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Abstract

T he monitoring and the assessment of structures (SHM), in order to ensure human and material
safety, is a very important issue in civil engineering. the mainly used SHM techniques are based on
the study of the vibratory behavior of the structure by accelerometric or velocimetric measurement.

Using operational modal analysis techniques (OMA), modal identification involving natural frequencies
and mode shapes can be carried out. In order to do so, the response of the structure to ambient excitations
is measured using several sensors. Conventional modal identification approaches use synchronous data,
in which different channels are sampled at the same sampling rate and the same time window by
means of long cables, GPS and real time clock. Modal analysis test can be conducted more flexibly if
it could be performed even if the measured data are not synchronised. This research investigates the
impact of asynchronous data on the identification of eigenfrequencies and mode shapes using operational
modal analysis methods, namely the Stochastic Subspace Identification (SSI) and the Frequency Domain
Decomposition (FDD), and its correction.

Keywords: Structural Health Monitoring (SHM), Asynchronous data, Operational Modal Analysis (OMA)

1 Impact on the identification of eigenfrequencies

The stochastic subspace identification method allows identification of eigenfrequencies. This algorithm temporally
correlates the accelerations coming from several sensors supposed to be synchronized. The correlation between
two responses xik(t) and xjk(t) is defined by [1]:

Rijk(T ) = E[xik(t+ T ) xjk(t)] (1)

Where E is the mathematics expectation.
xik(t) is the solution of the equation of motion and can be written as [2]:

xik(t) =
n∑
r=1

ΦriΦ
r
k

∫ t

−∞
fk(τ)gr(t− τ)dτ (2)

With gr(t) = 1
mrwr

d
e−ξ

rwr
ntsin(wrdt) and wrd = wrn

√
(1− ξr2) the damped natural frequency. Φri and Φki are

respectively the ith and the kth mode shape components of rth mode. f is a white noise excitation.
By replacing equation 2 in equation 1, the correlation between xik(t) and xjk(t) becomes:

Rijk(T ) =
n∑
r=0

ΦriA
r
j

mrwrd
e−ξ

rwr
nT sin(wrdT + Θr) (3)



where Arj et Θr are constants [2]. wrn is the natural frequency, ξ the damping ratio and mr the mass.
Assuming now that the response xjk is recorded with a delay δt relative to xik, the correlation function becomes:

Rijk(T ) =
n∑
r=0

ΦriA
r
j

mrwrd
e−ξ

rwr
nT e−ξ

rwr
nδtsin(wrdT + (wrdδt+ Θr)) (4)

By comparing equation 4 and 3, one can see a phase shift between the two expressions equal to wrdδt. However,
the eigenfrequencies wrd are not influenced by the time-delay in the measurements. Therefore, if the time-delay
between the signals is unknown, it is possible to identify the eigenfrequencies of the studied system, provided
that the measurements are made under the same conditions.

2 Impact on the identification of mode shapes

The main step in the frequency domain decomposition (FDD) method is to compute the power spectral density
matrix (Gyy(jw)) from the structure’s response. By decomposing Gyy(jw) into singular values, it is possible to
estimate the mode shape from the first eigenvector of the left matrix U of the singular decomposition [3].

Gyy(jwm) = UΣU t (5)

Where Σ contains the singular values of Gyy.
According to Kerschen and Golinval [4], the singular value decomposition of the Gyyjw can be calculated by
performing the eigenvalue decomposition as follows:

Gyy(wm)G∗yy(wm) = UΣΣ∗U (6)

where * denotes the transconjugate of a matrix. Σ and U are respectively the matrix of singular values and the
left singular values decomposition matrix. In the case of a vibrational mode (w = wm) and in the case where the
n sensors are not synchronized, the matrix G′yy(wm) can be written in the following form [5]:

G′yy(jwm) ≈ PGyy(jwm)P ∗ (7)

Where P is the matrix of errors due to desynchronization.
The identification of mode shapes can take place by decomposing in eigenvalues G′yyG′∗yy as follows:

G′yyG
′∗
yy ≈ PGyy(jwm)P ∗P ∗G∗yy(jwm)(P ∗)∗ (8)
≈ U ′ΣΣ∗U ′∗ (9)

Analogously to the case of perfectly synchronized sensors, the first vector U ′1 of U ′ is an estimation of the mode
shape of the same mode. The normalized modal deformed with respect to displacement, taking the r sensor as a
reference, can be written in the following form [5]:

U ′1 ≈



eiwm(t1−t1)

eiwm(tr−t1)

U1,1

Ur,1

...
eiwm(tk−t1)

eiwm(tr−t1)

Uk,1

Ur,1

...
eiwm(tn−t1)

eiwm(tr−t1)

Un,1

Ur,1


=


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...
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
(10)

From equation 10, it is clear that the presence of time-delay introduces a phase shift to each of the mode shape
components, which is reflected in the term eiwm(tn−tr) for the ith component. This difference will result in the
maximum amplitude at different measurement points being reached at different times, thus causing a change
of sign and amplitude. The generated phase shift, which is equal to wm(tn − tr), becomes more and more
important for higher order modes [6]. In the particular case where the measurements are carried out under the
same conditions, and provided that the delay does not exceed the duration of the measurement, it is possible to
estimate this delay from the generalized intercorrelation function and thus adjust the sign of the modal deformed.
Generalized intercorrelation has the expression [7]:

Rr1r2 =

∫ +∞

−∞

Gr1r2
|Gr1r2 |β

ej2πfτdf (11)



where Gr1r2 is the power spectral density, τ is the delay between the two signals r1 and r2, and beta = 0.8.
The time-delay corresponds to [8]:

τ = τmax{Rr1r2
} (12)

In the case where several sensors are considered, it is necessary to calculate the delay of each sensor with respect
to a reference sensor.

3 Application on accelerometric measurements on the Ophite tower

The building considered in this study is the Ophite Tower, located in Lourdes, France. It is a reinforced concrete
structure composed of 19 storeys. It was built in 1972 and it is permanently instrumented with 24-channel system
and an acquisation station. The acceleration responses in the longitudinal direction (L) is used over a period of 80
seconds [9]. These accelerations come from 5 sensors located on floor 1, 5, 9, 13, 16, and 19. The time-delay
between the signals is between 5 and 20 seconds and is introduced in a random manner. The sensor at storey 19
is taken as a reference sensor.

3.1 Eigenfrequencies identification

the stochastic subspace identification method allows the identifcation the eigenfrequencies with a very high
accuracy. Using asynchronous data and synchronous data the frequencies identified are extremely close (Table 1).

Freq.[Hz](syn.) Freq.[Hz](Asyn.) erreur %
1,70 1,70 0
2,25 2,25 0
5,76 5,77 0,17

Table 1: Eigenfrequencies identification of the Ophite tower - Comparison between results from synchronous data and
asynchronous data

3.2 Mode shapes identification

The FDD method showed more sensitivity to the time-delay. In fact, the latter caused a sign and an amplitude
change proportional to the delay in the mode shape components. Mode shapes have been corrected using the
generalized intercorrelation method (Fig.1)
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Figure 1: Mode shapes identification using synchronous, asynchronous and corrected data - component L: (a) 1st bending mode,
(b) 2nd bending
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