
HAL Id: hal-02359983
https://hal.science/hal-02359983

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A WCET-aware cache coloring technique for reducing
interference in real-time systems

Fabien Bouquillon, Clément Ballabriga, Giuseppe Lipari, Smail Niar

To cite this version:
Fabien Bouquillon, Clément Ballabriga, Giuseppe Lipari, Smail Niar. A WCET-aware cache coloring
technique for reducing interference in real-time systems. COMPAS 2019, Jun 2019, Anglet, France.
�hal-02359983�

https://hal.science/hal-02359983
https://hal.archives-ouvertes.fr


Compas’2019 : Parallélisme / Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

A WCET-aware cache coloring technique for reducing
interference in real-time systems
Fabien Bouquillon1,2, Clément Ballabriga1, Giuseppe Lipari1, Smail Niar2

1 Univ. Lille, CNRS, CentraleLille,UMR 9189 - CRIStAL, Lille, France
2 Univ. Polytechnique Hauts-de-France, LAMIH/CNRS, Valenciennes, France

Abstract
The time predictability of a system is the condition to give safe and precise bounds on the
worst-case execution time of real-time functionalities which are running on it. Commercial
off-the-shelf(COTS) processors are increasingly used in embedded systems and contain shared
cache memory. This component has a hard predictable behavior because its state depends on
the execution history of the systems. To increase the predictability of COTS component we use
cache coloring, a technique widely used to partition cache memory. Our main contribution
is a WCET aware heuristic which partition task according to the needs of each task. Our ex-
periments are made with CPLEX an ILP solver with random tasks set generated running on
preemptive system scheduled with earliest deadline first(EDF).

1. Introduction

Hard real-time systems are found in many different domains, like avionics, automotive, health
care services. In such systems, a real-time task has to be executed within predefined tim-
ing constraints, whose violation can lead to system failure. Thus, it is important to compute
the response time of every task to ensure a-priori that it always executes within its time win-
dow under all conditions. Schedulability analysis algorithms provide upper bounds on the
response time of tasks, which depend upon several parameters such as tasks’ execution times
and scheduling policy. In turn, execution times depend on the hardware architecture and task’s
code.
Commercial off-the-shelf (COTS) processors are increasingly used in embedded systems for
their low cost and high performance. Most of COTS processors use cache memories to bridge
the gap between processor speed and main memory access speed. In particular, cache memo-
ries improve performance by reducing the typical execution time of a task.
However, in real-time systems we need predictability, that is we need to precisely estimate the
Worst-Case Execution Time (WCET) of a task. Cache memory state depends on execution his-
tory of the system and, its prediction is a challenge due to the increase of tasks running on the
system which compete for the same cache memory area. More sophisticated WCET analyses
take into account the state of the cache during the execution of the task and provide a tighter
WCET. However, these analyses typically assume that every task executes alone in the system,
without interference from other tasks. If tasks are executed concurrently and preemptively on

Acknowledgment: This project is supported by «La Fédération de Recherche Transports Terrestres & Mobilité (FR
TTM 3733) du CNRS »
Extended version of this work is available at: https://arxiv.org with the name A WCET-aware cache coloring tech-
nique for reducing interference in real-time systems



Compas’2019 : Parallélisme / Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

the system, one task may preempt another task and evict cache blocks, making the estimated
WCET too optimistic. This type of interference is called inter-task interference, as opposed to
intra-task interference due to a task evicting its own cache blocks.
In the literature, many researchers have been interested in this problem by accounting for the
cost of preemption through the so-called Cache-Related Preemption Delay [1, 8, 9]. Another prob-
lem arises in multi-core systems with shared cache: a task executing on one processor may evict
useful cache blocks for a seconds task executing on a different processor. It is, therefore, neces-
sary to reduce, or eliminate altogether, the inter-task interference caused by the cache conflicts
on tasks’ execution times.
The goal of this research is to use virtual memory and cache-coloring techniques to reduce
inter-task interference: we allocate the virtual pages of a task to physical pages so to minimize
conflicts between tasks on set-associative caches. Since cache memory is limited, by doing, so
we might increase intra-task conflicts: two pages from the same task may be allocated to two
physical pages that correspond to the same position in the cache, thus increasing the task’s
WCET. We, therefore, propose a methodology to explore the space of possible cache-coloring
configurations so to reduce conflicts while maintaining the respect of the timing constraints.
We can represent this problem as a variant of the multiple-choice knapsack problem where the
colors are the knapsack and the pages the object, but in this variant, the values of the object
depend also on the presence of the other objects in the same knapsack. Since the problem’s
complexity is very large, we propose a combination of Integer-Linear-Programming techniques
and heuristics to partition the cache taking into consideration the WCET of each task.

2. Related Works

Predictability of cache memory in real-time systems has been widely explored, especially for
the CRPD [1, 8, 9].
Luniss et al. [8] used simulated annealing to find a code layout in the memory that minimizes
the CRPD. However, tasks are not isolated on cache memory, so inter-task and inter-core inter-
ference are still present. They used the linker to configure the code layout.
Mancuso et al. [9] propose a complete framework which defines, isolates and locks most impor-
tant memory areas in memory cache. These techniques are based on cache coloring partitioning
and cache locking, its purpose is to reduce conflicts and enhance predictability but the cache
is not optimally used because only the most important memories area are in the cache and
to access other areas require costly RAM access. In our work, we use their techniques in our
heuristics for the pages coloring, but instead of giving all the partitions to the most important
data, we reserve a partition to the other data.
Kim et al. [6] propose a practical OS-level cache management scheme using page coloring. They
work on partitioned fixed priority preemptive scheduling system where they partition cache
memory between cores with page coloring. In their works tasks may share the same cache area,
thus intra-core interference is still present.
Ward et al. [10] consider colors as shared resources protected by critical sections, thus priority
inversion may occur during execution. To reduce this problem they propose to slice tasks’
periods, but their method may force the preempted task to reload its data (the set of data pages
that a task may access in one job).

3. System model

In this section, we first present the task model, and then the model of the hardware architecture.



Compas’2019 : Parallélisme / Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

TASK 1 VTABLE

2

1

0

TASK 2 VTABLE

1

0

MEMORY

CACHE

(a) Cache colloring

BLOCK
1

BLOCK
1

BLOCK
0

BLOCK
1

BLOCK
1

BLOCK
1

BLOCK
0

BLOCK
1

(b) WCET Control Flow Graph

Figure 1: Cache coloring and its impact on WCET

We consider a system of N real-time sporadic tasks T = {τ1, · · · , τN}. A task τi is an infinite
succession of jobs Ji,k(ai,k, ci,k, di,k), each one characterized by an arrival time ai,k, a computa-
tion time ci,k and an absolute deadline di,k. A job Ji,k must be executed in the interval of time
[ai,k, di,k], if it misses its deadline then a critical failure occurs.
A sporadic task τi can be represented by the tuple (Ci, Di, Ti, Pi), where Ci represents the
worst case execution time (WCET) of the task τi (Ci = max

∀k,k≥1
{ci,k}), Ti represents the minimum

time between two consecutive arrivals (Ti ≥ mink{ai,k+1 − ai,k}), Di is the relative deadline
(∀k, di,k = ai,k +Di), and Pi is the number of distinct virtual pages used by the task.
We consider a set of sporadic tasks with constrained deadlines (Di ≤ Ti), scheduled with the
preemptive Earliest Deadline First (EDF) scheduler on a single processor. This work can be
easily extended to partitioned scheduling on a multi-core system with shared caches. We also
assume that tasks are independent, that is they do not share any memory page. We will discuss
later how to remove such assumption.
We consider a set-associative cache and denote as Sinstructions the number of distinct pages that
fits into the cache. In this paper we only focus on the instruction cache: extension to data cache
is the subject of future work. We denote as Nway the number of cache way.
The color of the j-th virtual page pi,j of task τi, denoted as κi,j, is an index between [0, S

instructions

Nway −
(N − 1)] that denotes the position in the cache where the page will be loaded. Therefore, we
search a method for allocating virtual pages to physical pages so that any two different tasks
share the minimum possible number of colors (ideally zero).
Main memory size is a multiple of cache memory size which is a multiple of a page size. There-
fore, when considering cache coloring at page level, the same page is always mapped to the
same cache page(partition of the cache memory of a page size).
Figure 1a represents an example cache coloring technique in a set-associative cache: all pages
in main memory with the same color share the same cache page (red color). Thus, the color of
each page in main memory can be computed as κi,j = index(Pi,j)modS

instructions

Nway . κi,j depends
on the index of the page in main memory, we can use the virtual table of the task to color
instructions pages. The configurations of task pages has an impact on the typical execution of
the task, thus also on the WCET.

3.1. Recall on WCET analysis
To compute the WCET, we can use measurements or static analysis. Measurements give an
optimistic estimation of the WCET because not all inputs and internal states can be tested. The
static analysis gives a safer over-estimation of the WCET value. Our static analysis method
builds a control flow graph (CFG) of the task and runs various analyses on it (including cache



Compas’2019 : Parallélisme / Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

behavior prediction) to compute an estimation of the WCET. The task’s pages allocation has
an impact on its WCET: in Figure 1b we show an example of two CFGs of the same task with
different page configurations. The node’s color represents the color of the page which contains
the block, and the edges the possible paths that the execution may take. On the top CFG, Block
1 and Block 0 are not in the same page but use the same area in the cache memory, if the wcet
path uses Block 0, then Block 1 will be evicted in cache memory. In the bottom CFG, Block 1
and Block 0 do not use the same cache memory area because the colors of their pages are not
the same, thus there will be no eviction and lower execution time.

4. WCET-aware Coloring Heuristics

Our goal is to allocate the virtual memory pages of a set of real-time tasks to the physical
memory pages so to minimize the inter-task interference on the cache. In this paper, we try to
completely remove the interference by partitioning the cache.
We divide the problem into two steps: 1) At the macro-level, we assign a certain number of
colors to each task so that the total number of colors is less than or equal to the number of
available colors in the cache; 2) At the micro-level, for each task separately, with a given number
of available colors, we compute the best WCET for that task.
We start by proposing a method for solving the micro-level.

4.1. Pages Coloring for a given partition size
Consider that for each possible color combination, it is necessary to perform a WCET analysis.
Since that can be very time-consuming, we rule out the complete exploration of all possible
combination, and we use a heuristic instead. An overestimation of the number of solutions is
given by (Pi)

Pi which is exponential.
We consider 2 heuristic algorithms. The first algorithm assigns the same number of pages
(approximately) to each color. In particular, if task τi is assigned j colors and it has Pi pages,
then the same color is assigned to ⌊Pi/j⌋ pages. We use a simple modulo: the first ⌊Pi/j⌋ pages
are assigned to the first color, etc.
The second algorithm classifies pages according to their importance in the program. Therefore,
we assign each page a score that depends on how many times the page is accessed by the
program in the Control-Flow-Graph. The score of a page is computed as the sum of the scores
of the instructions in the page, and the score of instructionψ is computed as, score(ψ) = 10l(ψ).
Where l(ψ) is the nesting level of loops where the instruction is found: if ψ is not contained
in any loop, then l(ψ) = 0; if ψ is contained in a loop of first level, then l(ψ) = 1; etc. The
pages’ scores are computed using the OTAWA analysis tool [2]. Then the pages are ordered by
decreasing score: if the task τi is assigned j colors, the first j−1 pages in decreasing score order
are assigned a different color, while all other pages are assigned the last remaining color.
Once each page has been assigned a color according to one of the two heuristics above, we
launch the OTAWA WCET analysis tool to obtain the corresponding WCET for the task.
We do this for different values of j in the interval j = [1, Smaxi }], where

Smaxi = min
{
Pi, S

instructions − (N− 1)
}

(1)

and for each value we compute the corresponding WCET Ci(j). These values are used by the
ILP solver described in the next section.



Compas’2019 : Parallélisme / Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

4.2. Partitioning cache memory according to the need of the tasks
The distribution of cache memory space can be represented as a Multiple Choice Knapsack
Problem(MCKP). In this problem we have a knapsack of limited size and a set of objects of
different categories. The problem consists in selecting one and only one object of each category
to put in the knapsack.
In our case, the size of the knapsack represents the schedulability constraints; the objective
function is the number of colors used (that we want to minimize); the object types are the
different tasks, and an object is a configuration of colors for a given task, with the corresponding
WCET.
We encode the problem above as an Integer Linear Programming (ILP) problem, and we use
CPLEX as a solver. We use the following variables and constraints:

• We define variable χi,j ∈ {0, 1} to denote the fact that task τi has been assigned j colors.
Each tasks must be assigned at least one configuration selected:

∑Smax
i

j=1 χi,j = 1

• The worst case execution time of a task can be expressed as: Ci =
∑Smax

i

j=1 (Ci(j) · χi,j).
where Ci(j) is computed in the micro-level problem.

• We want to minimize the total number of colors used: min
∑N
i=1

∑Smax

j=1 (j · χi,j) If the

value of the objective function for the optimal solution is greater than Sinstructions

Nway , then
the problem has no feasible solution, and we must resort to other methods for computing
the interference (for example by using the CRPD analysis [1]).

• To impose the schedulability of the system, we use the DBF analysis for EDF, first pro-
posed by Baruah [3]. We first represent the utilization constraint

∑N
i=1

Ci

Ti
≤ 1 Then

we add all inequalities to check that all deadlines are respected. Let dset(τi) = {∀i =
1, . . . ,N, ∀k > 0|kTi +Di ≤ DIT }. The first definitive IDLE time (DIT) [7], is an instant at
which all tasks must complete, and it does not depend on the WCETs of the tasks. Then,
we add the following inequalities: ∀t ∈ dset(τ) :

∑N
i=1

(⌊
t−Di

Ti

⌋
+ 1

)
· Ci ≤ t

5. Result

The analysis takes into account a system with a 32 KB set associative memory cache of 2 ways
with 512 rows. We consider a page size of 1 KB (this value is defined as a constant in OTAWA
and involved timely tool modification if we want to change its value), thus, there are 16 colors
available. We test each utilization in the range [0.30; 1.70] (we assume a step of 0.01), with 1000
variation of periods and deadlines of the 8 tasks in Table 3b, taken from well-known standard
benchmarks in the literature [4, 5].
First, our method performs a static analysis of each task which gives us a list of WCET accord-
ing to their number of available colors, the worst of them is selected to compute the periods and
deadline with uunifast algorithm (Ti = WCETi(worst)/Ui). To represents constrained dead-
lines we assign for each task, a deadline in the range of [WCETi(worst)+(Ti−WCETi(worst)) ·
0.75) · Ti, Ti]. In the following figures, the line labeled as infinite cache represents the percentage
of schedulable tasks set that we can schedule if we have a cache of unbounded size with the
WCET list from random coloring.
The random line represents the percentage of task schedulable with a random distribution of the
cache space between tasks and a random coloring of their pages. Our method (described in the
previous section) is represented with the lines labeled ILP. The x-axis represents the utilization
of the worst distribution with random coloring.



Compas’2019 : Parallélisme / Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

0.9 1.1 1.3

10

30

50

70

90

utilizationpe
rc

en
ta

ge
sc

he
du

la
bl

e

ILP + fair

ILP + federated

ILP + random

random distribution

infinite cache

worst distribution

Figure 2: percentage of schedulable task set with constrained deadlines

0.9 1.1 1.3

2
4
6
8
10
12
14
16

utilization

ca
ch

e
pa

rt
it

io
ns

us
ed

ILP + fair

ILP + federeated

ILP + random

(a) Average number of cache partitions used with con-
strained deadlines

Task pages
compress (Mälardalen) 4
fir (Mälardalen) 2
ndes (Mälardalen) 4
jfdctint (Mälardalen) 3
edn (Mälardalen) 4
crc (Mälardalen) 2
g723_enc (TACLeBench) 8
petrinet (TACLeBench) 8

(b) Tasks used in analysis

Figure 3: performances of heuristics with constrained deadlines

For all heuristics, Figure 2 shows that our method (ILP) increases the amount of schedulable set
(more than 20% compared to random distribution for high utilization), but the performances
of our heuristics are mitigated compared to the random coloring. On this figure, we do not
observe any significant difference between the performance of fair coloring and federated col-
oring. However, if we look at Figure 3a we can see that fair coloring uses fewer pages than
federated and random. So the best heuristics is fair coloring compared to random and feder-
ated. This can be explained by the fact that for a low number of colors j, federated coloring
isolates only the j − 1 most important pages. If the score of the j-th pages is also important, it
will experience a significant number of evictions in all the other pages with the lower scores.

6. Conclusion

We proposed an approach based on ILP to partition the cache memory according to the needs
of each task for a preemptive system scheduled with EDF. We also propose a heuristic based
on our empirical results to find pages layout for each task according to the number of its given
colors. Our experimental results confirm an increase of high utilization tasks set schedulable
of 20% compared to a random partition of cache memory, however, the performances of our
heuristics to coloring task pages are mitigated. We will reduce the granularity to have a method
to partition at the granularity of the size of a cache line and explore other heuristics in a future
work.



Compas’2019 : Parallélisme / Architecture / Système
LIUPPA - IUT de Bayonne, France, du 24 au 28 juin 2019

Bibliographie

1. Altmeyer (S.), Davis (R. I.) et Maiza (C.). – Improved cache related pre-emption delay
aware response time analysis for fixed priority pre-emptive systems. Real-Time Systems,
vol. 48, n5, 2012, pp. 499–526.

2. Ballabriga (C.), Cassé (H.), Rochange (C.) et Sainrat (P.). – Otawa: an open toolbox for
adaptive wcet analysis. – In IFIP International Workshop on Software Technolgies for Embedded
and Ubiquitous Systems, pp. 35–46. Springer, 2010.

3. Baruah (S. K.), Mok (A. K.) et Rosier (L. E.). – Preemptively scheduling hard-real-time
sporadic tasks on one processor. – In Real-Time Systems Symposium, 1990. Proceedings., 11th,
pp. 182–190. IEEE, 1990.

4. Falk (H.), Altmeyer (S.), Hellinckx (P.), Lisper (B.), Puffitsch (W.), Rochange (C.), Schoe-
berl (M.), Sørensen (R. B.), Wägemann (P.) et Wegener (S.). – Taclebench: A benchmark
collection to support worst-case execution time research. – In 16th International Workshop
on Worst-Case Execution Time Analysis (WCET 2016). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2016.

5. Gustafsson (J.), Betts (A.), Ermedahl (A.) et Lisper (B.). – The Mälardalen WCET bench-
marks – past, present and future. – pp. 137–147, Brussels, Belgium, juillet 2010. OCG.

6. Kim (H.), Kandhalu (A.) et Rajkumar (R.). – A coordinated approach for practical os-level
cache management in multi-core real-time systems. – In 2013 25th Euromicro Conference on
Real-Time Systems, pp. 80–89. IEEE, 2013.

7. Lipari (G.), George (L.), Bini (E.) et Bertogna (M.). – On the average complexity of the
processor demand analysis for earliest deadline scheduling. – In Proceedings of a conference
organized in celebration of Professor Alan Burnss sixtieth birthday, p. 75, 2013.

8. Lunniss (W.), Altmeyer (S.) et Davis (R. I.). – Optimising task layout to increase schedula-
bility via reduced cache related pre-emption delays. – In Proceedings of the 20th International
Conference on Real-Time and Network Systems, pp. 161–170. ACM, 2012.

9. Mancuso (R.), Dudko (R.), Betti (E.), Cesati (M.), Caccamo (M.) et Pellizzoni (R.). – Real-
time cache management framework for multi-core architectures. – In Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), 2013 IEEE 19th, pp. 45–54. IEEE, 2013.

10. Ward (B. C.), Herman (J. L.), Kenna (C. J.) et Anderson (J. H.). – Making shared caches
more predictable on multicore platforms. – In 2013 25th Euromicro Conference on Real-Time
Systems, pp. 157–167. IEEE, 2013.


