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Abstract—Human action recognition in video is one of the key
problems in visual data interpretation. Despite intensive research,
the recognition of actions with low inter-class variability remains
a challenge. This paper presents a new Siamese Spatio-Temporal
Convolutional neural network (SSTC) for this purpose. When ap-
plied to table tennis, it is possible to detect and recognize 20 table
tennis strokes. The model has been trained on a specific dataset,
TTStroke-21, recorded in natural condition (markerless) at
the Faculty of Sports of the University of Bordeaux. Our model
takes as inputs a RGB image sequence and its computed Optical
Flow. After 3 spatio-temporal convolutions, data are fused in a
fully connected layer of a proposed siamese network architecture.
Our method reaches an accuracy of 91.4% against 43.1% for
our baseline.

Index Terms—Action recognition, spatio-temporal convolu-
tions, Siamese neural network, sport video analysis

I. INTRODUCTION

Action recognition in video is one of the key problems
in visual data interpretation. Despite intensive research, the
recognition and differentiation of similar actions remains a
challenge [1]. The target application of our research is fine
grained action recognition in sports with the aim of improving
athletes’ performances. Without loss of generality, we are
interested in recognition of strokes in table tennis. The low
inter-class variability makes the task more difficult than as
with usual general datasets, like UCF-101 [2] and DeepMind
Kinetics [3], which are widely used in literature for action
recognition. Twenty stroke classes and an additional rejection
class are considered according to the rules of table tennis.
This taxonomy was designed with professional table tennis
teachers. We are working on videos recorded at the Faculty
of Sports of the University of Bordeaux. Students are the
sportsmen filmed and the teachers are supervising exercises
conducted during the recording sessions. The recordings are
markerless and allow the players to perform in natural condi-
tions. The objective of this classification method is to help the
teachers to focus on particular strokes performed by students.
In the near future, we plan to build an automatic quality
metric, measuring the similarity between an individual stroke
compared to a reference one. The teacher could use this metric
to efficiently correct strokes performed by students, and to help
them improving their performances.

Nowadays, there exists quite a few video datasets for action
recognition, some of which contains sport actions. We can
mention the UCF-101 dataset [2] with sport actions shot at
different scenes for different sports. They were downloaded
from YouTube and the source of their annotation is unknown,
sometimes it is semi - automatic as stated by the authors of
[1]. In our case, the video dataset is complex for classification
in the sense that the setting is almost always the same, the
strokes are repetitive and annotation is fulfilled by professional
athletes. The latter use quite a rich terminology. The linguistic
analysis of annotations shows that for the same video and the
same stroke, professionals do not employ the same degree of
details in their annotations. This cannot be considered as a
noise, but shows ambiguity and complexity of real-life data.
This dataset is the first contribution of this paper.

The goal of our research is video indexing through the
classification of strokes performed by an athlete. Our second
contribution is to propose a new siamese 3D CNN architecture
for this purpose. Our siamese architecture similarly processes
RGB images and Optical Flow through a succession of spatio-
temporal convolutions. A middle fusion is done before the
calculation of the class scores. We use data augmentation
in a spatial and temporal way during the training phase
and compare the performances with models using only RBG
images or Optical Flow data and also with early and late fusion
approaches. Additionally, we compare the performances using
our dataset with the baseline Two-Stream I3D method recently
proposed in [4]. .

The remainder of the paper is organized as follows: in
section II, related works using deep learning approaches are
presented. In section III, we introduce our dataset and how it
has been recorded and annotated. Section IV exposes the pro-
posed classification method. Results are presented in section
V. Conclusion and perspectives are drawn in section VI.

II. RELATED WORKS

The first deep learning breakthrough in image classification
with AlexNet [5] has led to many improvements such as
GoogLeNet [6], VGG-Net [7] and ResNet [8]. The next step
was to extend these methods to the spatio-temporal domain
for video classification. The main challenge in this task is to
adapt existing works by taking into account temporal features.
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However, a direct extension of these methods to 2D+T presents
some difficulties. The required space for training these models
is indeed greater, necessitating a reduction of the batch size for
training neural networks. This leads to a greater computational
time, especially if models are trained from scratch. Therefore,
the temporal dimension must be taken into account in a careful
way.
In the work of [9] on multimodal gesture recognition, a first
approach is to use 2D convolution and 3D Max Pooling on
RGB-Depth images fused with Deep Belief Network using
skeleton joint information. They obtain a score of 81% for
the ChaLearn LAP gesture spotting challenge [10]. Inspired
by [7], a so-called Tube Convnet (T-CNN) [11] feeds the
VGGNet-16 architecture with a stack of motion-frames built
with Faster R-CNN, the DBSCAN algorithm and optical
flow fields. A second T-CNN introduced in [12] uses 3D
convolutions and pooling. It takes as inputs 8-frame video
clips performing 94.4% of accuracy on 24 classes of UCF-
101. Another method developed by Hakan Bilen et al. [13]
uses dynamic images as input for a CNN. Fused with the
two stream networks [14], their results are promising, reaching
96% of accuracy on the UCF-101 dataset using pre-training
on the ImageNet ILSVRC 2012 dataset [15].
The state of the art method in action recognition from videos
is the Two-Stream I3D method [4], which reaches 98% and
93.5% of accuracy on UCF-101 dataset, respectively with and
without pre-training on the miniKinetics dataset [3]. They fol-
low the architecture of the two stream networks [14] but mod-
ify some of the convolutional layers with inception modules
along with transfer learning. They proceed by classification of
temporal sliding windows, which is a common approach for
action classification [16]. In their work, the temporal window
size is 64 frames which may not be enough to classify long-
term actions. To overcome this limitation, [17] use Long-term
Temporal Convolutions (LTC) considering as input video clips
of 100 frames which improves the recognition of long-lasting
actions. It uses a temporal window of 100 frames, at the
expense of a less effective recognition of short term action. As
pointed out in their article, this might be due to the repetition
of the last frame to fill the required time window. Our proposed
model was highly inspired by their method, as we also use a
temporal window of T = 100 frames, but with a frame rate of
120 fps (against 25 fps in UCF-101 dataset [2]). The choice of
this window length is suitable, because actions in table tennis
are quick (see statistics in section III) and temporal aliasing
should be avoided.
Note that video-based monitoring of athletes’ performance
is quite different from measuring fine movement. In [18],
body worn inertial sensors are used. However, the use of
invasive tools for monitoring might influence the performances
of athletes. Their method, based on discrete wavelet transform
and a random forest classifier, classifies 6 types of activities
with 98% accuracy. We recall that our goal is to develop a
monitoring system based on vision only.

Fig. 1. Annotation platform

III. THE TTSTROKE-21 DATASET

Our dataset, TTStroke-21, is composed of 129 videos
representing 94 hours of table tennis game at 120 fps, totaling
675 000 video frames. Sequences are recorded in a so-called
ecological situation (no markers or sensors on the player). A
player is filmed in two situations: performing repetition of
the same stroke for training or in a match context. Sequences
have been recorded indoors using artificial light. These videos
have been annotated by table tennis players at the Faculty
of Sports, University of Bordeaux (France). They represent
a total of 1387 annotations. In order to avoid annotation
errors as much as possible, one video recording was supposed
to be annotated by at least 2 annotators. Unfortunately, this
condition was hard to meet for all videos and despite the effort
that went into cleaning the datasets build from crowdsourced
annotations like EPIC-KITCHENS [19], errors still remain.
The annotation process was designed as a crowdsourcing
method where annotations where done during simultaneous
sessions. The sessions were supervised by professional table
tennis players and teachers. A user friendly web platform was
developed by our team for this purpose (see Fig. 1). To obtain
an exploitable dataset, the annotations had to be processed
by different filters to remove annotation errors such as i) too
long or too short duration, ii) mislabeling, iii) lack of labels.
After that, each annotated stroke was considered as a positive
example of its class, and negative examples were generated.
We describe here the cleansing process in details.

A. Crowdsourcing filtering

In all crowdsourced applications, possible errors of the
annotators should be taken into account. As the annotators
were not familiar with the annotation platform at the begin-
ning of the annotation sessions, there were some mislabelled
portions of the videos. These mislabellings have been filtered
out automatically by considering only annotations not starting
at first frame (default parameter), annotations ending after the
end of the video and annotations out of the time range (set
between 0.6 and 2.3 seconds). The length of the time range
was set up according to the domain knowledge of professional
table tennis players of the Faculty of Sports. This allowed the



isolation of strokes ranging from a fast hit to a long serve.
After filtering, 1074 annotations were retained.

B. Data organization

Since a video can be annotated several times by annotators,
an action detection over all the annotations has been done. Our
dataset is player-centered, with only one player in each video.
In the case of two players in one video, we allow an overlap
between each action of 0.25 to take into account the overlap of
strokes. These actions are used in the classification problem.
A last filter is applied by checking if all the annotations in one
action are the same. If not, this action is not considered in our
classification. Thus, a total of 1048 actions were conserved.
The peak statistics of duration are min = 0.63s, max = 2.27s
and the average duration is of 1.45s ± 0.36s. This filtering,
supposing multiple annotations of the same video recording,
still left some labeling errors as multiple labeling of the same
clip by different annotators was not possible.

C. Selection of negative samples

Negative samples are created from videos with at least 11
detected actions. The other videos are not fully annotated
most of the time and would lead to incorporation of strokes
in the negative samples. The negative samples are video
subsequences between each action. We allow the overlap
with the previous and the subsequent action of 10 frames.
It represents 10% of our target window length in the classifi-
cation framework. However, this approach was still selecting
wrong negative samples because of videos that were only
partially annotated. This has been manually cleared to avoid
the incorporation of strokes in negative samples. After these
steps, 272 negative (non-stroke) samples have been selected
from the whole dataset. Dataset TTStroke-21 is available
under request for research purposes.

IV. PROPOSED METHOD

To be able to classify highly similar actions, a siamese
3D convolutional network model has been used to incorpo-
rate temporal features along with spatial ones (the temporal
windows size has been set to T = 100). The action class is
predicted from RGB video frames and their estimated motion
vectors D = (Vx, Vy).

A. Architecture of the proposed network

Our Siamese Spatio-Temporal Convolution network
(SSTC), Fig. 2, is constituted of 2 branches with three 3D
convolutional layers with 30, 60, 80 filter response maps,
followed by a fully connected layer of size 500. All 3D
convolutional layers use 3 × 3 × 3 space-time filters with
stride and padding of 1 in all directions. The two branches
are combined in a second fully connected layer of size
21 (corresponding to the number of considered classes). A
Softmax layer is finally applied at the end of our network to
obtain a classification score.

Fig. 2. Our Siamese (SSTC) architecture.

B. Input data

Branches of the network take RGB images and optical flow
field as input. The optical flow (size 120× 120) is computed
using method [20]. The extracted frames from the video (size
1920 × 1080), are resized to 320 × 180 for computing the
optical flow field.

1) Optical flow denoising: Due to flickering caused by
artificial light during recording, some artifacts appear. To
keep areas of interest only, we filter the Optical Flow using
the Hadamard product between the foreground calculated
using the method of Zivkovic and Van der Heijden [21] and
the optical flow previously computed (Fig 3).

2) Spatial segmentation: Considering the obtained frame
resolution and player position in our setting, the size of ROI
inputted to the network was set to 120× 120. The ROI center
Xroi = (xroi, yroi) is estimated from the maximum of the
optical flow norm and the center of gravity of all pixels with
non-null optical flow norm as follows:

Xmax = (xmax, ymax) = argmax
x,y

(||D||1)

Xg = (xg, yg) =
1∑
δ(X)

X∈Ω

∑
Xδ(X)
X∈Ω

with δ(X) =

{
1 if ||D||1(X) 6= 0
0 otherwise

xroi = α fωx(xmax, W ) + (1− α) fωx(xg, W )
yroi = α fωy (ymax, H) + (1− α) fωy (xg, H)

(1)

with parameters α = 0.6, Ω = (ωx, ωy) = (320 × 180)
the size of video frames, (W , H) the size of the data
inputted to our network (120×120). The function fω(u, V ) =
max(min(u, V − ω

2 ),
ω
2 ) allows to have input data extracted

within the boundaries of our data.
To avoid jittering, we apply a Gaussian blur along the time

dimension to average the center position (kernel of size 40
and scale parameter σblur = 4.44).

C. Data Augmentation

For each action, we extract one video sample of size (W ×
H × T )= (120× 120× 100). We extract the 100 frames from
the RGB and Optical Flow temporally centered according to



a. RGB image b. Optical Flow magnitude

c. Estimated foreground d. Optical Flow after filtering

Fig. 3. Optical Flow filtering

the length of the action and spatially centered according to
our spatial segmentation.

For spatial augmentation we apply random rotation in the
range ±10◦, a random translation in range ±0.1 in x and
y directions, and a random homothety in range 1 ± 0.1.
Transformations are applied and centered on the region of
interest.

To perform temporal augmentation we extract 100 succes-
sive frames following a normal distribution around the center
of our action with standard deviation of σ = 0.3 ∗ ((wt− 1) ∗
0.5 − 1) + 0.8 with wt =

2∗fps+1
Ws

(with Ws = 6 being the
observation window size around our center). If the frames are
not in the temporal boundaries of our actions, another random
draw is done until the condition is satisfied.

D. Training step

Estimation of network parameters is fulfilled with Stochastic
Gradient descent with Nesterov Momentum as in [5].We use
a momentum of 0.5 and decrease it to 0.1 and 0.05 at epoch
1000 and 1500 respectively, as the momentum methods are
known to oscillate at the beginning of the iterative process.
We use a weight decay of 0.005. The maximum number of
epochs is set to 2000. Cross-entropy loss is used as objective
function. The batch size is relatively low for memory matter
and is set to 10. The number of negative samples is chosen
twice bigger than the mean of the number of actions per class.
The dataset is split into training, validation and testing sets
with the respective proportions: 70%, 20% and 10% (table I).
We use different architectures: the Siamese architecture in-
troduced in section IV-A to train our ”Siamese model”, and a
convolution architecture using only one branch of the previous
architecture. The last fully connected layer takes as an input
only the output of the branch used. Three other models
have been trained using this last architecture to compare
performances. One using RGB images only will be denoted
”RGB model”, another one using only Optical Flow will be
called ”Optical Flow model” and the last one using RGB
images and Optical Flow concatenated together (5 channels)
will be referred as ”Early Fusion model”. For the Siamese
model we use a learning rate of 0.001 and for the other models
the learning rate is set to 0.01.

TABLE I
DATASETS TAXONOMY

Table tennis strokes Train Val Test Total
samples

Def. Backhand Backspin 22 6 3 31
Def. Backhand Block 19 5 3 27
Def. Backhand Push 6 2 1 9

Def. Forehand Backspin 29 8 4 41
Def. Forehand Block 8 2 2 12
Def. Forehand Push 23 7 3 33
Off. Backhand Flip 25 7 3 35
Off. Backhand Hit 28 8 4 40

Off. Backhand Loop 21 6 3 30
Off. Forehand Flip 31 9 5 45
Off. Forehand Hit 45 13 6 64

Off. Forehand Loop 23 7 3 33
Serve Backhand Backspin 56 16 8 80

Serve Backhand Loop 43 12 6 61
Serve Backhand Sidespin 60 17 9 86
Serve Backhand Topspin 57 16 8 81
Serve Forehand Backspin 58 17 8 83

Serve Forehand Loop 56 16 8 80
Serve Forehand Sidespin 57 16 9 82
Serve Forehand Topspin 67 19 9 95

Non strokes samples 74 21 11 106

Total length 808 230 116 1154

TABLE II
PERFORMANCE COMPARISON OF THE DIFFERENT MODELS

Accuracies
Models Val Test TestVote TestAvg

I3D (RGB) 40 40.5

I3D (OptFlow) 37.4 30.2
I3D

(RGB + OptFlow) 41.7 43.1

RGB 88.7 78.5 78.5 81.9

Optical Flow 47.8 44 44 44.8
Early Fusion

(RGB + OptFlow) 84.4 73.3 74.1 75

Late Fusion
(RGB + OptFlow) 62.2 57.7 59.5 70.7

Siamese
(without data aug) 90.43 87.9 88.8 91.4

Siamese 91.3 87.9 88.8 89.7

We use data augmentation on our training set for all the models
and evaluate them at each epoch with the accuracy on the
validation dataset without augmentation. Models with the best
accuracy are saved for the next evaluations on the test set.

V. EXPERIMENTS AND RESULTS

Our deep learning models have been trained using Pytorch
framework on GPU NVIDIA Tesla P100. To compare the
performances of our models, we use the Two-Stream I3D
model introduced by Carreira and Zisserman in [4] as our
baseline and apply it to our dataset following their instructions
for training (table II). The first max polling layer has been
discarded because of the size of our input data which are twice
smaller than theirs. The RGB images and Optical Flow streams
are trained separately and a late fusion by addition of the class
scores is performed to classify the action.



A. Evaluation methods

We stress that in our experiments the goal was to recognize
the class of already localized stroke. We do not perform action
detection but action classification. To evaluate our models on
the test set, several methods have been used. The the first one,
used also for the validation evaluation, consists in classifying
the actions only by considering the T frames centered in each
action. This method does not take into account the whole
action and is based on the hypothesis that the main features
are temporally centered. Two further methods consider all the
frames of an action. For both of these methods, we perform
a sliding window classification along the time dimension of
the action with a step of 10 frames. We then obtain class
scores for each window in the action. Our second method
uses majority vote whereas our third method uses the average
score of the obtained class scores. The three methods are
respectively referred as ”Test”, ”TestVote”, and ”TestAvg” in
table II. As it can seen on Fig. II, the average score method
performs the best. A gain of 12.9 % on the late fusion method
and of 3.5 % on the siamese model with central window only
is obtained. It stresses the fact that actions need to be entirely
considered to be better classified since the main stroke features
might not always be temporally centered.

B. Comparison with the baseline

Our models have outperformed the recent baseline model
[4] which we have trained from scratch on our dataset, exactly
as we did it with all our models. The maximum accuracy
obtained on our dataset with our method is 91.4% against
43.1% with the I3D from [4]. One hypothesis to explain this
behavior is that the Two-Stream I3D model is deeper than
ours, and may overfit our dataset (which is more limited than
UCF-101 and HMDB-51 datasets). Our second hypothesis is
that the parameters advised by the authors may not fit to our
problem. And even if it has been proven to be efficient on
UCF-101, the low inter-class variability makes the task more
difficult than usual. Yet, Fig 4 shows an overfitting since the
beginning of the training, that supports the first hypothesis.
Also the use of a 100 frames as input of our model in our
method against 64 for Two-Stream I3D [4] has already proven
to obtain better performances for classification of long and
similar actions [17].

C. Architectures comparison

According to table II, our Siamese model outperforms all
the other models, even though our RGB model performs quite
similarly. The RGB model also outperformed the late fusion
method, meaning the training of our Optical Flow model could
still be improved when combined with RGB model, as it has
been done in [17].

D. Analysis of the classifications

As it can be seen from the confusion matrix (Fig. 6), some
classes are entirely incorrectly predicted. On the one hand,
this is due to the lack of data in some classes. As shown
in table I, the presence of the ”Defensive Forehand Block”

Fig. 4. Training process of the Two-Stream I3D models

Fig. 5. Training process of our Siamese model

class is poor within the dataset. On the other hand, since the
annotations are crowdsourced, some wrongly labeled actions
are still present in the dataset leading to mislearned strokes.
We noticed afterwards that this is the case with the ”Defensive
Backhand Push” stroke, some of which are annotated as
”Defensive Forehand Push”.

However, according to Fig. 5, it can be noticed that our
model does not overfit the training dataset in contrast to
the I3D models (see Fig. 4). Data augmentation did not
improve our scores. This is certainly due to the length of
the actions (maximum 2.3s i.e. 276 frames) compared to our
time window (T = 100) which leads our model to learn non
representative features.

With a final maximum score of 91.4, it is not obvious that
we can obtain a significantly better score with our dataset that
still has noisy crowdsourced annotations.



Fig. 6. Confusion Matrix on the test dataset using our Siamese model

VI. CONCLUSION AND PERSPECTIVES

In the challenging task of table tennis strokes classification,
this paper presented a Siamese spatio-temporal convolutional
(SSTC) method along with other methods to complete this
task. With an accuracy of 91.4%, our SSTC model has
performed the best on a new dataset of table tennis strokes,
TTStroke-21, recorded in real-world conditions and anno-
tated with crowdsourcing. Before attempting to improve our
results, this dataset must by enlarged and cleaned to obtain non
noisy crowdsourced annotations since the impact of labeling
error cannot be calculated without a full review of the whole
dataset. Furthermore, this work is still in progress: the dataset
is continuously enriched, and the next step is the joint detection
and classification of strokes. In the future, we plan to obtain a
qualitative measurement of the classified strokes with the aim
to improve athlete performances and to develop pedagogical
tools.
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