(x, y) and
we denote by δ = max(∆t, size(T )) the size of the space–time discretization.

A finite volume scheme for a conservation law with unknown u provides a vector uT = (uK)K∈T ∈ Rθ
(with θ = Card(T )) of approximate values. However, since there are Dirichlet conditions on a part of
the boundary, we also need to define approximate values for u at the corresponding boundary edges:
uED = (uσ)σ∈EDext

∈ RθD (with θD = Card(EDext)). Therefore, the vector containing the approximate values
both in the control volumes and at the Dirichlet boundary edges is denoted by u = (uT ,uED ).

3



For all K ∈ T and σ ∈ EDext, we introduce VK = V (xK) and Vσ = V (xσ), and the associated
V = (VT ,VED ). The boundary data uD is discretized by uσ = uD(xσ) for all σ ∈ EDext, so that uσ = ρe−Vσ

according to (A3).
For any vector u = (uT ,uED ), we define the neighbor unknown for all K ∈ T and all σ ∈ EK to be

(2.2) uK,σ =


uL if σ = K|L ∈ EK,int,
uσ if σ ∈ EDK,ext,
uK if σ ∈ ENK,ext.

We also define the difference operators, for all K ∈ T and σ ∈ EK by

DK,σu = uK,σ − uK , Dσu = |DK,σu| .

Observe that Dσu does not depend on the control volume K but only on the edge σ. Indeed, if σ = K|L
then |DK,σu| = |DL,σu|, if σ ∈ ENext then |DK,σu| = 0 and if σ ∈ EDext there is a unique K such that
σ ∈ EK .

The family of schemes we consider in this section writes as:

mK
un+1
K − unK

∆t +
∑
σ∈EK

Fn+1
K,σ = 0 for all K ∈ T and n ≥ 0 ,(2.3a)

Fn+1
K,σ = −τσun+1

σ DK,σ(logun+1 + V ) for all K ∈ T , σ ∈ EK and n ≥ 0 ,(2.3b)

un+1
σ = uDσ for all σ ∈ EDext and n ≥ 0,(2.3c)

u0
K = 1

mK

∫
K

u0(x) dx for all K ∈ T .(2.3d)

Let us first remark that the definition (2.2) ensures that the numerical fluxes Fn+1
K,σ defined by (2.3b)

vanish on the Neumann boundary edges. It remains to define the values un+1
σ for the interior edges and

the Dirichlet boundary edges. We define un+1
σ as a “mean value” of un+1

K and un+1
L if σ = K|L or a mean

value of un+1
K and uDσ if σ ∈ EDK . More precisely, we set

(2.4) un+1
σ =

{
r(un+1

K , un+1
L ) if σ = K|L ∈ EK,int,

r(un+1
K , uDσ ) if σ ∈ EDK,ext,

where r : (0,+∞)2 → (0,+∞) satisfies the following properties.

r is monotonically increasing with respect to both variables;(2.5a)
r(x, x) = x for all x ∈ (0,+∞) and r(x, y) = r(y, x) for all (x, y) ∈ (0,+∞)2;(2.5b)
r(λx, λy) = λr(x, y) for all λ > 0 and all (x, y) ∈ (0,+∞)2;(2.5c)

x− y
log x− log y ≤ r(x, y) ≤ max(x, y) for all (x, y) ∈ (0,+∞)2, x 6= y.(2.5d)

Let us emphasize that one has for all x, y > 0

(2.6) x− y
log x− log y ≤

(√
x+√y

2

)2

≤ x+ y

2 ≤ max(x, y) ,

and that each function appearing in the last sequence of inequalities satisfies the properties (2.5).
4



2.2. Steady state of the scheme. We say that u∞ = (u∞T ,u∞ED ) is a steady state of the scheme
(2.3) if it satisfies

(2.7)
∑
σ∈EK

F∞K,σ = 0 for all K ∈ T ,

with the steady flux defined for all K ∈ T and σ ∈ EK as

(2.8) F∞K,σ = −τσu∞σ DK,σ(logu∞ + V ) ,

as well as the boundary/compatibility conditions

(2.9)


u∞σ = uDσ for all σ ∈ EDext , if EDext 6= ∅ ,∑
K∈T

mKu
∞
K =

∑
K∈T

mKu
0
K =

∫
Ω
u0 =: M1 , if EDext = ∅ .

In the case EDext = ∅, namely with full no-flux boundary conditions, the condition (2.9) is imposed to
ensure uniqueness of the steady state and compatibility with the conservation of mass which is satisfied
by the scheme. Indeed, one has

(2.10)
∑
K∈T

mKu
n
K =

∑
K∈T

mKu
0
K = M1, ∀n ≥ 0.

The steady state associated to the scheme (2.3) is given by

(2.11) u∞K = ρe−VK , with ρ = M1

(∑
K∈T

mKe
−VK

)−1

.

In the case EDext 6= ∅, Assumption (A3) enforces the boundary conditions to be at thermal equilibrium,
which means that there is a constant αD such that for all σ ∈ EDext,

(2.12) log uDσ + Vσ = αD .

Under this assumption, the steady-state has a similar form as in the case of pure no-flux boundary condi-
tions. It is defined by

(2.13) u∞K = ρ e−VK , with ρ = expαD.

Let us remark that in both cases, as V ∈ C1(Ω,R), the discrete steady state is bounded by above and
below. There are M∞,m∞ > 0 such that for all K ∈ T

(2.14) m∞ ≤ u∞K ≤ M∞ .

2.3. Discrete entropy estimates. Let Φ ∈ C1(R,R) be a convex function satisfying Φ(1) = Φ′(1) =
0. We consider the discrete relative Φ-entropy defined by

(2.15) EnΦ =
∑
K∈T

mKu
∞
KΦ

(
unK
u∞K

)
∀n ≥ 0.

We show in the next proposition that if the discrete equilibrium is a Gibbs/thermal equilibrium, the scheme
dissipates the discrete relative Φ-entropies along time.
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Proposition 2.1. Let us assume that either EDext = ∅ or EDext 6= ∅ with (2.12). We also assume that
the scheme (2.3)-(2.4) has a solution (un)n≥0 which is positive at each time step, namely unK > 0 for all
K ∈ T and n ≥ 0. Then the discrete relative Φ-entropies defined by (2.15) are dissipated along time.
Namely, for all n ≥ 0 one has

(2.16) En+1
Φ − EnΦ

∆t + In+1
Φ ≤ 0 ,

with

(2.17) In+1
Φ =

∑
σ∈Eint∪EDext

τσu
n+1
σ

(
DK,σ log u

n+1

u∞

)(
DK,σΦ′

(
un+1

u∞

))
≥ 0.

Proof. Regardless of the hypothesis on EDext, the steady-state can be written as u∞K = ρe−VK with
ρ ∈ (0,+∞), as shown in (2.11) and (2.13). Therefore, the numerical fluxes defined by (2.3b) rewrite as

Fn+1
K,σ = −τσun+1

σ DK,σ

(
log(un+1/u∞)

)
,

for all K ∈ T , σ ∈ EK and n ≥ 0. Besides, due to the convexity of Φ, one has

En+1
Φ − EnΦ ≤

∑
K∈T

mK(un+1
K − unK)Φ′(un+1

K /u∞K ) .

Then, multiplying the scheme (2.3a) by Φ′(un+1
K /u∞K ), summing over K ∈ T and applying a discrete

integration by parts yields the expected result. Finally, from the monotonicity of the functions log and Φ′
we infer that In+1

Φ is non-negative.
The first consequence of Proposition 2.1 is the decay of the relative Φ-entropy, so that

(2.18) EnΦ ≤ E0
Φ, for all n ≥ 0 .

Then, we deduce some uniform L∞-bounds on the solution to the scheme (2.3).
Proposition 2.2. Under the assumptions of Proposition 2.1, one has

(2.19) m∞min
(

1, min
K∈T

u0
K

u∞K

)
≤ unK ≤M∞max

(
1,max
K∈T

u0
K

u∞K

)
,

for all K ∈ T and n ≥ 0.
Proof. The proof is similar to the proof of Lemma 4.1 in [25]. It is a direct consequence of (2.18)

applied with specific choices for the function Φ. Indeed, just use Φ(x) = (x−M)+ and Φ(x) = (x−m)−
with M = max(1,maxKu0

K/u
∞
K ) and m = min(1,minKu0

K/u
∞
K ) so that in both cases 0 ≤ EnΦ ≤ E0

Φ = 0
for all n ≥ 0, which leads respectively to the upper bound and the lower bound in (2.19).

2.4. Existence of a solution to the scheme. The numerical scheme (2.3)-(2.4) amounts at each
time step to solve a nonlinear system of equations. The existence of a solution to the scheme is stated
in Proposition 2.3. It is a direct consequence of the a priori L∞-estimates given in Proposition 2.2. The
proof relies on a topological degree argument/a Leray-Schauder’s fixed point theorem [30, 18, 22]. It will
be omitted here.

Proposition 2.3. Let us assume that either EDext = ∅ or EDext 6= ∅ with (2.12). We also assume that
the initial condition satisfies (2.20). Then, the scheme (2.3)-(2.4) has a solution (un) for all n ≥ 0, which
satisfies the uniform L∞-bounds (2.19).
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Remark 2.4. The lower bound in (2.19) is positive if there is a positive constant m0 such that

(2.20) u0
K ≥ m0 > 0 , for all K ∈ T ,

which is not necessarily ensured by the assumption (A1) on the initial data u0. If the initial data u0 has
some vanishing zones, such that (2.20) is not satisfied, it is still possible to obtain a positive lower bound
at each time step n ≥ 1. But this bound will depend on the discretization parameters. Instead of the bound
of the entropy, the proof uses the control on the dissipation of entropy also provided by Proposition 2.1.
We refer to [10, Lemma 3.5] for the details of the proof in this case. This weaker estimate is sufficient to
show existence of a solution un to the scheme.

3. Large time behavior of the nonlinear TPFA finite volume schemes. In this section, we
establish the exponential decay of the solution (un)n≥0 to the scheme (2.3)-(2.4), discretizing (1.1) in the
particular case Λ = I, towards the thermal equilibrium u∞. To proceed, we first prove the exponential
decay of some relative entropies EnΦ towards 0. We shall focus on the Boltzmann-Gibbs entropy generated
by

(3.1) Φ1(s) = s log s− s+ 1 ,

and the Tsallis entropies generated by

(3.2) Φp(s) = sp − ps
p− 1 + 1 ,

for p ∈ (1, 2]. The methodology consists in establishing a so-called entropy-entropy dissipation inequality.
More precisely, one wants to show the existence of some ν > 0 such that

(3.3) In+1
Φ ≥ νEn+1

Φ , ∀n ≥ 0.

This is done thanks to discrete functional inequalities. In the case of complete Neumann (no-flux) boundary
conditions we need new inequalities that are proved in Section 5. Depending on the parameter p, we will
use a logarithmic Sobolev inequality (p = 1), a Beckner inequality (p ∈ (1, 2)) or a Poincaré-Wirtinger
inequality (p = 2). In the case of mixed Dirichlet-Neumann boundary conditions, we require a more
classical discrete Poincaré inequality.

Once one obtains (3.3), due to the entropy/entropy dissipation inequality (2.16), we get that EnΦ ≤
(1 + ν∆t)−nE0

Φ for all n ≥ 0. Thus we deduce the following weaker but maybe more explicit bound. For
any k > 0, if ∆t ≤ k, then EnΦ ≤ e−ν̃t

nE0
Φ where the rate is given by ν̃ = log(1 + νk)/k.

3.1. The case of Neumann boundary conditions. In this section we show the exponential decay
towards the thermal equilibrium in the case of Neumann (no-flux) boundary conditions.

Theorem 3.1. Let us assume that EDext = ∅. Then for all p ∈ [1, 2], there exists νp depending only on
the domain Ω, the regularity of the mesh ζ, the mass of the initial condition u0 (only in the case p = 1)
and the potential V (via the steady state u∞), such that,

(3.4) Enp ≤ (1 + νp∆t)−n E0
p , ∀n ≥ 0 .

Thus for any k > 0, if ∆t ≤ k, one has for all n ≥ 0 that Enp ≤ e−ν̃pt
nE0

p with ν̃p = log(1 + νpk)/k.
Proof. By definition (2.17), the discrete entropy dissipation is given by

In+1
p =

∑
σ∈Eint

τσu
n+1
σ

(
Dσ log(un+1/u∞)

) (
DσΦ′p(un+1/u∞)

)
,
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for all n ≥ 0. It can be seen as the discrete counterpart of∫
Ω
u∇ log(u/u∞) · ∇Φ′p(u/u∞)dx = 4

p

∫
Ω
u∞|∇(u/u∞)p/2|2dx.

Let us introduce a discrete counterpart of this last quantity. For all n ≥ 0, let

În+1
p = 4

p

∑
σ∈Eint

τσu
∞
σ

(
Dσ(un+1/u∞)p/2

)2
,

with
u∞σ = min(u∞K , u∞L ) for σ = K|L .

Let us prove now that

(3.5) În+1
p ≤ In+1

p , ∀n ≥ 0.

The proof is based on two elementary inequalities. Let x, y > 0. The first inequality is

4|
√
x−√y|2 ≤ (x− y)(log x− log y).

The second one is given by

(α+ β)2(yα − xα)(yβ − xβ) ≥ 4αβ
(
y(α+β)/2 − x(α+β)/2

)2

and holds for all α, β > 0. We are interested in the case α = p− 1 and β = 1. The reader may find a proof
in [15, Lemma 19]. Altogether, it yields that for all p ∈ [1, 2], one has

(3.6) 4
p

(xp/2 − yp/2)2 ≤ (x− y)(Φ′p(x)− Φ′p(y)) .

As r satisfies (2.5d), it implies that
4
p

(xp/2 − yp/2)2 ≤ r(x, y)(log x− log y)(Φ′p(x)− Φ′p(y))

for all x, y > 0. Therefore, for all edge σ ∈ Eint with σ = K|L, we have

(3.7) 4
p

(
Dσ

(
un+1

u∞

)p/2)2

≤ r
(
un+1
K

u∞K
,
un+1
L

u∞L

)(
Dσ log

(
un+1

u∞

))(
DσΦ′p

(
un+1

u∞

))
.

But thanks to the homogeneity (2.5c) of r, we have

(3.8) u∞σ r

(
un+1
K

u∞K
,
un+1
L

u∞L

)
= r

(
u∞σ

un+1
K

u∞K
, u∞σ

un+1
L

u∞L

)
≤ r(un+1

K , un+1
L ),

because of the definition of u∞σ . We then deduce (3.5) from (3.7) and (3.8).
In order to establish (3.3), we just need to prove that În+1

p ≥ νp En+1
p for all n ≥ 0. This relation is a

consequence of the discrete log-Sobolev and Beckner inequalities stated in Proposition 5.3. Indeed, let us
apply (5.9) to v = un+1 and v∞ = u∞. We get En+1

1 ≤ CLS
(
M∞M1) 1

2 În+1
1 /(ζ2m∞). It yields

ν1 = ζ2

CLS

m∞

(M∞M1) 1
2
.

Similarly, by applying (5.10) one gets the desired inequality with

νp = (p− 1) ζ

CB

m∞

M∞
.

It concludes the proof.
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Corollary 3.2. Under the assumptions of Theorem 3.1, one has

(3.9)
∑
K∈T

mK |unK − u∞K |2 ≤ E0
2M

∞ e−ν̃2 t
n

and

(3.10)
(∑
K∈T

mK |unK − u∞K |

)2

≤ 2E0
1M

1 e−ν̃1 t
n

.

Proof. The decay (3.9) in L2-norm (resp. (3.10) in L1-norm ) is just a consequence of (3.4) and the
Cauchy-Schwarz inequality (resp. the Csiszár-Kullback inequality, see Lemma 5.6).

3.2. The case of Dirichlet-Neumann boundary conditions. In this section we show the expo-
nential decay towards the thermal equilibrium in the case of mixed Dirichlet-Neumann boundary condi-
tions.

Theorem 3.3. Let us assume that EDext 6= ∅. Then, for all p ∈ (1, 2], there exists κp depending only
on p, Ω, ΓD, ζ, the boundary condition uD and the potential V , such that, for any k > 0, if ∆t ≤ k,

(3.11) Enp ≤ (1 + κp∆t)−n E0
p , ∀n ≥ 0 .

Thus for any k > 0, if ∆t ≤ k, one has for all n ≥ 0 that Enp ≤ e−κ̃pt
nE0

p with κ̃p = log(1 + κpk)/k.
Proof. The proof begins in the same fashion as in the case of Neumann boundary conditions. The

expressions of the dissipation slightly change, as some boundary terms are taken into account. However
with the same arguments one still has În+1

p ≤ In+1
p with

In+1
p =

∑
σ∈Eint∪EDext

τσu
n+1
σ

(
Dσ log(un+1/u∞)

) (
DσΦ′p(un+1/u∞)

)
,

and
În+1
p = 4

p

∑
σ∈Eint∪EDext

τσu
∞
σ

(
Dσ(un+1/u∞)p/2

)2
.

Then the proof differs as we are going to use a different functional inequality in order to establish a relation
between En+1

p and In+1
p of the form (3.3). Indeed, we apply a discrete Poincaré inequality (see for instance

[4, Theorem 4.3]). It ensures the existence of a constant CP depending only on ΓD and Ω, such that

∑
K∈T

mK

((
unK
u∞K

) p
2

− 1
)2

≤ (CP )2

ζ

∑
σ∈Eint∪EDext

τσ

(
Dσ

(
un+1

u∞

) p
2
)2

.

Therefore, using the bounds (2.14), we obtain:

In+1
p ≥ 4

p

ζ

(CP )2
m∞

(M∞)p
∑
K∈T

mK

(
(un+1
K )

p
2 − (u∞K )

p
2

)2
.

But, for all p ∈ (1, 2], we have the following inequality, whose proof is left to the reader,

(xp/2 − yp/2)2 ≥ xp − yp − pyp−1(x− y) ,

for all x, y > 0. It yields ∑
K∈T

mK

(
(un+1
K )

p
2 − (u∞K )

p
2

)2
≥ (p− 1)(m∞)p−1En+1

p

9



and finally In+1
p ≥ κpEn+1

p with

(3.12) κp = 4(p− 1)
p

ζ

(CP )2

(
m∞

M∞

)p
and it concludes the proof of Theorem 3.3.

Corollary 3.4. Under the assumptions of Theorem 3.3, one has

(3.13)
∑
K∈T

mK |unK − u∞K |2 ≤ E0
2M

∞ e−κ̃2 t
n

.

Remark 3.5. The restriction p > 1 in Theorem 3.3 does not prevent the entropy En1 from decaying
exponentially fast in time. Indeed it trivially does since Φ1 ≤ Φ2 and thus En1 ≤ En2 , so that

En1 ≤ E0
2(1 + κ2∆t)−n .

However this estimate is not as sharp as (3.11). Indeed, the difference lies in the fact that unlike (3.11),
the latter estimate is not saturated at n = 0. In the same way one could show that any sub-quadratic
Φ-entropy decays at least as fast as En2 . The same observation suggests that the degeneracy of κp (and νp)
when p→ 1 are only technical.

Remark 3.6. It is unclear which functional inequality should be used in the case p = 1 with Dirichlet-
Neumann boundary conditions. This was already noticed in [8, Remark 3.1].

4. Large time behavior of discrete duality finite volume (DDFV) schemes.

4.1. Meshes and set of unknowns. In order to introduce the DDFV scheme from [10], we need
to introduce three different meshes – the primal mesh, the dual mesh and the diamond mesh – and some
associated notations.

The primal mesh denotedM is composed of the interior primal meshM (a partition of Ω with polygonal
control volumes) and the set ∂M of boundary edges seen as degenerate control volumes. For all K ∈M,
we define xK the center of K.

To any vertex xK∗ of the primal mesh satisfying xK∗ ∈ Ω, we associate a polygonal control volume
K∗ defined by connecting all the centers of the primal cells sharing xK∗ as vertex. The set of such
control volumes is the interior dual mesh denoted M∗. To any vertex xK∗ ∈ ∂Ω, we define a polygonal
control volume K∗ by connecting the centers of gravity of the interior primal cells and the midpoints of
the boundary edges sharing xK∗ as vertex. The set of such control volumes is the boundary dual mesh,
denoted ∂M∗. Finally, the dual mesh is M∗ ∪ ∂M∗, denoted by M∗. An illustration in the case of a
triangular primal mesh is provided in Figure 1.

M

∂M

M∗

∂M∗

Figure 1. An example of primal and dual meshes

For all neighboring primal cells K and L, we assume that ∂K ∩ ∂L is a segment, corresponding to an
edge of the mesh M, denoted by σ = K|L. Let E be the set of such edges. We similarly define the set

10



E∗ of the edges of the dual mesh. For each couple (σ, σ∗) ∈ E × E∗ such that σ = K|L = (xK∗ ,xL∗) and
σ∗ = K∗|L∗ = (xK ,xL), we define the quadrilateral diamond cell Dσ,σ∗ whose diagonals are σ and σ∗. If
σ ∈ E ∩ ∂Ω, we note that the diamond degenerates into a triangle. The set of the diamond cells defines
the diamond mesh D. It is a partition of Ω as shown on Figure 2. We can rewrite D = Dext ∪Dint where
Dext is the set of all the boundary diamonds and Dint the set of all the interior diamonds. Finally, the
DDFV mesh is made of T = (M,M∗) and D.

D

Figure 2. An example of diamond mesh D

For a diamond Dσ,σ∗ , whose vertices are (xK ,xK∗ ,xL,xL∗), we define: xD the center of the diamond
cell D, mσ the length of the primal edge σ, mσ∗ the length of the dual edge σ∗, dD = supx,y∈D d(x, y)
the diameter of D, αD the angle between (xK ,xL) and (xK∗ ,xL∗). We will also use two direct basis
(τK∗,L∗ ,nσK) and (nσ∗K∗ , τK,L), where nσK is the unit normal to σ, outward K, nσ∗K∗ is the unit
normal to σ∗, outward K∗, τK∗,L∗ is the unit tangent vector to σ, oriented from K∗ to L∗, τK,L is the unit
tangent vector to σ∗, oriented from K to L. All these notations are presented on Figure 3.

xL∗

xK∗

xL

xK τK∗,L∗

nσK

τK,L

nσ∗K∗

σ = K|L, edge of the primal mesh
σ∗ = K∗|L∗, edge of the dual mesh
Diamond Dσ,σ∗
Vertices of the primal mesh
Centers of the primal mesh

xD
•

xL∗

xK∗

xL
xK

Figure 3. Definition of the diamonds Dσ,σ∗ and related notations.

For each primal cell K ∈M (resp. dual cell K∗ ∈M∗), we define mK the measure of K, EK the set
of the edges of K (it coincides with the edge σ = K if K ∈ ∂M), DK the set of diamonds Dσ,σ∗ ∈ D
such that m(Dσ,σ∗ ∩K) > 0, and dK = supx,y∈K d(x, y) the diameter of K (resp. mK∗ , EK∗ , DK∗ , dK∗).
Denoting by mD the 2-dimensional Lebesgue measure of D, one has

(4.1) mD = 1
2mσmσ∗ sin(αD), ∀D = Dσ,σ∗ ∈ D.

We assume some regularity of the mesh as presented in [10]. Therefore, we define two local regularity
11



factors θD, θ̃D of the diamond cell D = Dσ,σ∗ ∈ D by

θD = 1
2 sin(αD)

(
mσ

mσ∗
+ mσ∗

mσ

)
, θ̃D = max

 max
K∈M,

mD∩K>0

mD
mD∩K

; max
K∗∈M∗,

mD∩K∗>0

mD
mD∩K∗


and we assume that there exists Θ ≥ 1 such that

(4.2) 1 ≤ θD, θ̃D ≤ Θ, ∀D ∈ D.

In particular, this implies that

(4.3) sin(αD) ≥ Θ−1, ∀D ∈ D.

Let us introduce the sets of discrete unknowns. RT is the linear space of scalar fields constant on the
primal and dual cells and M∗ and (R2)D is the linear space of vector fields constant on the diamonds. We
have

uT ∈ RT ⇐⇒ uT =
(
(uK)K∈M , (uK∗)K∗∈M∗

)
ξD ∈ (R2)D ⇐⇒ ξD = (ξD)D∈D .

Then, we define the positive semi-definite bilinear form J·, ·KT on RT and the scalar product (·, ·)Λ,D
on (R2)D by

JvT , uT KT = 1
2

∑
K∈M

mKuKvK +
∑

K∗∈M∗

mK∗uK∗vK∗

 , ∀uT , vT ∈ RT ,

(ξD,φD)Λ,D =
∑
D∈D

mD ξD ·ΛDφD, ∀ξD,φD ∈ (R2)D,

where
ΛD = 1

mD

∫
D
Λ(x) dx, ∀D ∈ D.

We denote by ‖ · ‖Λ,D the Euclidean norm associated to the scalar product (·, ·)Λ,D, i.e.,

‖ξD‖2Λ,D = (ξD, ξD)Λ,D , ∀ξD ∈ (R2)D.

Let us remark that, due to the ellipticity (A4) of Λ, we have

(4.4) ‖ξD‖2Λ,D ≥ λm ‖ξD‖
2
I,D with ‖ξD‖2I,D =

∑
D∈D

mD|ξD|2.

4.2. The nonlinear DDFV scheme: presentation and a priori estimates.

Discrete operators. The DDFV method is based on a discrete duality formula which links a discrete
gradient operator to a discrete divergence operator, as shown in [20]. In this paper we don’t need to
introduce the discrete divergence. We just define the discrete gradient. It has been introduced in [17] and
developed in [20]; it is a mapping from RT to (R2)D defined by ∇DuT =

(
∇DuT

)
D∈D for all uT ∈ RT ,

where
∇DuT = 1

sin(αD)

(
uL − uK

mσ∗
nσK + uL∗ − uK∗

mσ
nσ∗K∗

)
, ∀D ∈ D.

12



Using (4.1), the discrete gradient can be equivalently written:

∇DuT = 1
2mD

(mσ(uL − uK)nσK + mσ∗(uL∗ − uK∗)nσ∗K∗) , ∀D ∈ D.

For uT ∈ RT and D ∈ D, we can define δDuT by

δDuT =
(

uK − uL
uK∗ − uL∗

)
.

Then, we can write
(∇DuT ,∇DvT )Λ,D =

∑
D∈D

δDuT · ADδDvT ,

where the local matrices AD are defined by AD =
(
ADσ,σ ADσ,σ∗
ADσ,σ∗ ADσ∗,σ∗

)
, with

ADσ,σ = 1
4mD

m2
σ(ΛDnK,σ · nK,σ),

ADσ,σ∗ = 1
4mD

mσmσ∗(ΛDnK,σ · nK∗,σ∗),

ADσ∗,σ∗ = 1
4mD

m2
σ∗(ΛDnK∗,σ∗ · nK∗,σ∗).

We also introduce a reconstruction operator on diamonds rD. It is a mapping from RT to RD defined
for all uT ∈ RT by rD[uT ] =

(
rD(uT )

)
D∈D. For D ∈ D, whose vertices are xK , xL, xK∗ , xL∗ , we define

(4.5) rD(uT ) = f(r(uK , uL), r(uK∗ , uL∗)),

where r satisfies the properties (2.5) and f is either defined by f(x, y) = max(x, y) or by f(x, y) = (x+y)/2.

Definition of the scheme. Let us first define the discrete initial condition u0
T by taking the mean

values of u0 on the primal and the dual meshes. For all K ∈M and K∗ ∈M∗, we set

u0
K = 1

mK

∫
K

u0 , u0
K∗ = 1

mK∗

∫
mK

u0 , u0
∂M = 0 .

The exterior potential V is discretized by taking its nodal values on the primal and dual cells, namely
VK = V (xK) and VK∗ = V (xK∗) for all K ∈M and K∗ ∈M∗.

We can now define the nonlinear DDFV scheme, as it is introduced in [10] but without stabilization
term. Indeed, while the stabilization term seems crucial for the proof of convergence of the scheme, the
numerical experiments show that it has no significant influence on the behavior of the scheme. The scheme
is the following: for all n ≥ 0, we look for un+1

T ∈ (R∗+)T solution to the variational formulation:

run+1
T − unT

∆t , ψT

z

T
+TD(un+1

T ; gn+1
T , ψT ) = 0, ∀ψT ∈ RT ,(4.6a)

TD(un+1
T ; gn+1

T , ψT ) =
∑
D∈D

rD(un+1
T ) δDgn+1

T · ADδDψT ,(4.6b)

gn+1
T = log(un+1

T ) + VT .(4.6c)
13



Conservation of mass and steady-state. By choosing successively ψT = ((1)K∈M, (0)K∗∈M∗) and
ψT = ((0)K∈M, (1)K∗∈M∗) as test functions in (4.6), we obtain that the mass is conserved on the primal
mesh and on the dual mesh: that is for all n ≥ 0 one has∑

K∈M

mKu
n
K =

∑
K∈M

mKu
0
K = M1 =

∑
K∗∈M∗

mK∗u
n
K∗ =

∑
K∗∈M∗

mK∗u
0
K∗ , ∀n ≥ 0.

The steady-state u∞T associated to the scheme (4.6) is defined for all K ∈M and K∗ ∈M∗ by

u∞K = ρe−VK , with ρ = M1

(∑
K∈M

mKe
−VK

)−1

,

u∞K∗ = ρ∗e−VK∗ , with ρ∗ = M1

 ∑
K∗∈M∗

mK∗e
−VK∗

−1

.

Let us remark that, as for the TPFA scheme, there exists m∞ > 0 and M∞ > 0 (and we keep the same
notations) such that for all K ∈M and K∗ ∈M∗

(4.7) m∞ ≤ u∞K , u∞K∗ ≤M∞ .

Entropy-dissipation estimate and existence result. As for the TPFA scheme, we introduce the
discrete relative entropy (En1,T )n≥0 obtained with the Gibbs entropy Φ1. It is defined by

En1,T = Ju∞T Φ1(unT /u∞T ), 1T K = JunT log(unT /u∞T ), 1T K, ∀n ≥ 0.

where the second equality comes from the conservation of mass on each mesh. The discrete entropy
dissipation is defined by

In+1
1,T = TD(un+1

T ; gn+1
T , gn+1

T ), ∀n ≥ 0.

We notice that the definition of the steady-state implies that δDgn+1
T = δD log(un+1

T /u∞T ) for all D ∈ D.
Therefore In+1

1,T rewrites for all n ≥ 0 as

In+1
1,T =

∑
D∈D

rD(un+1
T ) δD log(un+1

T /u∞T ) · ADδD log(un+1
T /u∞T ) .

We can now state the result of existence of a discrete positive solution to the scheme (4.6), with the
discrete entropy-entropy estimate.

Proposition 4.1. For all n ≥ 0, there exists a solution un+1
T ∈ (R∗+)T to the nonlinear system (4.6)

that satisfies the discrete entropy/entropy dissipation estimate:

(4.8)
En+1

1,T − En1,T
∆t + In+1

1,T ≤ 0, for all n ≥ 0.

The proof is a direct adaptation of the proof of [10, Theorem 2.2] to the case without stabilization
and with a discrete relative entropy (the entropy defined in [10] is a general entropy, not relative to the
steady-state, which differs from En1,T from a constant). Let us just mention that (4.8) is obtained by using
ψT = log(un+1

T /u∞T ) as a test function in (4.6a).
Remark 4.2. Let us precise that while an entropy inequality still holds in the case of the DDFV scheme

with stabilization term as in [10], the long time analysis performed in the next section does not seem to
adapt to the stabilized scheme. Indeed, with the penalization term, the conservation of mass on the primal
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and dual meshes is not satisfied anymore which prevents the use of the discrete log-Sobolev inequality of
Section 5.

Nevertheless, let us recall that the stabilization term is mainly introduced to overcome a technical
issue related to the identification of the limit in the convergence proof. At the practical level of numerical
experiments, no noticeable difference has been observed between the behavior of the scheme with stabilization
and its present version, both at the level of long time behavior and convergence. We refer to [10] for more
details.

4.3. Analysis of the long time behavior. It remains to establish the exponential decay towards 0
of the discrete relative entropy (En1,T )n≥0. As for the TPFA finite volume scheme, it is based on a relation
between the discrete entropy and the discrete entropy dissipation of the form (3.3). And this inequality is
a consequence of a discrete log-Sobolev inequality which is established in Proposition 5.5.

Theorem 4.3. Let us assume that EDext = ∅. Then, there exists ν depending only on the domain Ω,
the regularity of the mesh Θ, the initial condition u0, the exterior potential V and the anisotropy tensor Λ
via λm and λM , such that

(4.9) En1,T ≤ (1 + ν∆t)−n E0
1,T , ∀n ≥ 0 .

Thus for any k > 0, if ∆t ≤ k, one has for all n ≥ 0 that En1,T ≤ e−ν̃t
nE0

1,T with ν̃ = log(1 + νk)/k.

Proof. In the following, C will denote any positive constant depending only on Ω, Θ, λm and λM . As
for the TPFA finite volume scheme, we start with introducing a discrete counterpart of 4u∞|∇(u/u∞)1/2|2
in the DDFV framework. We define for all n ≥ 0

În+1
1,T = 4

∑
D∈D

ū∞D δ
D
√
un+1
T /u∞T · A

DδD
√
un+1
T /u∞T

with
ū∞D = min(u∞K , u∞L , u∞K∗ , u∞L∗) .

In a first step, we compare In+1
1,T to În+1

1,T . For all D ∈ D, we introduce the diagonal matrix BD, whose
diagonal coefficients are BDσ,σ = |ADσ,σ|+ |ADσ,σ∗ | and BDσ∗,σ∗ = |ADσ∗,σ∗ |+ |ADσ,σ∗ |. Then it is shown in [10]
that for all D ∈ D, there holds

w · ADw ≤ w · BDw ≤ Cw · ADw, ∀w ∈ R2 .

Therefore, on one hand,

In+1
1,T ≥ C

∑
D∈D

rD(un+1
T ) δD log(un+1

T /u∞T ) · BDδD log(un+1
T /u∞T )

and on the other hand
În+1
1,T ≤ 4

∑
D∈D

ū∞D δ
D
√
un+1
T /u∞T · B

DδD
√
un+1
T /u∞T .

Besides, as BD is a diagonal matrix, for all D ∈ D we have

δD

√
un+1
T
u∞T

· BDδD
√
un+1
T
u∞T

= BDσ,σ

√un+1
K

u∞K
−

√
un+1
L

u∞L

2

+BDσ∗,σ∗

√un+1
K∗

u∞K∗
−

√
un+1
L∗

u∞L∗

2

.
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Adapting the inequalities (3.7) and (3.8) on the primal and the dual mesh, we obtain, thanks to the
definition of ū∞D ,

4ū∞D δD
√
un+1
T
u∞T

· BDδD
√
un+1
T
u∞T

≤ BDσ,σr(un+1
K , un+1

L )
(

log
(
un+1
K

u∞K

)
− log

(
un+1
L

u∞L

))2

+BDσ∗,σ∗r(un+1
K∗ , u

n+1
L∗ )

(
log
(
un+1
K∗

u∞K∗

)
− log

(
un+1
L∗

u∞L∗

))2

,

for all D ∈ D. Moreover, the choice of the function f in the reconstruction operator rD ensures that

max(r(un+1
K , un+1

L ), r(un+1
K∗ , u

n+1
L∗ )) ≤ 2rD(un+1

T ), ∀D ∈ D

so that we finally obtain

(4.10) In+1
1,T ≥ C Î

n+1
1,T ∀n ≥ 0.

Let us now proceed with the comparison of În+1
1,T and En+1

1,T . Thanks to the lower bound in (4.7) and
(4.4), we have

(4.11) În+1
1,T ≥ 4m∞

∥∥∥∥∇D
√
un+1
T /u∞T

∥∥∥∥2

Λ,D

≥ 4m∞λm
∥∥∥∥∇D

√
un+1
T /u∞T

∥∥∥∥2

I,D

.

We apply the discrete log-Sobolev inequality (5.11) given in Proposition 5.5 with vT = un+1
T and v∞T = u∞T .

It yields

(4.12) En+1
1,T ≤ C

(
M∞M1) 1

2

∥∥∥∥∇D
√
un+1
T /u∞T

∥∥∥∥2

I,D

.

From (4.10), (4.11) and (4.12), we obtain the expected relation between the discrete relative entropy and
the discrete dissipation of the form (3.3) with

(4.13) ν = Cm∞/
(
M∞M1) 1

2 .

It concludes the proof of Theorem 4.3.

5. Discrete functional inequalities. In this section, we state and prove the various discrete func-
tional inequalities that are needed to prove the exponential time decay of solutions to our nonlinear schemes
in the case of Neumann boundary conditions. They apply to classical polygonal mesh M = (T , E ,P) of Ω
satisfying the regularity constraint (2.1), but not necessarily the orthogonality property as introduced in
[24, Definition 9.1].

Theorem 5.1 is the main result of this section and constitutes a general statement of these new discrete
functional inequalities. Then, in Proposition 5.3 and Proposition 5.5 we particularize these inequalities in
order to use them in the long-time analysis of the present paper. Compared to previous works on discrete
functional inequalities [6, 4, 15], the novelty here is that the reference measure (or the steady state) is
non-constant in the domain.

Theorem 5.1. Let M = (T , E ,P) be a mesh of Ω satisfying the regularity constraint (2.1) with pa-
rameter ζ > 0. Consider (µK)K∈T such that µK ≥ 0 for all K ∈ T and

∑
K∈T mKµK = 1. Let us also

define µ∞ := supK∈T µK . Then the following discrete functional inequalities hold.
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i) Discrete Poincaré-Wirtinger inequality. There is a constant CPW > 0 depending only on Ω
such that for any (fK)K∈T

(5.1)
∑
K∈T

mK

∣∣∣∣∣∣fK −
∑
K̃∈T

mK̃fK̃µK̃

∣∣∣∣∣∣
2

µK ≤ CPW
ζ

µ∞
∑
σ∈Eint
σ=K|L

τσ |fK − fL|2 .

ii) Discrete Beckner inequality. There is a constant CB > 0 depending only on Ω (actually
CB = CPW ) such that for all p ∈ (1, 2] and (fK)K∈T satisfying fK ≥ 0

(5.2)
∑
K∈T

mKf
2
KµK −

(∑
K∈T

mKf
2/p
K µK

)p
≤ CB

ζ
µ∞

∑
σ∈Eint
σ=K|L

τσ |fK − fL|2 .

iii) Discrete logarithmic Sobolev inequality. There is a constant CLS > 0 depending only on Ω
such that for all (fK)K∈T satisfying fK > 0, one has

(5.3)
∑
K∈T

mKf
2
K log

(
f2
K∑

K̃∈T mK̃f
2
K̃
µK̃

)
µK ≤ CLS

ζ2
√
µ∞

∑
σ∈Eint
σ=K|L

τσ |fK − fL|2 .

For the proof of this theorem, we need to introduce a few notations and an important technical lemma.
In the following, given a sequence (fK)K∈T , its piecewise constant reconstruction is denoted f(x) =∑
K∈T fK1K(x). Given µ(x) dx an absolutely continuous probability measure on Ω and g a bounded

measurable function with respect to µ, we denote by µg the mean value of g with respect to µ and ḡ the
usual mean value, namely

µg =
∫

Ω
g(x)µ(x) dx and ḡ = 1

m(Ω)

∫
Ω
g(x) dx .

Moreover, we denote by ‖ · ‖Lqµ(Ω) the canonical Lq-norm with respect to the measure µ and ‖ · ‖Lq(Ω) the
canonical Lq-norm with respect to the Lebesgue measure.

Lemma 5.2. For all q ∈ [1,∞] and any suitably integrable function g one has

(5.4) ‖g − µg‖Lqµ(Ω) ≤ 2 ‖g − ḡ‖Lqµ(Ω) .

Proof. By Fubini’s theorem one has

ḡ − µg =
∫

Ω

∫
Ω

(g(x)− g(z)) dx
m(Ω)µ(z)dz.

Therefore, applying Jensen’s inequality, we obtain that |ḡ − µg| ≤ ‖g − ḡ‖Lqµ(Ω). One then concludes via
the Minkowski (triangle) inequality.

Proof of Theorem 5.1. The inequality in i) is obtained from the classical discrete Poincaré-Wirtinger
inequality (see [4, Theorem 3.6]) which yields

(5.5) ‖f − f̄‖2L2(Ω) ≤
C(Ω)
ζ

∑
σ∈Eint
σ=K|L

τσ(fK − fL)2 .

Then, the result follows from (5.4).
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The Beckner inequality in ii) is obtained as in [15] from the Poincaré-Wirtinger inequality (5.1) and
the Jensen inequality. Indeed, for p ∈ [1, 2], one has

‖f − µf‖2L2
µ

= ‖f‖2L2
µ
− |µf |2 ≥ ‖f‖2L2

µ
− |µ|f |2/p|p

For the logarithmic Sobolev inequality in iii), the starting point of the proof is the same as in [6].
It follows [19, Lemma 2.1] adapted to a probability measure µ different from the Lebesgue measure.
Proceeding as in the previous references we get for all q > 2

(5.6)
∫

Ω
f2 log f2

‖f‖2L2
µ(Ω)

µ(x) dx ≤ q

q − 2 ‖f − µf‖
2
Lqµ(Ω) + q − 4

q − 2 ‖f − µf‖
2
L2
µ(Ω).

Thus by choosing q = 4 and using inequality (5.4) we get

(5.7)
∫

Ω
f2 log f2

‖f‖2L2
µ(Ω)

µ(x) dx ≤ 8
√
µ∞‖f − f̄‖2L4(Ω) .

We may now apply a discrete Poincaré-Sobolev inequality to the piecewise constant function f − f̄ , see [4,
Theorem 3.2]. It yields

(5.8) ‖f − f̄‖2L4(Ω) ≤
C̃(Ω)
ζ

‖f − f̄‖2L2(Ω) +
∑
σ∈Eint
σ=K|L

τσ
(
fK − fL)2)

 ,

where C̃(Ω) depends only on Ω. Finally, as ζ ≤ 1, we deduce from (5.8) and (5.5) the existence of some
Ĉ(Ω) (depending on C(Ω) and C̃(Ω)) such that

‖f − f̄‖2L4(Ω) ≤
Ĉ(Ω)
ζ2

∑
σ∈Eint
σ=K|L

τσ(fK − fL)2 .

Together with (5.7), it proves the result.
Let us now particularize Theorem 5.1 in order to fit with the objects of the previous sections.
Proposition 5.3. Let M = (T , E ,P) be a mesh of Ω satisfying the regularity constraint (2.1). Con-

sider (vK)K∈T and (v∞K )K∈T satisfying vK > 0, v∞K > 0 for all K ∈ T and∑
K∈T

mKvK =
∑
K∈T

mKv
∞
K =: M1 ,

and write M∞ = supK∈T v∞K . There holds

(5.9)
∑
K∈T

mKΦ1

(
vK
v∞K

)
v∞K ≤

CLS
ζ2

(
M1M∞

) 1
2
∑
σ∈Eint
σ=K|L

τσ

∣∣∣∣√ vK
v∞K
−
√
vL
v∞L

∣∣∣∣2 ,
and for all p ∈ (1, 2]

(5.10)
∑
K∈T

mKΦp
(
vK
v∞K

)
v∞K ≤ CB

(p− 1)ζ M
∞

∑
σ∈Eint
σ=K|L

τσ

∣∣∣∣∣
(
vK
v∞K

) p
2

−
(
vL
v∞L

) p
2
∣∣∣∣∣
2

,

where we recall that Φp(s) = (sp − ps)/(p− 1) + 1 and Φ1(s) = s log(s)− s+ 1.
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Proof. The first inequality is a consequence of (5.3) with the choice fK = (vK/v∞K )1/2 and µK =
v∞K /M

1. The second inequality is obtained by taking fK = (vK/v∞K )p/2 and µK = v∞K /M
1 in (5.2).

Remark 5.4. Observe that when p→ 1 the left-hand side of (5.10) degenerates to the left-hand side of
(5.9). However, the right-hand side of (5.10) tends to +∞ in the same limit. It suggests that the constant
in the discrete Beckner inequality (5.2) is far from optimal with respect to its dependence in p.

From Proposition 5.3, we may now deduce a discrete log-Sobolev inequality which applies to some
DDFV reconstruction on primal and dual meshes T = (M,M∗) associated to a diamond mesh D.

Proposition 5.5. Let T = (M,M∗) be a mesh of Ω, associated to a diamond mesh D, satisfying the
regularity constraint (4.2). Consider vT ∈ RT and v∞T ∈ RT satisfying vK , v∞K > 0 for all K ∈ M and
vK∗ , v

∞
K∗ > 0 for all K∗ ∈M∗ and∑

K∈M

mKvK =
∑
K∈M

mKv
∞
K =

∑
K∗∈M∗

mK∗vK∗ =
∑

K∗∈M∗

mK∗v
∞
K∗ =: M1 .

We write M∞ := supK,K∗ max(v∞K , v∞K∗). Then there exists a constant C depending only on Ω and the
regularity of the mesh Θ such that

(5.11)
s
vT log vT

v∞T
,1T

{
≤ C

(
M1M∞

) 1
2
∑
D∈D

mD
∣∣∣∣∇D√ vT

v∞T

∣∣∣∣2 .
Proof. In the following, C will denote any positive constant depending only on Ω and Θ. Let us first

notice that the regularity constraint (4.2) implies that the primal mesh M and the dual mesh M∗ both
satisfy the regularity constraint (2.1) with ζ = 1/Θ2. Indeed, for all D = Dσ,σ∗ , we note that dσ = mσ∗

and dσ∗ = mσ. Moreover, for all K ∈M such that K ∩ D 6= ∅, we have

mD = 1
2mσmσ∗ sin(αD) and mD∩K = 1

2mσd(xK , σ) ,

where d(xK , σ) denotes the length of the altitude in the triangle with base σ and the vertex xK . As
mD ≤ ΘmD∩K by (4.2), using (4.3), we obtain that

d(xK , σ) ≥ 1
Θ2 mσ∗ ,

which corresponds to (2.1) for M. Similarly, for all D = Dσ,σ∗ and for all K∗ ∈M∗ such that K∗ ∩D 6= ∅,
we can prove that

d(xK∗ , σ∗) ≥
1

Θ2 mσ,

using the fact that mD ≤ ΘmD∩K∗ . Here again, d(xK∗ , σ∗) denotes the length of the altitude in the
triangle with base σ∗ and the vertex xK∗ .

Therefore, we can apply Proposition 5.3 twice to get∑
K∈M

mKvK log
(
vK
v∞K

)
≤ C (M1M∞) 1

2
∑

Dσ,σ∗∈D

mσ

mσ∗

∣∣∣∣√ vK
v∞K
−
√
vL
v∞L

∣∣∣∣2 ,(5.12)

∑
K∗∈M∗

mK∗vK∗ log
(
vK∗

v∞K∗

)
≤ C (M1M∞) 1

2
∑

Dσ,σ∗∈D

mσ∗

mσ

∣∣∣∣√vK∗

v∞K∗
−
√
vL∗

v∞L∗

∣∣∣∣2 .(5.13)

But, the definition of the discrete gradient ∇D implies that for all fT ∈ RT and for all Dσ,σ∗ ∈ D,

fK − fL
mσ∗

= ∇DfT · τK,L and fK∗ − fL∗
mσ

= ∇DfT · τK∗,L∗ .
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Therefore,

(5.14)
∣∣∣∣fK − fLmσ∗

∣∣∣∣2 ≤ ∣∣∇DfT ∣∣2 and
∣∣∣∣fK∗ − fL∗mσ

∣∣∣∣2 ≤ ∣∣∇DfT ∣∣2 ,
which can be written for fT =

√
vT /v∞T . As mσmσ∗ ≤ 2ΘmD thanks to (4.2), we obtain (5.11) by

summing (5.12) and (5.13).
Finally, we state the Csiszár-Kullback inequality. Its proof is rather classical, but as it is hard to find a

reference in the literature, we briefly recall it here. This version is greatly inspired by a course of Stéphane
Mischler.

Lemma 5.6. Let µ be a probability measure and g a positive measurable function such that
∫
gdµ = 1.

Then

(5.15)
(∫
|g − 1|dµ

)2
≤ 2

∫
g log(g) dµ

Proof. Let ϕ(g) = (2g+4)(g log(g)−g+1)−3(g−1)2. A direct computation of the derivatives shows
that ϕ′′(g) ≥ 0 for all g ≥ 0 and ϕ′(1) = ϕ(1) = 0. Thus ϕ(g) ≥ 0 for all g ≥ 0. By the Cauchy-Schwarz
inequality it yields(∫

|g − 1|dµ
)2
≤
(∫ (2g

3 + 4
3

)
dµ
)(∫

(g log(g)− g + 1) dµ
)
,

which is exactly (5.15) since µ and gµ are probability measures.

6. Numerical experiments.

6.1. Numerical resolution of the nonlinear systems. Even though the continuous problem (1.1)
is linear, all the schemes studied in this paper are nonlinear, in the sense that un in the TPFA context or
unT in the DDFV context solve nonlinear systems of the form

ΦT (un) = un−1 or ΦT (unT ) = un−1
T

for some ΦT : (0,+∞)T → RT which is singular near the boundary of its domain. Our resolution strategy
relies on Newton-Raphson method, but since there is no guaranty that the Newton iterations remain in
(0,+∞)T , we project them on [10−12,+∞)T . As a stopping criterion, we choose

‖∆t−1M(ΦT (un)− un−1)‖`1 ≤ 10−10,

where M is the diagonal mass matrix, the diagonal entry of which being given by mK in the TPFA context,
and

(
(mK)K∈M , (mK∗)K∗∈M∗

)
in the DDFV context.

6.2. Long time behavior of TPFA schemes. In the following the domain is set to Ω = [0, 1]×[0, 1]
and the simulations are performed on a family of meshes generated from the family of triangular meshes
from [27] with size h0 = 0.25. Each refinement divides the size of the mesh by 2. Our first test case is
taken from [14, 25] and consists in the resolution of (1.1) in the case where Λ = I, with a potential given
by V (x1, x2) = x1 and endowed with the boundary conditions uD(0, x2) = 1, uD(1, x2) = exp(1) on the
left and right edges, with ΓD = ({0} × [0, 1]) ∪ ({1} × [0, 1]), and no-flux boundary conditions on the top
and bottom edges, with ΓN = ([0, 1]×{0})∪ ([0, 1]×{1}). The exact solution of this equation is given by

(6.1) uex(x1, x2, t) = exp(x1) + exp
(
x1

2 −
(
π2 + 1

4

)
t

)
sin(πx1) .
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Figure 4. TPFA. L1 distance between the numerical solution and the steady state (left) on the coarsest mesh (right).

We solve the equation with our non-linear scheme (2.3) for various functions r and meshes. In Table 1,
we show the convergence result. The errors between the numerical and the exact solutions are computed
in discrete L2 norm at final time T = 0.1. The time step is appropriately refined in order to observe the
space discretization error only. One notices that all schemes are of order 2 in space except for the less
regular r(x, y) = max(x, y) for which the order is only 1. All the three second order schemes produce
very similar results, but it is worth mentioning that the scheme corresponding to r(x, y) = (x + y)/2 is
the easiest to implement regarding the assembling of the Jacobian matrix. On Figure 4, we illustrate the
exponential decay of the numerical solutions towards the steady state. The simulation is performed on the
coarsest mesh with ∆t = 10−4. We find a good agreement between the theoretical and experimental rate
of decay and observe that the choice r(x, y) = max(x, y) tends to overdissipate. This is in agreement with
inequality (2.6). Moreover, we observe on the interval t ∈ [0, 0.5] a maximal number of Newton iterations
of 2 for all schemes, while the mean number of Newton iterations is 1.69 for r(x, y) = (x + y)/2, 1.58
for r(x, y) = (y − x)/log(y/x), 1.62 for r(x, y) = (

√
x+√y)2/4 and 1.93 for r(x, y) = max(x, y). After

t = 0.5, the number of Newton iterations is always equal to 1.

r(x,y) = x+y
2 r(x,y) = y−x

log(y/x) r(x,y) =
(
√
x+√y)2

4 r(x,y) = max(x,y)

Size(T ) Error Order Error Order Error Order Error Order
h0 1.94 · 10−2 1.98 · 10−2 1.97 · 10−2 6.64 · 10−3

h0/2 4.94 · 10−3 1.97 5.08 · 10−3 1.96 5.05 · 10−3 1.96 2.86 · 10−3 1.21
h0/4 1.24 · 10−3 2.00 1.28 · 10−3 1.99 1.27 · 10−3 1.99 1.35 · 10−3 1.08
h0/8 3.10 · 10−4 2.00 3.20 · 10−4 2.00 3.17 · 10−4 2.00 6.77 · 10−4 1.00
h0/16 7.74 · 10−5 2.00 8.00 · 10−5 2.00 7.93 · 10−5 2.00 3.41 · 10−4 0.99
h0/32 1.94 · 10−5 2.00 2.00 · 10−5 2.00 1.98 · 10−5 2.00 1.71 · 10−4 1.00

Table 1
TPFA. Error in L2 between the numerical and the exact solution at final time and experimental order of convergence.
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Figure 5. DDFV. The distorted quandrangular (left) and Kershaw (right) meshes.

6.3. Long time behavior of DDFV schemes. We consider a generalization of the test case of
[10]. The domain is given by Ω = [0, 1]× [0, 1] and the potential is defined as V (x1, x2) = −x2. A family
of solutions to (1.1) is given by

uε(x1, x2, t) = πe(x2− 1
2 ) + e−(π2+ 1

4 )t+ x2
2

(
π cos(πx2) + 1

2 sin(πx2)
)

+ ε e−π
2Λ11t cos(π x1) .

in the case where ΓD = ∅ and the anisotropy matrix is

Λ =
(

Λ11 0
0 1

)
.

Let us give two comments on this test case.
First observe that if π2Λ11 � π2 + 1

4 and |ε| � 1, there are two regimes of decay to equilibrium which
are reminiscent of the anisotropy of the equation. Indeed, in the expression of uε, the second x2-depending
term decaying like e−(π2+ 1

4 )t is dominant for small times because ε is small. Then for larger times the last
x1 depending term decaying like e−Λ11π

2t is greater.
Second, observe that in the borderline case ε = 0, the test case is “degenerate” in terms of exponential

rate of decay in the following sense. With the same reasoning as before one sees that the minimal decay
rate is π2 + 1

4 when ε = 0 and switches to min(π2 + 1
4 ,Λ11π

2) when ε 6= 0 regardless of the size of the
perturbation. When ε = 0 and Λ11 is small, any perturbation in the x1 direction (whose first mode in the
Fourier decomposition is precisely of the form e−π

2Λ11t cos(π x1)) interferes with the expected decay at
rate π2 + 1

4 . Therefore, unless the symmetries of this particular test case are conserved by the numerical
method, one should witness the parasite numerical decay at rate π2Λ11.

Let us now describe our numerical tests. We performed numerical simulations on a family of distorted
meshes introduced in [27], named Kershaw and quadrangular meshes, and on Cartesian meshes. The
distorted meshes are represented on Figure 5. For conciseness we only report here numerical results on
Cartesian and distorted quadrangular meshes as the results on Kershaw meshes are qualitatively similar
to those of distorted quadrangular meshes. TPFA schemes cannot be used on the former distorted meshes,
which motivates the use of the nonlinear DDFV scheme (4.6). Both functions f and r involved in the
definition of the scheme are equal to the mean value function, leading to

rD(uT ) = uK + uL + uK∗ + uL∗

4 , ∀D ∈ D.

We start with the test case uε with the choice ε = 10−2. Figure 6 shows the exponential decay
of the relative entropy E1,T with respect to time for the different meshes of the sequence of Cartesian
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Figure 6. DDFV. Exponential decay of the relative entropy on a sequence of Cartesian (top row) and quadrangular
(bottom row) meshes mesh with ε = 10−2 and Λ11 = 1 (left column) or Λ11 = 0.1 (right column).

and distorted quadrangular meshes. The numerical simulations are performed in both the isotropic case
Λ11 = 1 and the anisotropic case Λ11 = 0.1. In both cases the decay rates are well captured by the schemes
with better accuracy on the finer meshes (Mesh 4). In the anisotropic case the two regimes of decay are
captured by the scheme.

Then, on Figure 7, we deal with the degenerate test case ε = 0 and Λ11 = 0.1. Once again we plot
the evolution of the relative entropy E1,T with respect to time for the different meshes of the sequence of
Cartesian and distorted quadrangular meshes. This time, the behavior is different. While the Cartesian
mesh is as accurate as in the previous test case, the quadrangular mesh captures a parasite decay starting
at around t = 1. One observes that this effect is mitigated when the mesh is refined. This is in accordance
with the above discussion on the “degeneracy” of the case ε = 0. Indeed, the Cartesian mesh preserves
the symmetries of the problem and therefore the discretization does not introduce any perturbation in the
x1 direction. On the contrary the distorted mesh does not preserve the symmetry and a perturbation is
unavoidably introduced in the x1 direction. Of course it tends to vanish as the mesh size goes to 0. In
order to further confirm this analysis, one can estimate numerically the ratio between the two experimental
rates of decay (the slopes for small and large times) for the right plot of Figure 7. We find a ratio of 9.49
for the distoted quandragular mesh, and the ratio of 10.32 for the same simulation on a Kershaw mesh.
The exact ratio is (π2 + 1

4 )/(Λ11π
2) ≈ 10.25.

7. Conclusion. In this paper, we gave theoretical foundations to the exponential convergence towards
equilibrium of finite volume schemes for Drift-Diffusion equations. No-flux boundary conditions as well as
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Figure 7. DDFV. Exponential decay of the relative entropy on a sequence of Cartesian (left) and quadrangular (right)
meshes in the degenerate case ε = 0 and Λ11 = 0.1.

Dirichlet conditions at thermal equilibrium are considered. Our approach relies on the discrete entropy
method. As in the continuous setting, the long-time behavior of the Fokker-Planck equation is theoretically
assessed thanks to functional inequalities. The adaptation to the discrete setting of log-Sobolev and
Beckner type inequalities for non-constant reference measures was carried out with this aim. Note that
our study encompasses both Two-Point Flux Approximation (TPFA) and Discrete Duality Finite Volumes
(DDFV). The later approach is robust with respect to anisotropy and allows for general meshes, but does
not lead to monotone discretizations in general. Nonetheless, our method still applies, and could also be
extended to other schemes building on Finite Volume methods for anisotropic diffusion (see for instance
[21, 22]). Eventually, we provide numerical evidences of our findings.
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