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Abstract. Plastic deformation of Fe-27%Co alloy at room temperature was investigated. The present 

alloy, usually delivered with a low-texture component for the magnetic core in rotating machines, 

develops a rather high intensity of Goss texture after recrystallization, when a suitable manufacturing 

process is applied. Thanks to this texture and its magnetic properties, this material can replace the 

grain-oriented Fe-3%Si alloy in electric transformer application. The intensity of the recrystallization 

Goss component depends directly on the sharpness of the {111}<112> orientation developed during 

cold rolling. Thus, the origin of this {111}<112> deformation texture has been studied using visco-

plastic self-consistent (VPSC) simulations. This model showed that only the {110}<111> slip 

systems allow to develop the {111}<112> texture. The predominance of this slip system has been 

effectively identified from slip markings on the deformed sample by EBSD. More, this simulation 

has shown that a Goss texture at the hot-rolled state favors the {111}<112> development during cold 

rolling, as observed experimentally.  
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1. Introduction  

 Due to the increase of the electric loads in the aircraft, the need of power transformers increases. 

This implies a higher power density of these devices to keep a constant mass in the airplanes. In the 

case of on-board transformers, an industrial solution to increase the power density is the development 

new magnetic materials such as iron-cobalt alloys. In particular, Fe-27%Co exhibits the highest 

saturation magnetization of all soft ferromagnetic materials (2,4T), especially compared to Fe-3%Si 
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alloys currently used (2T) in transformers. More, such as the Fe-3%Si steel, this alloy can develop 

the {110}<001> Goss texture with an adequate thermo-mechanical processing. The intensity of this 

texture directly improves the magnetic performances, which is due to the fact that the easy 

magnetization direction <001> is parallel to the magnetization direction of the sheet (RD) [1].  

 These properties allow this material to be the best candidate to replace the grain-oriented Fe-3%Si 

steel in transportation transformers, requiring high power density. 

 Many investigations have been focused on the evolution of the Goss texture during the primary 

and secondary recrystallization of Fe-3%Si [2-13], where the origin of this Goss component was 

related to the {111}<112> texture, which develops after cold rolling. The cold rolling texture itself 

was linked to the Goss component of the initial texture developed during hot rolling. 

 The rotation of components during the plastic deformation of materials occurs thanks to slip 

mechanisms, where dislocations glide along crystallographic planes (slip planes) and preferred 

crystallographic directions (slip directions) [14]. For bcc materials, the slip planes are the {110}, the 

{112}, and the {123}, and the slip direction is only the <111> one. This leads to 48 particular slip 

systems, 12 related to the {110}<111> system, 12 related to the {112}<111> system and 24 related 

to the {123}<111> one [15]. Moreover, the plastic deformation can take place by the slip of one or 

more slip systems, called active slip systems [16-20]. For this purpose, many studies have been 

focused on the identification of the active slip systems in materials, including bcc materials. 

On Fe-Co alloys, an investigation of the plastic deformation behavior of a single crystal of Fe-

54%Co alloy [21] showed that the {110}<111> slip system is the active one. Recently [22], a study 

on the identification of active slip systems in the alpha iron (α-Fe) material by molecular dynamic 

(MD) simulations was carried out. The authors demonstrated that all slip systems are actives. By 

doing simulations based on the Taylor model type, Raabe [23] showed that the {123}<111> slip 

system is the predominant active system in the alpha iron (α-Fe). Before these works, it was revealed 

that the {110}<111> is the active slip system in the α-Fe [24], while another study [25] showed that, 

in addition to the {110}<111>, the {112}<111> slip system is also active. Therefore, the results of 

identification of active slip systems in α-Fe are controversial. This can be explained by the different 

methods used in each study as well as the deformation rates. Other investigations on Mo and W single 

crystals [26] have demonstrated that the active slip plane, at a low temperature, is the {123} one. 

Moreover, the identification of active slip systems on Fe-Si alloys demonstrated that, during cold 

rolling, the {110}<111> was predominant [27-29]. However, investigations [30-33] have evidenced 

difficulties to identify the active slip systems in the ferritic phase of a duplex stainless steel. Using 

optical microscopy, electronic microscopy, and EBSD, the authors supposed that, during the plastic 

deformation, several slip systems could be active, which makes their detection difficult. These authors 

assumed that the dislocation slip activity in a grain is not only influenced by its orientation, but also 

by both the orientation and the slip activity of its neighbors. A recent study mentioned an EBSD 
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method to determine the active slip systems in a Ni alloy from the crystal rotation during deformation 

[34]. 

 

Even if some works propose a texture prediction from finite element polycrystal model 

simulation [35], more conventionally the modeling texture, microstructural evolution, and 

macroscopic polycrystalline response are often accomplished using the visco-plastic self-consistent 

(VPSC) polycrystal model [36-38]. The polycrystalline aggregate is represented by several hundred 

grains, each with a distinct orientation and volume fraction. The VPSC model treats each grain as an 

ellipsoidal visco-plastic inclusion interacting with the effective medium represented by the average 

response of all the grains. 

This paper aimed to simulate the origin of the cold rolling {111}<112> texture via VPSC 

calculations. This simulation first requires the identification of the active slip systems, not yet known 

in the Fe-27%Co alloy, during its cold rolling. The present study allowed the experimental 

determination of the main slip system, thanks to EBSD analyses coupled with the geometrical 

calculations of angles associated with these slip systems in the sample coordinate system. Indeed, this 

numerical modeling has been necessary to determine the slip direction, when the experimental data 

only provide the slip plane. Thus, combining numerical and experimental approaches, the exact slip 

system family, activated during cold rolling, has been identified. 

VPSC cold rolling simulation was then performed from ideal texture components using the 

identified slip system to quantify the individual contributions of each component to the {111}<112> 

development. 

 

2. Material and Methods 

The nominal composition of the alloy is Fe-27%Co-0.5%Cr (wt.%). The sheet was prepared at 

Aperam Alloys Imphy industry and is called AFK1. The thermomechanical process used to fabricate 

the AFK1 sheet includes a hot rolling to a thickness reduction of 2.5mm, followed by a doubling cold 

rolling of 70% of thickness reduction and then three cumulative annealing treatments at 930 °C. The 

thickness of the final sheet is approximately 0.2 mm. Along this processing route, it has been observed 

that during annealing treatments, the {111}<112> intensity remains quite low while the Goss fraction 

increases. On the contrary, the {111}<112> orientations develop during cold rolling. 

The local texture was carried out by EBSD and the global one was measured by X-ray diffraction. 

The EBSD results were collected using a scanning electron microscope Zeiss FEG SUPRA 55VP 

operating at 20kV and equipped with an OIMTM system. X-ray data were collected from a Siemens 

system (Kα cobalt radiation) and the {110}, {200}, and {112} incomplete pole figures were recorded. 

The data were then analyzed using the arbitrarily defined cells (ADC) method implemented in the 

Labotex software to calculate the complete pole figures and the orientation distribution function. The 
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samples analyzed by EBSD were first mechanically polished and then electro-polished (Struers A2 

solution) at 22 °C, with a voltage of 15V for 12s.  

EBSD maps of (770 × 2300 µm2) were measured with a step size of 1µm. The slip systems 

identification was particularly performed on partitions of acquired points belonging only to grains 

exhibiting the [111]<12̅1> and [111]< 1̅1̅2> orientations with a dispersion of 15° around the ideal 

position. The experimental identification of active slip systems was based on the method reported in 

the literature [30-33, 39], applied in the case of duplex stainless steel. These authors compared values 

of α angle (Fig. 1), obtained by measurements on the SEM pictures, and those calculated from Eq. 

(1) using Euler angles and for all the potential active slip systems. α corresponds to the angle between 

the slip plane marking in the rolling surface and the rolling direction (RD). In addition, they calculated 

the corresponding Schmid factor and a second angle between the slip direction and the normal to the 

slip plane surface. Contrary to the austenitic phase (fcc), the authors revealed some inconsistencies 

in the calculation of the Schmid factor for the ferritic phase (bcc); moreover, they found that an α 

angle could correspond to different slip planes. In this work, the same inconsistencies have been 

found. Then, a second angle named β was introduced into the calculations using Eq. (2). As shown 

in Fig. 1, β corresponds to the angle between the slip markings in the (RD, ND) surface and the 

loading axis in the normal direction (σND). This angle enables the identification of the active slip plane 

and moreover, it allows to dissociate the slip planes having the same angle α.   

 

As it can be observed in Fig. 1, the intersection between the slip plane and the rolling surface (RD, 

TD) can be obtained by calculating the scalar product between 𝜎𝑅𝐷⃗⃗⃗⃗⃗⃗  ⃗  and 𝑋 , where 𝑋  is the vector 

product between 𝑛𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗  and −𝜎𝑁𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗.  

Therefore, cos 𝛼can be expressed as:  

 

cos 𝛼 = [
(𝑛𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∧−𝜎𝑁𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

‖(𝑛𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∧−𝜎𝑁𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)‖
 

𝜎𝑅𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖𝜎𝑅𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
]                                                       (1) 

The second angle β can be expressed by the relation:  

  

 cos 𝛽 = 𝑤⃗⃗ × 𝜎𝑁𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗     (2) 

Then, for each possible slip system, two angles α and β are calculated. The comparison between 

these two calculated angles and the experimental values measured on the EBSD maps will allow the 

activated slip planes to be identified. 

 

3. Texture simulation based on VPSC scheme (Visco-plastic self-consistent) 

The present simulations are based on the VPSC scheme [40]. Different models incorporated in the 

VPSC package were proven robust because they could predict the flow curves, texture evolution, 
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anisotropy, forming-limit strains of metals as well as actual active deformation mechanisms [41-42]. 

Molinari et al. [40] developed the VPSC formulation for large strain deformation in which each grain 

is treated as an ellipsoidal visco-plastic inclusion embedded in a viscoplastic homogeneous equivalent 

medium (HEM). Both inclusion and HEM have fully anisotropic properties. The HEM represents the 

average environment seen by each grain. A more general formulation with an anisotropic medium 

was introduced [43]. The interaction between the grain and the HEM is carried out by a visco-plastic 

Eshelby approach [44]. Deformation is based on crystal plasticity mechanisms, where slip and 

twinning systems are activated by a critical resolved shear stress (CRSS). 

In this section, some equations of this VPSC scheme will be presented. More details can be found 

in papers of Lebensohn and Tomé [43] and Molinari et al. [40]. The viscoplastic constitutive behavior 

at the local level in a given grain is described by means of the non-linear rate-sensitivity and given 

by Eq. (3): 

 

𝜖𝑖̇𝑗(𝑥̅) = ∑ 𝑚𝑖𝑗
𝑠

𝑠 𝛾̇𝑠(𝑥̅) = 𝛾̇0 ∑ 𝑚𝑖𝑗
𝑠

𝑠 (
𝑚𝑘𝑙

𝑠 𝜎𝑘𝑙(𝑥̅)

𝜏𝑠 )
𝑛

                                        (3) 

𝜏𝑠 is the threshold stress controlling the activation of a slip system , 𝑚𝑖𝑗
𝑠  is the symmetric Schmid 

tensor associated with the slip system (s), 𝜖𝑖̇𝑗(𝑥̅) and 𝜎𝑘𝑙(𝑥̅) are the deviatoric strain-rate and stress, 

and 𝛾̇𝑠(𝑥̅) is the local shear-rate on the slip system, 𝛾̇0 is a normalizing strain rate and n is the strain-

rate sensitivity for the crystallographic slip. 

The slip will occur in a system s when the resolved shear stress 𝑚𝑘𝑙
𝑠 𝜎𝑘𝑙(𝑥̅) approaches the critical 

value 𝜏𝑠. 

The empirical Voce law that describes the evolution of the critical stress value with deformation due 

to self and latent hardening for an individual slip system is given by: 

             𝜏𝑠 = 𝜏0
𝑠 + (𝜏1

𝑠 + 𝜃1
𝑠Γ) {1 − 𝑒𝑥𝑝 (−

𝜃0
𝑠Γ

𝜏1
𝑠 )}                                   (4) 

𝜏0
𝑠 and 𝜃0

𝑠 describe the initial flow stress and the initial hardening rate, respectively. The parameters 

𝜏1
𝑠
 and 𝜃1

𝑠describe the asymptotic characteristic of the hardening. Γ is the total accumulated shear 

strain in a grain: 

 

 Γ = ∫ ∑ |𝛾̇𝑠|𝑑𝑡𝑠
𝑡

0
                                                                        (5) 

𝛾̇𝑠is the shear rate on slip system s. 

 

The Voce hardening parameters used in this paper are thus: 𝜏0
𝑠 = 1𝑀𝑃𝑎, 𝜏1

𝑠 = 0𝑀𝑃𝑎 , 𝜃0
𝑠 =

1𝑀𝑃𝑎, and 𝜃1
𝑠 = 1𝑀𝑃𝑎, which correspond to a linear hardening [43, 45]. The strain-rate sensitivity 

is taken such that n = 20. Indeed, this relatively large value for cold deformation is used to speed up 

the calculation process and does not alter the texture in comparison to lower values [40]. Then, the 
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deformation is simulated by imposing successive deformation increments (in 50 increments) till von 

Mises strain ε = 1.2. At each deformation step, the boundary conditions, in terms of the overall 

velocity gradient corresponding to the constant strain rate, are imposed. The applied velocity gradient 

tensor is for plane strain compression: 

𝐿 = [
1 0 0
0 0 0
0 0 −1

]                                                                       (6) 

    

In order to explore the influence of different slip systems known to be active within Fe-27%Co 

alloy ({110}<111>, {112}<111> and {123}<111>) on the experimental resulted texture only one 

system was considered during each simulation. Thus, the latent hardening effects was not considered, 

i.e., coupling shear increments in one glide system s with the increase in strength in another system 

s’. It is to be noted that CRSS values are assumed to be equal for all slip families systems. 

To analyze the effects of different texture components on the evolution of deformation texture 

during cold rolling of Fe-27%Co alloy four initial texture represented by a set of 2000 orientations 

were assumed: a random texture, the Rotated Cube {001}<110> texture, the Goss {110}<001> 

texture and a texture composed of two components (Rotated Cube + Goss) with equal volume 

fraction. For each texture component, a dispersion of 15° was used for texture generation. 

 

4. Results 

4.1 Experimental results 

As mentioned above, in Fe-Si alloys, magnetic induction is directly linked to the Goss sharpness. 

More, a relationship exists between the {111}<112> cold rolling texture and the Goss after the final 

recrystallization annealing. This dependence of magnetic properties with the {111}<112> intensity 

after cold rolling is confirmed for several initial hot rolling (HR) conditions for the present Fe-27%Co 

alloy (Fig. 2).  

4.1.1 Origin of the {111}<112> cold rolling texture 

Four samples achieved from four different hot rolling conditions were studied before and after the 

first 70% cold rolling. Fig. 3 shows the evolution of the deformation texture (X-ray diffraction 

measurement in the (RD, TD) plane) compared to the initial texture (EBSD measurement in the (RD, 

ND) plane to take into account the texture inhomogeneity through thickness) and represented by the 

ODF sections at φ2 = 45°. It has been shown in a previous study [46] that all these initial textures 

change into Goss texture, more or less sharp, after cold rolling followed by annealing treatment. 

The most relevant bcc rolling texture components are situated along the alpha -fiber: {hkl}<110> 

(φ1 = 0°, φ2 = 45°), consisting of the rotated Cube component, the {001}<110> ( = 0°), the 

{112}<110> ( = 35°), and the {111}<110> ( = 55°) as well as along the gamma-fiber: 
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{111}<uvw>, consisting of the {111}<110> (φ1 = 0° and 60°,  = 55°, φ2 = 45°) and the {111}<112> 

(φ1 = 30° and 90°,  = 55°, φ2 = 45°). After cold rolling, the texture is characterized mainly by both 

the alpha and gamma fiber components, including the {111}<112> orientation. Such texture has been 

already observed in bcc alloys [12,47] . It can be observed from Fig. 3c that when the initial texture 

exhibits a marked Goss component, the cold rolling is characterized by a higher-intensity 

{111}<112> component. It could be concluded that the Goss orientation acts as a starting texture for 

the development of the {111}<112> component after plastic deformation. This is consistent with 

results in the literature on Fe-Si single crystals initially Goss oriented [6,47]. Moreover, when the 

initial texture is characterized by only a reinforcement around the rotated Cube (Fig. 3d), the cold 

rolling implies also a development of the {111}<112> orientation, but with lower intensity. Despite 

this lower intensity, the Goss texture of the primary recrystallization develops [45]. This shows that 

during the plastic deformation of AFK1 alloy, in addition to the Goss texture, the rotated Cube is also 

an origin for the development of the {111}<112> orientation. However, looking at the intensities of 

the {111}<112> component (Fig. 3), it appears that the rotated Cube (Fig. 3d) in the initial texture 

less favors the {111}<112> development than the Goss does (Fig. 3c). In parallel, when the initial 

texture is random (Fig. 3a), the cold rolling texture also develops the {111}<112> component, which 

exhibits close intensity value to that one generated from the rotated Cube.  

As a consequence, the Goss, the rotated Cube, and some minor components in the random texture 

generate the {111}<112> texture component during the plastic deformation by cold rolling of the 

AFK1 material. 

  

 

4.1.2 Measurements of the α and β angles 

After a cold rolling to a nominal 70% thickness reduction, the microstructure of the AFK1 alloy is 

characterized by elongated {111}<112> deformed grains parallel to the rolling direction (RD) (Figs. 

4 and 5).  Let us note that figures 4 and 5 are described in the (RD, TD) and (RD, ND) planes, 

respectively. These deformed grains are characterized by slip markings, which correspond to the trace 

of active slip planes. Obviously, it is assumed that what is seen at the end of the cold rolling is 

representative of the main dislocation activity during the entire process. The measurements of the α 

and β angles for both the (111)[12̅1] and (111)[ 1̅1̅2] symmetric orientation grains exhibit values of 

90° ± 5° and 73° ± 5° (α angle) (Fig. 4), and 60 ± 5° (β angle) (Fig. 5). Due to the non-linearity of the 

slip markings in the surface (RD, TD), it is difficult to get an exact value of α angle. However, a trend 

of two values from a large static number of traces is extracted (90° ± 5° and 73° ± 5°). 
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4.1.3 Calculations of the α and β angles 

The results of the calculation of angles α and β using Eqs. (1) and (2) are shown in Fig. 6. 

Experimentally, only 2 combinations of angles α and β have been observed: (90°; 60°) and (73°; 60°). 

They coincide with two calculated α and β values. These values correspond to two particular slip 

planes, the (110) and (011̅). These slip planes are associated with four possible active slip systems: 

the (110)[11̅1], the (110)[ 1̅11], the (011̅)[111] and the (011̅)[ 1̅11] systems. 

 

In conclusion, based on the comparison between experimental identification and analytic 

calculation, the {110}<111> is a predominant active family of slip systems in the Fe-27%Co after a 

cold rolling to a nominal 70% thickness reduction. However, the non-linearity of slip markings in 

(RD, TD) could be related to the influence of other active slip systems, which are probably active but 

exhibit minor activity.    

 

4.2 Results of simulations based on VPSC scheme  

The VPSC simulations (Fig. 7) demonstrated that whatever the starting texture, the cold rolling 

one is reinforced around the {111}<112> component when the slip systems {110}<111> are active 

as experimentally observed. On the contrary, when this is inactive, the cold rolling develops a texture 

reinforced rather on the {111}<110> γ fiber component. The main interesting results of this study are 

shown in Fig. 8. 

 

Thanks to these simulations, it is possible to quantify the {111}<112> fraction (with a dispersion 

of 15°) developed during cold rolling depending on the initial texture (Fig. 9). As experimentally 

observed (Fig. 3), a higher fraction of the {111}<112> component is obtained when the Goss 

orientation is present in the starting texture. However, the initial random texture develops also the 

{111}<112> orientation such as the rotated Cube one. 

 

For an initial texture of 100% of Goss or 100% of rotated Cube, the {111}<112> exhibits fractions 

of 46% and 32%, respectively. These fractions correspond to contribution factors of 0.46 and 0.32, 

respectively in Eq.7. In a first approximation, this equation allows one to estimate the {111}<112> 

fraction from this of components present in the initial texture. 

f(Recalculated {111}<112>) = 0.46 × fGoss + 0.32 × frotated-Cube + x × frandom   (7) 

The contribution of the random part (x) cannot be calculated directly from the random initial 

texture in Fig. 9 because it contains the Goss and rotated Cube components. Then, the random 

contribution has been estimated from the different experimental initial textures of Fig. 3, by knowing 

the experimental fraction of the main components (fGoss, frotated-Cube) and the associated experimental 

fractions of {111}<112> orientation after cold rolling. The contribution of the random part was 
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estimated to an approximate value of 0.15+/-0.02. Figure 10 shows a quite good agreement between 

the {111}<112> fractions measured from figure 3 and the calculated values from Eq.7. The difference 

between experimental and simulation results could provide first from the estimation of x (Eq.7) that 

is calculated thanks to 4 different initial textures while a larger number of textures could have been 

helpful to get a more accurate x value, second from the linear assumption in Eq.7. Finally, this 

difference could be due to the possible activation of secondary slip systems not taken into account in 

the simulation. Despite these limitations, Eq.7 is somehow able to predict the experimental fraction 

of {111}<112> regardless of the initial texture knowing the Goss, rotated Cube and random fractions 

within this texture. This is of high industrial interest. 

Therefore, from the comparison between measurements and simulations based on VPSC scheme, 

it may be concluded that during the cold rolling, the {111}<112> component develops from the 

rotation of the Goss, rotated Cube, and some minor random components present in the initial texture. 

This occurs when the {110}<111> system is active. 

 

5. Discussion  

Studies on single crystals of Fe-Si alloys showed that the {111}<112> orientation is the result of 

a 35° rotation of the initial Goss texture around the transverse direction (TD) [6,47]. The present study 

shows that in addition to the initial Goss texture, the cold rolling texture develops also from the rotated 

Cube component, the {001}<110>. Moreover, other components from the random part in the initial 

texture contribute as well to the development of the cold-rolled orientation {111}<112>. In parallel, 

it has been demonstrated that the Goss texture implies a higher intensity of the {111}<112> 

component than the rotated Cube. The rotation of these initial components to the {111}<112> occurs 

when the {110}<111> is the predominant active family of slip systems. In respect to the identification 

of active slip systems, the results of this paper show good agreement with many results in the literature 

on the identification of active slip systems in bcc materials [24,27-29], particularly with those of 

Yamaguchi et al. [21] on Fe-54%Co single crystal despite the fact that this alloy can be B2 ordered 

[48-49]. This leads to the hypothesis that the Fe-Co alloys may have the same slip mechanism 

behavior at room temperature, where many slip systems could be activated, with a predominance of 

the {110}<111> slip systems (see also [50]).  

In regards to the rotation of the Goss and rotated Cube to the {111}<112> component during the 

plastic deformation of AFK1, explanations based on crystallographic considerations are proposed. It 

should be recalled that, on one hand, the {110} is the slip plane and the final texture is characterized 

by the {111} plane parallel to the rolling surface (RD, TD) and on the other hand, the angle between 

the {110} and the {111} planes is 35° (Fig. 10). To facilitate the dislocations gliding, the {110} plane 

of the Goss and the rotated Cube components must be placed on the favorable position of gliding to 

maximize the Schmid factor value. This position corresponds to a deviation of 35° from the rolling 
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surface (so 55° from the normal one (ND, TD)). Experimentally, the trace of slip planes was observed 

at 60° from the normal surface, which is in good agreement. The deviation of 5° can be explained by 

the activation of the other slip systems. 

Thus, a rotation of 35° around the transverse direction is sufficient for the Goss component to place 

the {110} plane into the favorable position of gliding (Fig. 11). This value of 35° is consistent with 

previous studies on single crystals of Fe-Si [6, 47, 51]. Regarding the rotated Cube component, it 

must rotate of 55° about the same axis TD to place the slip plane into the favorable position of gliding. 

The different values of rotation angles between the two components explains why it is easier to form 

the {111}<112> texture from the Goss component than the rotated Cube. 

 

6. Conclusion 

The magnetic properties of the Fe-27%Co, at least along the rolling direction, is governed by its 

ability to develop the Goss texture during annealing. This component is obtained from the 

{111} <112> orientation present after cold rolling. The generation of this component during cold 

rolling is thus of great interest and has been explained experimentally and using VPSC calculations 

as follows:   

 The Goss {110}<001> and rotated Cube {001}<110> components and some minor random 

components are at the origin of the cold-rolled {111}<112> texture development. 

 During the plastic deformation of the Fe-27%Co alloy, at room temperature, the {110}<111>  

slip systems have been experimentally evidenced as the predominant ones. 

 To place the predominant active slip plane, the {110}, into the favorable position for gliding 

(55° from the normal direction), which corresponds to the maximum Schmid factor value, both 

the rotated Cube and the Goss components must turn around the transverse direction by 55° and 

35°, respectively. Therefore, a higher-intensity {111}<112> component could be obtained, 

especially when the initial texture is mainly Goss, which requires less rotation. 

 The VPSC simulations have demonstrated that the only way to produce a cold-rolled 

{111}<112> texture is to activate the {110}<111> slip systems. 
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Figure captions 

 

Fig. 1 α is the angle between the slip plane marking in the rolling surface (RD, TD) and RD axis. β 

is the angle between the slip plane marking in the normal plane (RD, ND) and the ND axis.  

𝑛𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ : the normal to the slip plane. 𝑤⃗⃗ : the parallel vector to the slip marking, observed in the normal 

plane to the rolling surface (RD, ND). 

 

Fig. 2 Evolution of the magnetic induction B10Oe and the {111}<112> fraction for samples with 

different initial hot rolling (HR) conditions. 

 

Fig. 3 Texture before and after the first 70% cold rolling of AFK1 alloy as a function of 4 different 

initial textures: a, b, c and d. ODF representation, section at φ2 = 45°. 

 

Fig. 4 Measurements of α angle on the surface (RD, TD) of the cold rolled AFK1, by EBSD 

technique. (a) IQ map, (b) partition of points having (111)[12̅1] and (111)[ 1̅1̅2] orientations with a 

dispersion of 15° around the ideal position, (c) map of {hkl} planes parallel to the rolling plane (RD, 

TD) (the scale bar is 300µm). 

 

Fig. 5 Measurements of angle β on the surface (RD, ND) of the cold rolled AFK1, measured by EBSD 

technique. (a) IQ map, (b) partition of points having the (111)[12̅1] and (111)[ 1̅1̅2] orientations with 

a dispersion of 15° around the ideal position, (c) map of {hkl} planes parallel to the rolling plane 

(RD, TD) (The scale bar is 60 µm). 

 

Fig. 6 Comparison between values of measured and calculated α and β angles. 

 

Fig. 7 VPSC simulation of the evolution of the cold rolling texture as a function of different starting 

texture components (color bar is defined between levels 1 and 20). 

 

Fig. 8 Scheme of the evolution of the cold rolling texture as a function of both the starting texture 

and the active families of slip systems simulated using the VPSC model. 

 

Fig. 9 Evolution of fractions of the cold rolled component {111}<112> as a function of the initial 

texture. Results obtained by simulations based on VPSC model for each family of active slip systems 

{110}<111>. 

 

Fig. 10 Comparison between the recalculated (Eq. (7)) and experimental {111}<112> fractions after 

cold rolling depending on the experimental initial textures from Fig. 3. The dispersion around the 

ideal position is 15°. 

 

Fig. 11 Ideal stereographic projection of the three principal investigated components, on {011} pole 

figure. 
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