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ABSTRACT 
 This paper deals with mechanical fault monitoring in induction machines from stator current 

measurements. At variable speed, the different faults can be characterized by their time-frequency 

signatures. However, the time-frequency representations apply to complex signals for a univocal 

phase and modulus definition. Under usual modulation conditions, this complex signal is the 

analytic signal obtained through the Hilbert Transform of the real measured signal. Indeed, classical 

mechanical faults result in modulation frequencies which are lower than the carrier frequency. The 

analytic signal complex envelope and instantaneous frequency thus provide the amplitude and phase 

modulations respectively.  

 However, bearing faults, for instance, may produce high frequency modulations. Then, the analytic 

signal phase and modulus each carry information on both phase and amplitude modulations. This 

study proposes an alternative complex signal representation in this case. The proposed 

representation, namely the Concordia Transform, takes advantage of the additional information 

available in the case of a three phase machine. By using two stator currents, the Concordia 

Transform builds a complex vector which conveniently carries the information about phase and 

amplitude modulations. This paper applies the Hilbert and Concordia Transforms to simulated and 

experimental signals and provides a diagnosis of amplitude or phase modulation in various 

conditions.  
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1. INTRODUCTION 
 Monitoring techniques are intensively investigated to increase the reliability and safety of industrial 

systems containing induction motors. Stator current based monitoring can be preferred to an 

expensive vibration analysis for mechanical fault detection. Indeed, current signals are often already 

available for control purposes. Detection of mechanical faults such as shaft eccentricity or load 

torque oscillations is traditionally based on the stator current spectral analysis [1]. In variable speed 

applications, time-frequency analysis such as Wigner distribution is preferred [2] and related 

signatures allow to determine the fault origin. However, this method needs a complex signal 

obtained with the Hilbert Transform under the Bedrosian theorem conditions. This paper proposes 

the Concordia Transform as an alternative, for three-phase signal electrical drives, when these 

conditions are not verified. Section 2 presents the effect of load torque oscillations and dynamic 

eccentricity on the stator current. Section 3 reminds the Hilbert Transform, the Bedrosian theorem 



and the Concordia Transform is introduced to build complex signals. Section 4 underlines the 

differences between the analytic signal and the Concordia complex vector in case of high frequency 

modulations. Finally section 5 applies the two techniques to experimental stator currents with load 

torque oscillations to validate the approach. 

 

2. STATOR CURRENT MODEL WITH MECHANICAL FAULTS 
 Eccentricity and load torque oscillations are the main mechanical faults investigated in diagnosis 

purposes [2].  

A. Eccentricity 
 In case of eccentricity, the rotor rotational centre is different from the geometrical stator centre. The 

point of minimum airgap length is not stationary [3]. The modified airgap permeance causes an 

amplitude modulation (AM) of the fundamental flux density wave and consequently causes an AM 

of the stator current )(ti am  that expresses as: 

]cos[)]cos(1[)(ti 1am isd ttI ϕωωα −+=  

where I1 denotes the stator current fundamental component amplitude, α  the AM index, ωd the fault 

pulsation, ωs the supply pulsation and ϕi the initial phase. 

B. Load Torque Oscillations  
 In case of load torque oscillations, the mechanical torque can be described by 

 )Γ+ )Γ= )Γ ttt ddconstload ωcos(((  where dΓ  is the amplitude of the load torque oscillation and dω  the 

fault pulsation. In presence of load torque oscillations, the induction motor stator current can be 

considered as the sum of two components resulting from the stator and rotor magnetic fields with 

respective amplitudes Ist and Irt. The rotor component is a phase modulated sinusoidal signal [4]: 

)]cos(sin[)sin()(tipm ttItI dsrtssst ωβωϕω +++=   

where β is the phase modulation (PM) index proportional to 
2

d / dωΓ .  

 Note that, for simplicity, the stator current can be simplified in a single phase modulated signal. 

Moreover, for bearing or gear box monitoring, the load torque oscillations frequency is a high 

multiple of the rotating frequency. As a consequence, the fault frequency is higher than the 

fundamental frequency. This point is of strong interest for the definition of a complex signal 

resulting from stator current measurements. 

C. Fault Currents in Three-Phase Induction Machines  
 In three-phase machines, the fault currents, in case of eccentricity and torque oscillations, can be 

written in a simple form in (1):  

( ) )]cos(cos[)]cos(1[ 221111 ddsdd tttIti ϕωβωϕωα ++++=  

( ) ]3/2)cos(cos[)]cos(1[ 221122 πϕωβωϕωα +++++= ddsdd tttIti  

( ) ]3/4)cos(cos[)]cos(1[ 221133 πϕωβωϕωα +++++= ddsdd tttIti  

where I1, I2, I3 are the amplitudes of stator currents: it can be assumed that I1=I2=I3, α and β are the 
AM and PM index respectively, ωd1 and ωd2 are AM and PM pulsations respectively, ϕd1 and ϕd2 are 

arbitrary phases and ωs is the fundamental (carrier) pulsation. 

 Notice that the AM and PM indexes can be null: α=β=0 corresponds to the healthy case. 
 

3. HILBERT AND CONCORDIA TRANSFORMS 
 For time-frequency analysis based on Wigner Distribution for instance, a complex signal has to be 

associated to the real observed signal in order to have an univocal phase and amplitude definition. In 

several applications, the complex signal is obtained through the Hilbert Transform (HT) of a unique 

real signal.  

(1) 



 

A. Analytic Signal [5] 
 The complex analytic signal z(t) theoretically allows to define a univocal phase and modulus 

associated to a real signal x(t). The definition of the analytic signal is generally given in the 

frequency domain with respect to frequency f: 

              +1 for f > 0   

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )fXfjHfXfXfsignjjfXfZ ... +=−+=  with sign(f)  =   0 for f =0        

             -1 for f < 0 

where Z(f) denotes the Fourier Transform (FT) of z(t).                  

 H(f)= –j sign(f) is the Hilbert filter transfer function. Note that the analytic signal computation 

requires the Fourier Transform derivation ( ) ∫
+∞

∞−

−= dtetxfX ftj π2)(  and thus the knowledge of the 

signal x(t) on the whole time domain.  

B. Bedrosian Theorem 

1. Bedrosian theorem conditions 
 In case of modulated signal analysis, the HT is submitted to the Bedrosian theorem. Given a phase 

and amplitude modulated real signal ( ) ( ) ( )( )ttatx ϕcos= , the imaginary part of the analytic signal is 

expected to express as ( )[ ] ( ) ( ) ( )( )[ ] ( ) ( )( )ttattathtz ϕϕ sincos =∗=ℑ . Hence z(t)=a(t)e
jϕ(t)
 and the 

phase and amplitude modulations can be studied separately. The commutation between convolution 

and multiplication is only possible under the conditions of the Bedrosian theorem: the time varying 

amplitude should have the characteristics of a low-pass signal whereas cos(ϕ(t)) should be a high-

pass signal [6] as depicted in Fig. 1, where c is an arbitrary constant. Moreover, the bandwidth of 

cos(ϕ(t)) has to be relatively small. 

 
Figure 1 –  Illustration of the Bedrosian theorem 

 

 As shown in Section 2, in case of bearing or gear box faults, the current signals do not respect the 

Bedrosian theorem conditions. Another method is then proposed to define a space vector considered 

as a complex signal.  

2. Illustration of the Bedrosian Theorem Conditions 
 Given a modulated signal ( ) )](cos[)]2cos(1[ ttfAtx d ϕπα+=  which does not respect the Bedrosian 

theorem conditions. The FT of signal x(t) is expressed as: 

( ) ( ) ( ) ( )( ) [ ])](cos[
2

tFTfffffAfX dd ϕδδαδ ∗




 ++−+=  

 

Assuming that ϕ(t)=2πfst with fs>fd, the FT of the analytic signal equals: 

( ) ( ) ( ) ( )( )






 −−++−+−= dsdss ffffffffAfZ δδαδ
2

 

 

The FT of the complex envelope ( ) ( ) tfj setzta
π2−=  is then: 

(2) 



( ) ( ) ( ) ( )( ) ( )[ ]tfAtafffffAfA ddd παδδαδ 2cos1)(
2

+=⇔






 ++−+=  

 

On the contrary, assuming that ϕ(t)=2πfst with fs<fd, the FT of the analytic signal equals: 

( ) ( ) ( ) ( )( )






 −−+−++−= dsdss ffffffffAfZ δδαδ
2

 

 The FT of the complex envelope ( ) ( ) tfj setzta
π2−=  is then: 

( ) ( ) ( ) ( )( )






 −++−+= dsd ffffffAfA 2
2

δδαδ  

 It can be clearly seen that an extra harmonic appears at -2fs+fd frequency. When the Bedrosian 

theorem conditions are valid, only the DC component and harmonic at fd frequency related to the 

AM exist in the complex envelope.  

 In current analysis, the instantaneous phase ϕ(t) is generally unknown. As a consequence, the 

complex envelope is estimated by computing the modulus of the analytic signal. As the modulation 

index α is lower than 1, terms multiplied by α2 are neglected. Moreover, by considering the first 

order of the Taylor development of the square root resulting from the modulus calculation, the 

estimated complex envelope expresses as (3): 

( ) ( )[ ] [ ]( )




 +−+≈ tftffAta dds ππα
2cos22cos

2
1  

 As previously shown, extra harmonic appears in the spectrum of the complex envelope at 2fs-fd 

frequency in comparison to the complex envelope obtained when the Bedrosian theorem conditions 

are valid.  

C. Definition of the Concordia Transform 
 In 1918, Fortescue introduced a method to analyse three-phase sinusoidal systems by using 

complex space vectors, the direct-, indirect- and zero-sequence components [7]. Considering 

separately the real and imaginary parts, respectively xα(t) and xβ(t) of the direct-sequence 

component, the Concordia Transform (CT) can be defined. This transformation, applied to a general 

three-phase system (x1(t), x2(t) and x3(t)), can be expressed with the Clarke matrix in (4). Note that 

we have normalized the matrix for further interpretation. Applying this matrix to variables from a 

three-phase machine gives a virtual two-phase machine [8].  
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  Moreover, in balanced systems where x1+x2+x3=0 along time, the matrix (4) is simplified in the 

Concordia matrix (5): 
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 This transformation allows to obtain the two components of a space vector by using two electrical 

variables. Then, a complex vector is built x~ (t)=xα(t)-jxβ(t)=a(t)e
jϕ(t)
. This method is widely 

implemented in electrical drives for control purposes [9] and thus can be used for monitoring 

applications. 

(4) 

(5) 

(3) 



D. Analysis of Signal from Concordia Transform  
 The space vector ( )tx~  resulting from the CT of two sinusoidal signals x1(t) and x2(t) with phases of 

0° and 120° respectively is calculated in (6).  

( ) ( ))(cos)(1 ttatx ϕ= , ( ) 






 +=
3

2
)(cos)(2

πϕ ttatx  

( ) ( ) ( ) ( ) ( )tjetatjxtxtx ϕ
βα =−=~  

 Then, expression (6) leads to the complex envelope and the instantaneous frequency (IF) of signals. 

According to these definitions, the CT allows to obtain results similar as the HT when the Bedrosian 
theorem conditions are valid. However, when the Bedrosian theorem conditions are not valid, no 

extra harmonics appear in the spectrum of the complex envelope and the IF.  

E. Comparison between Hilbert and Concordia Transforms 
 In case of low frequency modulations, the Hilbert and Concordia Transforms lead to similar results, 

especially on complex envelope and instantaneous frequency. On the contrary, it has been shown in 

Section 3.B. that extra harmonics appear on complex envelope in case of high frequency AM using 
the HT. Table 1 indicates what are the harmonics related to modulations that exist in complex 

envelope, computed with the modulus of the analytic signal, and IF for low and high frequency 
modulations at frequency fd. 

 

AM PM  

Low frequency High frequency Low frequency High frequency 

Complex envelope fd fd, 2fs-fd None fd, 2fs-fd HT 
IF None fd, 2fs-fd fd fd, 2fs-fd 

Complex envelope fd fd None None 
CT 

IF None None fd fd 
Table 1 – Harmonics related to low and high frequency AM and PM 

 

4. ILLUSTRATION WITH SYNTHESIZED DATA 

A. Low Frequency Modulations 
 Theoretically, there is no difference between the analytic signal and the space vector resulting from 

the CT in case of low frequency modulations, i.e. when the modulation frequencies are lower than 

the carrier frequency. The stator current model presented in (1) is used to simulate fault currents. 

Only an AM is considered in this example, the following parameters are used: I1=I2=10, α=0.03, 

β=0, ϕd1=π/7, ωd1=2π20, ωs=2π50. An additive white and Gaussian noise with a controlled 

variance of 0.003 is also simulated. Fig. 2(a)-(b) show respectively the spectrum of the complex 

envelope and IF of simulated currents, estimated by the HT and the CT.  
 As expected, only the complex envelope spectra show the presence of the amplitude modulation. 

No particular fault harmonic exists in the IF spectra. Moreover, it can be seen that there is no major 

difference between the variables obtained by the Hilbert and the Concordia Transforms. As a 

conclusion, the two transforms are similar in case of low frequency amplitude modulation. Table 1 

indicates that the two transforms are also similar in case of low frequency PM. 

 

(6) 
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         (a)                                                                                               (b) 

Figure 2 –  Spectrum of complex envelope and instantaneous frequency computed through the Hilbert and the Concordia Transforms 

in case of low frequency AM 

 

B. High Frequency Modulations 
 In case of high frequency modulations, the Bedrosian theorem conditions are not valid. The stator 

current model presented in (1) is used to simulate fault currents. Only a PM is considered in this 

example, the following parameters are used: I1=I2=10, α=0.03, β=0, ϕd1=π/7, ωd2=2π70, ωs=2π50. 
An additive white and Gaussian noise with a controlled variance of 0.003 is also simulated.          

Fig. 3(a)-(b) show respectively spectrum of the complex envelope and IF of simulated currents 

estimated by the HT and the CT 

 As Bedrosian theorem hypothesis are not valid, extra harmonics exist in the complex envelope and 

IF spectrum. The HT leads to fault harmonics at pulsations ωd2 and 2ωs-ωd2 on complex envelope 
and IF, as expected according to the results in Table 1. Only the Concordia Transform allows to get 

a unique harmonic on the IF spectra at pulsations ωd2 and thus clearly demonstrates the presence of 

a high frequency PM. Note that similar results can be observed in case of high frequency AM 
according to Table 1.  

 To conclude, in case of high frequency modulations, results from the CT allow to clearly diagnose 

the modulation type and frequency while simulated stator currents are analysed. 
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             (a)                                                                                           (b) 

Figure 3 –  Spectrum of simulated complex envelope and instantaneous frequency computed through the Hilbert and the Concordia 

Transforms in case of high frequency PM 
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5. EXPERIMENTAL RESULTS 
 Tests have been performed on an experimental setup with a three phase, 50 Hz, 5.5 kW induction 
machine mechanically coupled to a load DC motor. The machine is supplied by an inverter. The DC 

motor armature current is controlled to produce a constant torque with an additional oscillation. 

A. Low Frequency Modulation Analysis 
 The stator current signatures of the machine with load torque oscillations are compared in case of 

low frequency oscillations ωd2<ωs (ωd2=2π21rad.s-1, ωs=2π50rad.s-1) through the complex 

envelope and IF spectrum estimated with HT and CT. The stator current spectra (see Fig. 4(a)) show 

fault signatures around the fundamental frequency i.e. an increasing amplitude of the peaks at 

2ds ωω ±  pulsations. Contributions of PM and AM to the peak amplitude cannot be done using the 

spectrum. An analysis of the complex envelope and the IF spectrum determines that the stator 
current is amplitude and phase modulated. However, with regard to the fault harmonic amplitude, 

the major modulation is a PM at ωd2 pulsation. Moreover, as shown on Fig. 4(b), the IF estimated 

with the Hilbert and Concordia Transforms are similar because the Bedrosian theorem is respected. 
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              (a)                                                                                         (b) 

Figure 4 –  Spectrum of stator current and associated instantaneous frequency computed through the Hilbert and the Concordia 

Transforms in case of low frequency load torque oscillations 

 

B. High Frequency Modulation Analysis 
 The stator current signatures are compared in case of high frequency load torque oscillations 

ωd2>ωs (ωd2=2π81rad.s
-1
, ωs=2π50rad.s

-1
) using the complex envelope and IF spectrum estimated 

with HT and CT. The stator current spectrum shows fault signatures around the fundamental 

frequency at 2ds ωω ±  pulsations. As for simulated signals, the estimated IF with the HT creates an 

extra PM harmonic at 2ωs-ωd2 pulsation as depicted in Fig. 5. The CT provides a unique harmonic 

related to the PM at ωd2 pulsation. Moreover, the analysis of the complex envelope and the 

instantaneous frequency determines that the major modulation is a PM at ωd2 pulsation.  

fd 
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(a) Zoom on low frequency                                            (b) Zoom on high frequency 

Figure 5 –  Spectrum of  instantaneous frequency computed through the Hilbert and the Concordia Transforms in case of high 

frequency load torque oscillations 

 

6.   CONCLUSION 
 A novel method for stator current monitoring of mechanical faults in induction motor has been 

proposed in this paper. Through simulated signals, differences between space vector obtained with 

the Hilbert and Concordia Transforms have been clearly shown in case of high frequency 
modulations. The Concordia Transform provides an appropriate signal representation in the low and 

high frequency modulation cases. On the contrary, the Hilbert Transform is limited by the Bedrosian 

theorem. Moreover, the Concordia Transform is by far less computationally expensive than the 

Hilbert Transform. As a consequence, when two stator current components are available, the 

Concordia Transform should be preferred to build the complex signal required for the time-

frequency analysis.  
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