A Touching Agent: Integrating Touch in Social Interactions between Human and Embodied Conversational Agent in an Immersive Environment

Fabien Boucaud, Indira Thouvenin, Catherine Pelachaud

To cite this version:

Fabien Boucaud, Indira Thouvenin, Catherine Pelachaud. A Touching Agent: Integrating Touch in Social Interactions between Human and Embodied Conversational Agent in an Immersive Environment. 3rd International Association for the Study of Affective Touch Congress (IASAT 2019), Sep 2019, Linköping, Sweden. hal-02359879

HAL Id: hal-02359879
https://hal.science/hal-02359879
Submitted on 12 Nov 2019
A Touching Agent: Integrating Touch in Social Interactions between Human and Embodied Conversational Agent in an Immersive Environment

Fabien Boucaud - PhD Student
Supervisors: Indira Thouvenin & Catherine Pelachaud
Sorbonne Université, Université de Technologie de Compiègne, CNRS UMR 7253 Heudiasyc
Sorbonne Université, CNRS UMR 7222 ISIR, UPMC Campus Jussieu

Embodied Conversational Agents (ECA)
- Artificial social agent with a body, or at least part of a body, designed to interact and talk with humans or other agents.
- Can use non verbal communication (gestures, facial expressions) and generate rapport.

Main research questions
To which extent granting an ECA the ability to touch and be touched would enhance its ability to communicate emotions and to build and maintain a social and emotional relationship with a human? From the agent's perspective: when and how to touch the human, and how to react to being touched?

Integrating touch to the interactive loop

The place of social touch in such a loop with, in red, our main interests and contributions.

Social Touch & Technology
- Social touch is particularly useful to communicate emotions, and essential to individuals' well-being. Yet, only few communication technologies include it.
- Three kinds of social touch technologies: detection and sensing, mediation and simulation.
- However, very difficult to imitate natural haptic sensations via technology: vibrations feel unnatural, force-feedback can be heavy in terms of equipment, temperature is hard to set up (esp. in real time), etc.

The immersive room
The virtual environment and the agent are projected on the walls and the floor in stereoscopic 3D. The user can then see everything in 1:1 scale through the glasses.

Giving the agent a sense of touch
The agent's body can detect whether the human is touching the agent or not, and how (where, for how long, velocity,...), based on the spatial coordinates. However, the agent is intangible and thus we need to provide haptic feedback to make it able to touch the human.

Haptic feedback device
- Voice coils can be used to produce richer vibration patterns on our pre-defined hit, caress and tap touch types.
- More diversified and detailed frequencies for interesting noises (white, pink, ...)
- Implemented in a tactile sleeve device.

The immersive environment and the agent are projected on the walls and the floor in stereoscopic 3D. The user can then see everything in 1:1 scale through the glasses.