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Introduction

Les inondations dues à des précipitations excessives et aux eaux de ruissellement, provoquent souvent d'importants dommages sur les biens, et dans les cas extrêmes, des pertes humaines. Souvent, les rivières sont équipées par des ouvrages de protection contre les inondations tels que les barrages d'écrêtement de crue et les bassins de rétention. Ces ouvrages permettent de stocker une partie de l'eau pendant la période de crue et de la restituer après le passage de cette dernière.

Écrêter une crue revient à placer l'eau en excès au bon endroit, au bon moment et en bonne proportion de manière à éviter/minimiser les dégâts, tout en assurant les besoins courants en eau. Les barrages doivent répondre à deux besoins contradictoires : le stockage d'eau (à des fins d'alimentation en eau potable, d'irrigation…) et l'atténuation des pics de crue. Ces objectifs de gestion contradictoires coïncident sur une période de l'année hydrologique. Pendant la période de remplissage, il est nécessaire de maintenir un volume libre dans le barrage pour la lutte contre les inondations, alors qu'à la fin de cette période le niveau d'eau dans les barrages doit être maintenu élevé pour assurer un approvisionnement en eau suffisant. D'où la nécessité d'un outil de gestion qui fournit au gestionnaire une stratégie répondant à ses objectifs et lui permettant de suivre en temps réel l'impact de ses décisions.

La mise en oeuvre de solutions liées aux problématiques de la gestion de la ressource en eau nécessite le développement de méthodes de gestion adaptées. De nombreuses recherches ont été menées sur les algorithmes d'optimisation pour la gestion des réservoirs hydrauliques [START_REF] Labadie | Optimal operation of multireservoir systems: state-of-the-art review[END_REF]. Dans ce contexte, nous avons étudié l'apport des réseaux de transport à fonctions de coût quadratiques et concaves pour répondre à ces problèmes d'allocation de la ressource en eau, anticiper et gérer les événements d'inondations.

Modélisation du problème

Nous avons exploité les réseaux de transport dans notre approche de modélisation du système physique étudié et de ses règles de gestion. Les noeuds représentent les confluences, les diffluences, les points de consigne et les réservoirs ; les arcs représentent l'acheminement de l'eau.

Soit G = (V, E) un réseau de transport, avec 𝑉 l'ensemble des noeuds et 𝐸 l'ensemble des arcs. Pour chaque noeud de 𝑉, la loi de Kirchhoff est vérifiée hormis pour le sommet source 𝑆 et utilisation 𝑃 (puits). A tout arc 𝑒 est associé une fonction de coût 𝐶 ' qui représente le coût de transport unitaire, et une borne supérieure 𝑈 ' ∈ [0, +∞] du flux qui représente le volume maximal d'un réservoir, la capacité d'une vanne... Le coût du flux ∅ 1 sur un arc e ∈ E est donné par la formule (1) :

𝐶 ' ∅ 𝑑∅ ∅ 5 6 (1)
Le problème du coût minimal dans un réseau de transport est formulé par l'équation (2) :

𝑀𝑖𝑛 𝐶 ' ∅ 𝑑∅ ∅ 5 6 '∈: (2) Avec ∅ ' '∈; < =
= ressource en eau disponible, Où 𝑈 @ 𝑆 est l'ensemble des arcs ayant comme origine 𝑆.

Les flux changent dans le temps, et ne se déplacent pas instantanément sur un réseau, mais nécessitent un temps de transfert pour parcourir chaque arc, on parle donc de flux dynamiques. Ce temps de transfert peut être considéré constant ou variable en fonction du flux. Pour prendre en compte le temps de transfert, et la variation temporelle des flux, nous utilisons le réseau étendu temporisé proposé par Fulkerson [START_REF] Fulkerson | Flow networks and combinatorial operations research[END_REF].

Définition des fonctions de coût

Les fonctions de coût dépendent du modèle économique considéré dans lequel peuvent intervenir plusieurs critères tels que : le type de gestion, le type d'infrastructure et les objectifs (irrigation, approvisionnement en eau potable, protection contre les inondations…). L'élaboration de ces fonctions de coût s'appuie sur des méthodes d'analyse coût-bénéfice (ACB) [START_REF] Karamouz | Monitoring and evaluation scheme using the multiple-criteria-decision-making technique: application to irrigation projects[END_REF]. Ces méthodes permettent l'estimation de la valeur monétaire des différents paramètres de la gestion d'un réseau hydrographique que sont : l'eau d'irrigation, les zones inondables, les lacs de rétention ou de loisir, la production hydroélectrique. 

Graphe résiduel

Afin d'obtenir une répartition optimale, on fait varier les flux dans les arcs jusqu'à trouver l'équilibre. Il nous faut donc être capables, non seulement d'augmenter, mais aussi de diminuer la valeur du flot sur un arc. Pour chaque arc 𝑒 ∈ 𝐸, on note 𝑒 son arc inverse. Les arcs inverses représentent la possibilité de renvoyer une quantité de flot sur l'arc 𝑒. La capacité résiduelle d'un arc inverse 𝑒 correspond à la quantité de flot qu'il est possible de retrancher de l'arc 𝑒 sans rencontrer de discontinuité dans la fonction de coût.

Pour un flot ∅ qui traverse e, le coût unitaire sur les arcs e et 𝑒 sont définis respectivement par l'équation (4) :

𝐶 ' = 𝑙𝑖𝑚 ∅→∅ 5 < 𝐶 ' (∅) et 𝐶 ' = -𝑙𝑖𝑚 ∅→∅ 5 L 𝐶 ' ∅ . ( 4 
)
Le recours à la limite est nécessaire car la fonction de coût contient des discontinuités.

Résolution du problème et condition d'optimalité

Algorithme de résolution

Une répartition 𝑓 du flot est optimale si et seulement si le graphe résiduel ne contient aucun circuit à coût négatif [START_REF] Fulkerson | Flow networks and combinatorial operations research[END_REF]. Un circuit à coût négatif est un circuit dont la somme des coûts de ses arcs est négative. La présence d'un circuit à coût négatif signifie que la répartition peut encore être améliorée.

Afin de trouver une répartition optimale, et de façon à prendre en compte des fonctions de coût linéaires par morceaux et croissantes du flot, nous avons étendu la méthode développée par Klein [START_REF] Klein | A primal method for minimal cost flows with applications to the assignment and transportation problems[END_REF] pour des fonctions de coût constantes. L'algorithme est initialisé par une répartition réalisable appelée « flux gravitaire ». Ensuite les trois étapes suivantes sont répétées jusqu'à ce qu'il n'y ait plus de circuit à coût négatif :

• Détecter un circuit à coût négatif en utilisant l'algorithme de Bellman-Ford [START_REF] Saaty | Finite graphs and networks: An introduction with applications[END_REF][START_REF] Cherkassky | Shortest paths algorithms: Theory and experimental evaluation[END_REF].

• Éliminer le circuit en envoyant un flot (la valeur du flot à envoyer est explicitée dans le paragraphe 5.2) dans le sens du circuit négatif. • Mettre à jour le graphe résiduel. Ces itérations successives améliorent la fonction objectif tout en gardant la faisabilité de la répartition. La complexité de cet algorithme est fonction du nombre des boucles à éliminer, dépendant lui-même de la taille des boucles détectées. L'algorithme que nous proposons n'est pas exact puisque la complexité reste indéterminée.

Elimination des circuits à coûts négatifs

Éliminer un circuit à coût négatif, φ, améliore la fonction objectif. Pour éliminer un circuit à coût négatif, il est nécessaire d'augmenter le flux dans le sens du circuit sur chacun de ses arcs, de manière à ce que le circuit devienne de coût nul.

Soit σ = V Q : E Q un circuit de coût négatif, avec V Q et E Q les ensembles de noeuds et d'arcs. Le coût du circuit suite à une variation de flux de y est donné par l'équation (5) :

𝐶 𝑦 = 𝐶 ' ∅ 𝑑∅ ∅ 5 @U 6 '∈: V 

Conclusion et perspectives

Dans cet article nous avons proposé une méthode de recherche du flot à coût minimal sur un réseau étendu temporisé en prenant en compte des fonctions de coût, dépendantes du flot, linéaires par morceaux et croissantes.

Dans le cadre de la gestion de la ressource en eau, la prise en compte de la déformation de l'onde constitue une des principales extensions envisagées.

Cet algorithme peut être utilisé dans d'autres domaines tels que l'ordonnancement, la logistique, le transport d'énergie…

  .. Pour intégrer les consignes de gestion, nous avons opté pour des fonctions de coût unitaires affines par morceaux et croissantes dépendant du flot transporté sur les arcs. Pour un arc 𝑒 ∈ 𝐸, on définit 𝐶 ' ∅ = 𝑎 ' ∅ + 𝑏 ' , avec 𝑎 ' et 𝑏 ' des constantes sur un intervalle donné du domaine de définition de la fonction [0 : 𝑈 ' ].
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 1 Figure 1: Interprétation géométrique
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 5 Soit ∆∅ la variation telle que C(y) est optimale. On a donc :