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Abstract 

The microstructure, texture and mechanical properties of the Ni-14%W(wt.%) alloy 

with two different initial grain sizes and textures were investigated after groove pressing 

(GP) at 450 °C to 4 cycles using Electron Back Scatter Diffraction (EBSD) and 

microhardness measurements. The initial first series was characterized by small 

equiaxed grains and Cube dominant texture component. The second series has 

elongated grains and β-fiber texture. EBSD analysis has shown that GP processing led 

to a slight refinement (less than 15%) of equiaxed grains in series I while greater 

refinement (~55%) of the mean spacing along normal direction was observed in series 

II. The texture did not drastically change from the initial ones and was characterized by 

the weakening of the Cube component in series I and rapid decrease of Copper 

component for series II. GP processing reduces very slightly the plastic anisotropy of 

the alloy with initial elongated granular microstructure. 
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1. Introduction 

Recently, Ni based alloys rouse a great interest due to their potential applications as 

coated conductor substrates for superconducting cables. Especially, Ni-5at.%W (14 wt. 

%) has been in the focus of many investigations and can be considered as the most 

applied material for Rolling Assisted Biaxially Textured Substrates (RABITSTM) [1]. 

Among their most desired properties are: special texture, temperature stability, low 

lattice constant misfit; mechanical strength, price and availability. They exhibit 

excellent physical properties subsequently to easy forming of Cube {001}<100> texture 

after heavy straining and subsequent annealing [2, 3]. This Cube texture is prerequisite 

for obtaining thin layers with high conversion efficiency. The amount of Cube-oriented 

grains depends strongly on the deformation texture and microstructure that may result 

from prior thermo-mechanical processing [4]. Therefore, conventional processing 

techniques such as rolling and severe plastic deformation (SPD) processing like 

accumulative roll bonding (ARB) were experimented in order to investigate their effect 

on the microstructure and texture development [5–9]. Recently, Gupta et al. [10] stated 

that the Groove pressing (GP) technique is one of the most suitable SPD techniques for 

fabricating sheet materials having very interesting mechanical and physical properties. 

Basically, in GP process, sheet material is subjected to repetitive shear deformation 

under the plane strain deformation conditions by alternately pressing between 

asymmetrically grooved and flat dies [11]. Different existing types of groove pressing 

methods as constrained groove pressing, unconstrained groove pressing (or simply 

groove pressing), semi-constrained groove pressing, rubber pad-constrained groove 

pressing, constrained groove pressing-cross route and covered sheet casing-constrained 

groove pressing. All these methods have the same principle as the groove pressing that 
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involves alternatively corrugating and flattening of the sheet specimens [9]. Materials 

processed by CGP exhibit very high strength, high hardness and many other desirable 

properties. Profuse data has been published concerning different materials like 

aluminum, copper, low carbon steel, nickel, etc. [9].  

Sunil et al. [12] studied the wettability and corrosion resistance of groove pressed AZ31 

magnesium alloy and showed the prospects in its application as implants instead of 

expensive titanium. Potential industrial applications of the CGPed materials based on 

the research that has been done till now is widely discussed in [10]. 

Most studies were devoted to highlight the effect of CGP processing on mechanical 

properties and microstructural evolution in face centered cubic metals like Copper and 

Aluminum [11–17] but little on Nickel [18, 19]. However, very few studies were carried 

out on the evolution of crystallographic texture [20, 21] and any on the variation of 

grain boundary character distribution (GBCD) after GP processing. 

The GP process has several advantages, such as ultrafine grain microstructures in metals 

and its applicability to thin sheet materials, which cannot be applied to the most widely 

used SPD processes like ECAP [22]. 

It is a good challenge to investigate whether GP processing (replacing conventional cold 

rolling) could enhance the volume fraction of Cube texture as well as ensures good 

formability of Ni-14W (wt.%) alloy that is potential candidate as conductor substrate. 

The main point is that GP processing does not require huge processing to achieve 

equivalent properties obtained through cold rolling or ARB. 

Therefore, in the present study, the deformation microstructure, texture as well 

mechanical properties of a commercial Ni-14W (wt.%) alloy with two different initial 
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grain morphologies and textures were investigated after GP) at 450 °C to 4 cycles using 

Electron Back Scatter Diffraction (EBSD) and microhardness measurements. 

 

2. Experimental techniques 

The material investigated in the present work is a commercial Ni-14W (wt. %) alloy 

(kindly provided by APERAM alloys society, France) in the form of strips of 1 mm 

thickness. The Chemical composition of Ni-14W (wt. %) alloy is presented in Table 1. 

The material was received in two different initial granular morphologies: equiaxed and 

elongated for series I and II, respectively.  

The strips were cut into 35 mm × 20 mm×1mm rectangular pieces and then degreased in 

acetone. The strips were pressed between asymmetrically grooved dies (with a groove 

angle of 45° and width of 4 mm, Fig. 1a) and then subsequently between flat die(Fig. 

1b). As a result of pressing and straightening, the length of the specimen increased. The 

strip was then rotated 180° around normal direction, allowing the un-deformed regions 

to be deformed by further pressings (Figs. 1c-1d). The pressing was performed on a 

commercial BeraTestTM hydraulic press with a maximum load of of 2000 KN at a 

constant speed. The successive pressings by grooved dies and flat dies result in an even 

distribution of plastic strain throughout the work-piece. Before each press stage, the 

strips were preheated at 450°C for 5 minutes. The entire process corresponds to one GP 

cycle. We have used a slightly modified groove pressing in the sense where a CCW 45° 

rotation around the normal direction (ND) direction was applied to the sample between 

successive cycles. A total of 4 GP cycles was successfully obtained. 

The microstructure and texture were investigated using Electron BackScatter 

Diffraction (EBSD) in the (Rolling Direction (RD)-Normal Direction (ND)) cross-
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section of sample after a mechanically and electro polishing using the A2 Struers 

elecrolyte at 25 V. The observation was carried out using a scanning electron 

microscope FEG-SEM SUPRA 55 VP operating at 20 kV. The EBSD step size was 50 

nm. EBSD data acquisition and analysis were conducted using the TSL Orientation 

Imaging Microscopy, OIMTM software. The quantitative texture analysis was carried out 

by calculating the Orientation Distribution Function (ODF) using MTex software [23]. 

The microhardness of the material was measured after each GP cycle using a Shimadzu 

G21 series with a diamond pyramid indenter under loading charge of 2.94 N and 

indentation time of 10 seconds. An average of 20 readings was taken near the middle of 

the sample to obtain the average micro-hardness value.  

 

3. Results and discussion 

3.1. Microstructure and texture of Ni-W alloy before GP processing 

The orientation imaging micrographs (OIM) in inverse pole figure (IPF map) obtained 

from the two initial states of Ni-14W alloy are illustrated in Fig.2. The initial 

microstructure of the series I is characterized by equiaxed grains with small average size 

(d ~ 6.5µm). Twins (as shown by arrows) are profuse and are extended through several 

grains. Meanwhile, the series II exhibited an elongated morphology resulting from the 

rolling process, with mean spacing along normal direction (ND) about 1.8 µm. 

Fig. 3 shows the misorientation distributions of the series I and II of as received Ni-

14W alloy. It is clear that both samples do not exhibit a random distribution. The grain 

boundaries are classified into two categories based on the misorientation between the 

neighboring grains. They are low-angle boundaries (LAGBs) when misorientation is 5° 

≤ θ ≤ 15°, and high-angle boundaries (HAGBs) when the misorientation angle is θ >15°. 
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Special grain boundaries are selected often in the range Σ3-Σ27 [7]. The misorientation 

histogram of series I (Fig. 3a) confirms the presence of great fraction of twins near 60° 

angle (Σ3 60°/<111>) while series II exhibit a high fraction(near 50 %) of low angle 

grain boundaries resulted from the generation of dislocations during rolling 

deformation. 

The initial texture of both as received of Ni-14W alloys are shown in Fig. 4. The main 

ideal texture component positions of FCC alloys are also presented and their 

descriptions are given in Table 2. The initial texture of series I was characterized as 

relatively weak recrystallization type texture with the presence of dominant Cube 

001<100> component. A very weak intensity of the S {231}<346> and the Copper 

{112}<111>components can be noticed. Contrarily, the initial texture of series II was 

characterized by the presence of Brass 011<211>, Copper {112}<111> and 

S123<634> component as a pure metal or Copper-type deformation texture 

(characteristic of pure FCC metals with high stacking fault energy) in which 

orientations are assembled along the β-fibre (that spreads from Brass {011}<112> to 

Copper {112}<111>  through S {231}<634>components). 

 

3.2. Microstructure and texture evolution of Ni-W alloy after GP processing 

3.2.1. Microstructure evolution of Ni-W alloy after GP processing 

The IPF maps of series I and II of Ni-14W alloy after GP processing up 4 cycles are 

shown in Fig.5.The evolution of misorientation angles for both initial states as function 

of GP processing are illustrated in Fig.6. 

A lack of substantial refinement can be noticed in the microstructure of series I upon GP 

processing (Fig. 5) while the refinement seems effective for the second series. A close 
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analysis of Fig. 6a evidences a decrease of Σ3 (twin) fraction and increase of low 

disorientation angles due to the increase of deformation level (dislocations) for series I. 

A strict reverse trend is noticed for series II. The low angle grain boundary (LAGB) 

fraction decreases as the high angle grain boundary (HAGB) one increases.  

The grain size and fraction of HAGB are shown in Fig.7 for both initial states of Ni-

14W alloy after GP processing. As it can be seen, the grain size of series I decreases 

slightly from 6.5 to 4.5 μm after four GP cycles. While, series II exhibits a greater 

refinement (~55%) where the mean spacing along ND decreases from 1.8 μm to 0.6 μm 

after 4 GP cycles with no saturation. It is to be noted that the length of the elongated 

grains, i.e mean spacing along RD was not considered since it overflows the analyzed 

zone along RD. It has been already reported that the initial equiaxed grain size was 

reduced from78 µm to a cell block structure approximately 0.5 µm for Copper and from 

38 µm to l µm for aluminium after three and four cycles of CGP processing, 

respectively [15, 17]. Moreover, Wang et al. [20] evidenced a strong refinement of 

initial equiaxed grains (~ 28 µm) that became elongated subgrains with mean width  

(mean spacing along normal direction) of about 0.5 µm through CGP processing pure 

Ni at room temperature up to four cycles. This considerable grain refinement was 

ascribed to the intermediate value of stacking fault energy (SFE) [20]. The SFE of pure 

Ni at room temperature was estimated to be about 128 mJ/m2 [24, 25]. The temperature 

dependence of the SFE 𝑑𝛾𝑆𝐹𝐸 𝑑𝑇⁄  was estimated to be -0.04 mJ/m2 K for pure Ni [25]. 

It is worth noting that no similar data does exist for Ni-14W alloy, but one can speculate 

that the temperature dependence of SFE should be close. Nevertheless, the SFE of Ni-

5W alloy must be significantly lower than that of pure Ni due to alloying of Ni with 5 

at.% W, since SFE tends to decrease with segregation [26]. 
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Kumar et al. [18] have assumed that CGP processing resulted in lower grain refinement 

compared to other SPD techniques. It fact, alternate groove pressing and flattening 

operations is accompanied by a reversal of loading direction which results in the non-

existence of multiple shear stress planes during deformation and partial annihilation of 

dislocations. Moreover, in the present study, the groove angle of 45° may introduce 

small strain in the material.  

From Fig. 7, the volume fraction of HAGB for series I decreases substantially from 

80% after 1GP cycle to 53 % after 4 GP cycles. In fact, the decrease of HAGB fraction 

is associated to the increase of LAGB caused by the imposed deformation and 

generation of new dislocations while for series II, it increases faintly from 22 % after 1 

GP to saturate around 35% after 3 GP cycles. Apparently, in series II, the LAGBs 

progressively rotate to HAGBs with strain, which is a characteristic of grain refinement 

mechanism in FCC metals [5, 27, 28]. 

 

3.2.1Texture evolution of Ni-W alloy after GP processing 

The ODF sections (2 =0, 45 and 65°) of series I and II of Ni-14W alloy after GP 

processing are presented in Fig.8. For more details, the evolution of β and -fibre are 

plotted for both series in Fig.9. 

It can be seen that the texture after GP processing is similar to that of as received alloys. 

No new components have been developed for both Ni-14W alloys. As can be shown in 

Figs. 8 and 9a, the intensity of Cube component of series I shows a continuous decrease 

with increasing number of GP cycles and seem to re-increase after four GP cycles (4.4 

mrd). 
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As shown in Fig. 9b, the intensity Copper component decreases rapidly after 1 GP cycle 

and levels off with increasing GP cycles. It can be observed that the intensity of Brass 

component does not seem to be systematically higher than that of Copper component 

and/or increases after GP processing which should be an indication of the formation of a 

Brass-type texture. The texture transition from Copper-type to Brass-type texture has 

been widely reported in FCC alloys of low stacking fault energy after conventional 

plastic deformation [29]. A similar transition occurs in copper–manganese alloys [30] 

and in age-hardened aluminium alloys [31]. It has been suggested that the texture 

transition in FCC alloys is a result of the onset of planar slip and shear banding [29]. 

Sarma et al. [32] have demonstrated that a two-step recrystallization annealing was 

beneficial in achieving a strong cube texture in Ni–W alloys up to 14wt.%. However the 

Cube fraction was found to decrease with W content above 5 at.%. This was attributed 

to the transition in the rolling texture from Copper-type to Brass-type with increasing W 

content. In agreement with Sarma et al. [32], the absence of texture transition in the Ni-

5W alloy (with relatively low W content) after GP processing could be associated with 

its probable high stacking fault energy that ensures typical copper or metal type  rolling 

texture. 

It was reported that the resulted texture during CGP processing of pure Ni sheets at 

room temperature depend strongly on the design of groove dies, specially the groove 

width and angle [20]. A rotated cube component {1 0 0}<0 1 1>is developed from the 

initial Cube texture {1 0 0}<0 0 1> of the annealed Ni sheets when using groove dies 

with a width of 3 mm and an angle of 45°. While, no texture change (stable Cube 

texture) was observed when using groove dies with a width of 2 mm and an angle of 37 

or 45° [18]. The present results are close to this last case, with no rotation of the Cube 
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component towards Rotated-Cube one due to the use of groove dies with a width of 4 

mm and an angle of 45°. This different behavior may be explained by the effect of 

solute elements (W) and processing temperature (here 450 °C) on the texture 

components formation and/or re-orientation. Indeed, it is well known that increasing 

solute element content decreases the stacking fault energy that in turn, determines the 

texture of FCC metals [23].  

 

3.3. Evolution of the microhardness 

The evolution of Vickers microhardness of Ni-14W alloy after GP processing of the two 

series is presented in Fig. 10. The microhradness behaves quite differently depending on 

the initial state. The improvement of the microhardness of the series I was as high as 

30% (Hv~ 220 of as received alloy and Hv ~318 after 4GP cycles). That of series II was 

more modest and reached no more than 10% (Hv~ 331 of as received alloy and Hv ~ 

347 after 4 GP cycles). 

In the literature, many authors reported substantial hardening of the studied materials 

after CGP processing. Pure Ni [20] and Al [33], experienced high hardening level up 

to140 and 80 %, respectively after four cycles at room temperature [20]. Constrained 

groove pressing of low carbon steel at room temperature revealed also 100% increasing 

of the microhardness relatively to initial un-deformed state [34]. Mg alloys (AZ31) were 

characterized by relatively lower hardening level about 30 % after processing at 450°C 

[35, 36]. 

Often, the high hardening level is ascribed to the concomitant effect of grain refinement 

and dislocations density increase. In the present study, in both samples with different 

initial microstructure, the increase of the microhardness could be attributed solely to the 
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net increase of dislocation density in absence of any considerable grain refinement [6, 

37] for series I. In Fig.10, series I, it is observed that Hv values increases but with a rate 

that decreases upon enhancing the accumulated strain. Such evolution has been already 

evidenced in the literature and quite similar trends were registered for many alloy 

systems and severe plastic deformation methods [6, 27, 28, 38–42]. Between one and 3 

GP cycles, strain hardening mechanisms operate leading to the increase of dislocation 

density. After reaching a certain level, a second antagonist mechanism of recovery may 

occur and counterbalance the dislocation generation by their annihilation.  

 

3.4. Evolution of the deep drawability 

Since there is strong lack of published data on the influence of SPD on some properties 

such as fracture behavior, deep drawability and electrical resistivity [9], the deep 

drawability of the presently studied alloy after GP processing was measured through the 

variation of plastic anisotropy in GP samples. In this purpose, the Lankford coefficient, 

R-value, was calculated from the experimental texture (ODFs) of GP processed samples 

(Fig.9) on the basis of Hosford-Backhofen model implemented in popLA package 

(http://www.lanl.gov). The textured materials are in general anisotropic, so the average 

Lankford factor R  and its variation R  given by Kocks et al. [43] were used: 

4

)90()45(2)0(( RRR
R




                                                  (1) 

2

)90()45(2)0(( RRR
R




                                                  (2) 

It should be mentioned that for a plastically isotropic material (random texture) R and 

ΔR should be near unity and zero respectively. 

http://www.lanl.gov/
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Fig.11 presents the evolution of R value versus the angle to rolling direction 

corresponding to experimental textures of GP processed samples for both initial states. 

It is visible that with the increase of the number of GP cycles, the normal anisotropy 

does not change considerably for series I while it somewhat increases for series II. 

Between the 1 to 3 GP cycles, the R varied with direction in the strip and is lowest 

along the RD and TD directions. It increased towards 45° indicating the presence of 

planar anisotropy. 

The evolution of R and ΔR versus number of GP cycles is presented in Fig. 12. The R

and absolute ΔR of the series I were quasi constant, those of series II decreased with 

increase of number of GP, showing that the sheets became more isotropic. This result 

showed that GP processing reduces very slightly the plastic anisotropy of the Ni-14W 

alloy processed by groove pressing with initial elongated granular microstructure. 

A number of techniques have been attempted to improve the R value of an FCC metal 

like aluminum by altering the texture. Improvements of R, R and ΔR values of the 

groove pressed Pure Al sheet were obtained due to the development of (11 1)//ND shear 

texture [43]. In the present study, the absence of a net texture sharpening around a 

component or fibre like in Al sheet should explain the weak deep drawability answer of 

Ni-14W alloy after GP processing at 450 °C.  

Continuing research activity is undertaken in order to improve the grain refinement and 

mechanical properties through processing with dies having lower width and angle and 

groove pressing at lower temperature than 450 °C. 
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4. Conclusion  

The effect of GP processing at 450 °C for 4 cycles on the microstructure , texture and 

mechanical properties evolution of Ni-14%W alloy with two different initial grain sizes 

and textures have been investigated. Based on the present results, following conclusions 

have been drawn: 

 GP at 450°C up to 4 cycles led to a slight refinement of the microstructure.  

 The evolution of fraction of HAGB after GP processing strongly depends on the 

initial microstructure. 

 The texture after GP processing did not drastically changed from the initial 

texture and was characterized by the weakening of the Cube component in series 

I while Copper component decreases rapidly after 1 GP for series II without 

texture transition to Brass type. 

 An improvement of the microhardness of series I as high as 30% was achieved 

while that of series II was more modest and reached no more than 10%. 

 GP processing reduces slightly the plastic anisotropy of the Ni-14Walloy 

processed by groove pressing with initial elongated granular microstructure but 

has no effect on series I. 

 Better grain refinement, strengthening of the material and enhancing deep 

drawability should be better achieved through GP processing at temperature 

lower than 450 °C and with die width less than 4 mm. 
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Table 1: Chemical composition of the Ni-14W (wt. %) alloy. 

W C Mn Mg S Ti 

14 0.016 0.023 0.0017 <0.0005 <0.001 

 

 

 

Table 2: Main ideal rolling texture components of FCC alloys. 

Component {hkl}<uvw> Euler Angle 

1  2 

Brass {110}<112> 35° 35° 45° 

Goss {110}<001> 0° 45° 0° 

Cube {001}<100> 0° 0° 0° 

Copper {112}<111> 90° 35° 45° 

S {231}<346> 59° 29° 63° 

 

 

Figure captions 
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Fig. 1:Schematic illustration of the sequences of the groove pressing. Pressing with 

grooved (Figs. 1a and c) and flat (Figs. 1b and d) dies. An additional CCW 45° rotation 

around ND is applied between successive cycles after step d.  

Fig. 2: IPF maps showing the microstructures of Ni-14W alloy: a) series I and b) series 

II. 

Fig. 3:Histograms of the grain boundary misorientation angles of Ni-14W alloy: a) 

series I and b) series II. 

Fig. 4:ODF sections atφ2 = 0, 45 and 65° of Ni-14W alloy: a) series I and b) series II. 

Fig. 5: IPF maps showing the microstructure evolution of the series I and II of Ni-14W 

alloy after GP processing up 4 cycles, respectively. 

Fig.6:Histograms of the misorientation angles of Ni-14W alloy after GP processing: a) 

series I and b) series II. 

Fig.7:Evolution of the grain size parameters and HAGB of Ni-14W alloy after GP 

processing: a) series I and b) series II. 

Fig. 8: ODF sections at 2 =0,45 and 65° of Ni-14Walloy after GP processing up 4 

cycles: a) series I and b) series II. 

Fig.9:Evolution of β and -fibre of Ni-14W alloy after GP processing up 4 cycles: (a, b) 

series I and (c, d) series II. 

Fig. 10:Microhardness evolution of Ni-14W alloy after GP processing up to 4 cycles.  

Fig. 11: Evolution of R value versus angle to rolling direction corresponding to 

experimental textures of GP processed samples: a) Series I and b) series II. 

Fig. 12: Average Lankford factor R  and planar anisotropy ΔR versus number of GP 

cycles for both initial state of Ni-14W alloy. 
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Fig. 1:Schematic illustration of the sequences of the groove pressing. Pressing with 

grooved (Figs. 1a and c) and flat (Figs. 1b and d) dies. An additional CCW 45° rotation 

around ND is applied between successive cycles after step d.  

 

Fig. 2: IPF maps showing the microstructures of Ni-14W alloy: a) series I and b) series 

II. 
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Fig. 3:Histograms of the grain boundary misorientation angles of Ni-14W alloy: a) 

series I and b) series II. 

 

Fig. 4:ODF sections atφ2 = 0, 45 and 65° of Ni-14W alloy: a) series I and b) series II. 
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Fig. 5: IPF maps showing the microstructure evolution of the series I and II of Ni-14W 

alloy after GP processing up 4 cycles, respectively 

. 
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Fig.6:Histograms of the misorientation angles of Ni-14W alloy after GP processing: a) 

series I and b) series II. 
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Fig.7: Evolution of the grain size parameters and HAGB of Ni-14W alloy after GP 

processing: a) series I and b) series II. 

 

Fig. 8: ODF sections at 2 =0,45 and 65° of Ni-14W alloy after GP processing up 4 

cycles: a) series I and b) series II. 
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Fig.9:Evolution of β and -fibre of Ni-14W alloy after GP processing up 4 cycles: (a, b) 

series I and (c, d) series II. 

 

Fig. 10:Microhardness evolution of Ni-14W alloy after GP processing up to 4 cycles.  
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Fig. 11: Evolution of R value versus angle to rolling direction corresponding to 

experimental textures of GP processed samples: a) Series I and b) series II. 

 

Fig. 12: Average Lankford factor R  and planar anisotropy ΔR versus number of GP 

cycles for both initial state of Ni-14W alloy. 

 

 


