
HAL Id: hal-02359878
https://hal.science/hal-02359878

Preprint submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

THE CONVOLUTION ALGEBRA OF SCHWARTZ
KERNELS ON A SINGULAR FOLIATION

Iakovos Androulidakis, Omar Mohsen, Robert Yuncken

To cite this version:
Iakovos Androulidakis, Omar Mohsen, Robert Yuncken. THE CONVOLUTION ALGEBRA OF
SCHWARTZ KERNELS ON A SINGULAR FOLIATION. 2019. �hal-02359878�

https://hal.science/hal-02359878
https://hal.archives-ouvertes.fr


THE CONVOLUTION ALGEBRA OF SCHWARTZ
KERNELS ON A SINGULAR FOLIATION

IAKOVOS ANDROULIDAKIS, OMAR MOHSEN, AND ROBERT YUNCKEN

Abstract. Motivated by the study of Hörmander’s sums-of-squares
operators and their generalizations, we define the convolution algebra
of proper distributions associated to a singular foliation. We prove that
this algebra is represented as continuous linear operators on the spaces of
smooth functions and generalized functions on the underlying manifold.
This generalizes Schwartz kernel operators to singular foliations. We
also define the algebra of smoothing operators in this context and prove
that it is a two-sided ideal.
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1. Introduction

The goal of this article is to lay the analytical foundations for a study of
an extremely broad class of pseudodifferential operators, including as special
cases:
• the Heisenberg calculus and its generalizations [BG88, Tay, CGGP92,
Mel82],
• Hörmander’s sums-of-square operators [Hör67],
• pseudodifferential operators on a singular foliation [AS11].

In these situations, which are very far from the usual elliptic calculus, it is
typically more convenient to use the singular integral approach (Schwartz
kernels) than the Fourier analysis approach (symbols). In this paper, we
construct an algebra of Schwartz kernel operators adapted to all the above
situations, as well as the analogue of the ideal of smoothing operators. These
algebras are crucial to the groupoid approach to pseudodifferential operators
introduced in [vEY] (see also [DS14]), and will be used for this purpose in a
future paper.

LetM be a smooth closed manifold and a a distribution onM×M . Recall
that the Schwartz kernel operator Op(a) defined by

(1.1) (Op(a)f)(x) :=

∫
y
a(x, y)f(y) dy

gives a continuous linear operator Op(a) : C∞(M) → C∞(M) if and only
if the kernel a is smooth in the first variable, i.e., semiregular. In groupoid
language, this condition corresponds to requiring that a be a smooth family
of distributions along the range fibres of the pair groupoid M ×M . This
point of view was introduced by Skandalis and the first author in [AS11]
under the name of “distributions transversal to the range map,” and studied
extensively in [LMV17]. Here, we will use the name “r-fibred distributions”
as in [vEY17].

Lescure, Manchon and Vassout show in [LMV17] that the space of r-fibred
distributions on a Lie groupoid G⇒M forms an algebra under convolution,
with a natural representation as Schwartz kernel operators on C∞(M). This
algebra plays an essential role in [vEY], where a simple characterization of the
pseudodifferential operators on a filtered manifold (see [BG88, Tay, Mel82])
is given in terms of an associated tangent groupoid.

In the present article, we construct and study the convolution algebra
of r-fibred distributions on the holonomy groupoid of a singular foliation.
This groupoid was introduced in [AS09] as a device to carry the analysis
of differential operators along the leaves of the foliation. Its topology is
typically highly singular; this is the main difficulty in building and under-
standing our convolution algebra. We are encouraged to proceed by the
observation in [AS11] that an appropriate class of smooth submersions to
this groupoid, called “bisubmersions”, enables quite sophisticated analysis.
In particular, the authors of [AS11] produce a calculus of pseudodifferential
operators adapted to the geometry of a singular foliation.

Let us explain the guiding philosophy here, which is due to the first author
and Skandalis. We begin with the classical case of Schwartz kernel operators
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on Rn. In order to define linear operators on C∞(Rn), we have the standard
form (1.1) above. But nothing is stopping us from adding additional dimen-
sions to the kernel a. If b is a distribution on Rn × Rk × Rn, smooth in x,
then we could define an operator Op(b) : C∞c (Rn)→ C∞(Rn) by

(1.2) (Op(b)f)(x) =

∫
(z,y)∈Rk×Rn

b(x, z, y)f(y) dz dy.

(The support of b needs to be compact in the z-direction for this to converge,
but let’s defer discussion of support conditions until later.) For instance, if
ϕ ∈ C∞c (Rn) is a smooth function of total mass 1, then putting b(x, z, y) =
a(x, y)ϕ(z) we obtain exactly the same operator as (1.1).

Of course, adding these extraneous dimensions is completely unnecessary
in this situation, since the Schwartz kernel theorem tells us that all contin-
uous linear operators on C∞(M) can be written uniquely in the form (1.1).
But as pointed out in [AS11], these additional dimensions are crucial for
making sense of pseudodifferential operators on singular foliations, where
the dimensions of the leaves can vary from point to point.

Ultimately, we will use this framework to study pseudodifferential opera-
tors associated to Hörmander’s sums of squares operators. We leave that for
a separate article.

The paper is structured as follows. In Section 2 we recall the construction
of the holonomy groupoid of a singular foliation (M,F) from [AS09]. Its
building blocks are bisubmersions. Consequently, all of our constructions
throughout the paper are carried out at the level of bisubmersions rather
than on the holonomy groupoid per se.

In Section 3 we define r-fibred distributions on bisubmersions and discuss
various algebraic operations, including convolution and transposition. The
algebra E ′r(F) of properly supported r-fibred distributions on the holonomy
groupoid is constructed in Section 4. In §5 we discuss the action of E ′r(F) on
C∞(M). The right ideal of smooth r-fibred densities is discussed in §6. In
Section 7 we define proper distributions on the holonomy groupoid. Roughly
speaking, these are distributions which can be realized as smooth families of
distributions on both the r-fibres and the s-fibres. We also give a condition
in terms of wavefront sets which is sufficient to deduce that an r-fibred
distribution is proper. Finally, in §8 we show that the proper distributions
act on each of the spaces C∞(M), C∞c (M), E ′(M) and D′(M).

1.1. Acknowledgements. The authors would like to thank Georges Skan-
dalis for inspiration and encouragement, and Erik van Erp for discussions.

2. The path holonomy groupoid of a singular foliation

Let M be a smooth finite dimentional manifold. Following [AS09], we
define a singular foliation (M,F) as a C∞(M)-submodule F of the module
Xc(M) of compactly supported vector fields of M which is locally finitely
generated and involutive.

2.1. Bisubmersions. To keep this paper self-contained, we recall here the
notion of a bisubmersion from [AS09]. For the reader unfamiliar with bisub-
mersions, keep in mind that the archetypal example is an open subset U of
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a Lie groupoid G over M , equipped with the restrictions of the range and
source maps r and s. In that example, the underlying foliation F is the foli-
ation ofM by the orbits of G. Specifically, the module F is the image by the
anchor map ρ : AG → TM of the C∞(M)-module of compactly supported
sections Γc(AG).

General bisubmersions replace charts for more singular groupoids. They
serve as a lifting of a region in the singular space to a nice locally euclidean
manifold.

Let (M,F) be a foliation. If ϕ : N → M is a smooth map between
manifolds, we write

ϕ−1F = {Y ∈ Xc(N) : dϕ ◦ Y =

n∑
i=1

fi(Xi ◦ ϕ) for fi ∈ C∞c (N), Xi ∈ F}.

If ϕ is a submersion, which will always be the case in what follows, this
means that the elements of ϕ−1F are vector fields on N which project under
ϕ to vector fields in F . Then φ−1(F) is a also a singular foliation (locally
finitely genrated and involutive).

a) A bisubmersion (U, rU , sU ) of (M,F) is a smooth, finite dimensional,
Hausdorff manifold U equipped with two submersions rU , sU : U →
M , called range and source, such that

s−1
U F = r−1

U F = C∞c (U ; ker dsU ) + C∞c (U ; ker drU ).

We will often blur the distinction between a bisubmersion (U, rU , sU )
and its underlying space U , and we write r and s instead of rU and
sU when the bisubmersion U is evident from the context.

b) Amorphism of bisubmersions from (U, rU , sU ) to (V, rV , sV ) is a smooth
map ϕ : U → V such that rU = rV ◦ ϕ and sU = sV ◦ ϕ. A local mor-
phism at u ∈ U is a morphism of bisubmersions from from (U ′, rU , sU )
to (V, rV , sV ) for some neighbourhood U ′ of u.

c) The inverse of a bisubmersion (U, rU , sU ) is the bisubmersion (U, sU , rU ).
We will sometimes use U t to denote the space U equipped with this
inverse bisubmersion structure.

d) The composition (U ◦ V, rU◦V , sU◦V ) of two bisubmersions (U, rU , sU )
and (V, rV , sV ) is the bisubmersion with U ◦ V := U sU ×rV V and
maps rU◦V (u, v) = rU (u) and sU◦V (u, v) = sV (v).

More generally, if A ⊂ U and B ⊂ V , we write A ◦B = A s×r B.
e) A bisection of a bisubmersion U is a locally closed submanifold S ⊂ U

such that the restrictions of rU and sU to S are diffeomorphisms onto
open subsets of M . Any bisection S induces a local diffeomorphism
ΦS on M

ΦS = rU |S ◦ sU |−1
S .

If ΦS is the identity on its domain, S is called an identity bisection.
We will really only be interested in bisubersions of the following particular

type. Let X = (X1, . . . , Xm) be a generating family of vector fields for F in
an open subset M0 ⊆M . Consider the map

(2.1) ExpX : Rm ×M0 →M
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where ExpX(ξ, x) is the unit-time flow of x along the vector field
∑

i ξiXi,
when defined. This map is defined on some sufficiently small neighbourhood
U of {0} ×M0 in Rm ×M0.

Definition 2.1 ([AS09]). With the above notation, the set U ⊆ Rn×M0 is
a bisubmersion when equipped with the maps

sU (ξ, x) = x, rU (ξ, x) = ExpX(ξ, x).

We call (U, rU , sU ) a path-holonomy bisubmersion associated to the local
generating family X = (X1, . . . , Xm). If X is a minimal generating family
at x ∈ M0 then (U, rU , sU ) is called a miminal path-holonomy bisubmersion
at x.

2.2. Atlas of bisubmersions. The holonomy groupoid of a singular folia-
tion is defined in terms of an atlas of bisubmersions, as follows.

f) A bisubmersion (V, rV , sV ) is adapted to a family U of bisubmersions
if for every v ∈ V there exists a local morphism at v from (V, rV , sV )
to some bisubmersion in U .

g) A family U of second countable bisubmersions of (M,F) is called a
singular groupoid atlas, or just atlas, if the source images {s(U) : U ∈
U} cover M and all inverses and compositions of elements of U are
adapted to U .

h) An atlas U is called maximal if every bisubmersion which is adapted
to U is already in U . Any atlas U can be completed to the maximal
atlas Ũmax of all bisubmersions adapted to U .

i) Given any family U0 of bisubmersions of (M,F) whose source images
{sU (U) : U ∈ U0} cover M , the minimal atlas generated by U0 is the
set of all iterated compositions of elements of U0 and their inverses,
and the maximal atlas generated by U0 is the maximal completion of
this atlas in the sense above.

Definition 2.2. Let (M,F) be a singular foliation. We write Uhol(F), or just
Uhol, for the maximal atlas generated by all path-holonomy bisubmersions.

Remark 2.3. Let us make a couple of technical remarks about this defini-
tion. Firstly, a maximal atlas is too large to be a set. This doesn’t actually
matter in what follows, but if desired, the problem could averted by allowing
only bisubmersions where U is an embedded submanifold of Rn for some n.

Secondly, in [AS11], the authors work mainly with the minimal path-
holonomy atlas, and not its maximal completion. This doesn’t change any-
thing in practice. We are favouring the maximal atlas because it slightly
simplifies the natural equivalence relation for distributional kernels, see Sec-
tion 4.

In this article for simplicity we will only work with maximal atlases.

2.3. Holonomy groupoid. An atlas of bisubmersions has an associated
singular groupoid (cf. [AS09]). We won’t ever actually use this groupoid in
what follows, since we’ll define the convolution algebra of fibred distributions
directly on the atlas of bisubmersions. But for the sake of completeness, let
us finish this section with the construction.
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Definition 2.4 ([AS09]). Let U be an atlas of bisubmersions for the foliation
(M,F). The groupoid associated with U is G(U) =

∐
U∈U U/ ∼ where the

equivalence relation is defined as follows: U 3 u ∼ v ∈ V if there exists a
local morphism from (U, rU , sU ) to (V, rV , sV ) sending u to v.

This is indeed a topological groupoid with baseM , see [AS09, Proposition
3.2]. It is proved in [Deb13] that it is longitudinally smooth.

3. Distributions on a singular groupoid

3.1. Fibred distributions on a submersion. We recall some basic defini-
tions concerning fibred distributions. This material is adapted from [LMV17]
and [vEY]. The basic ideas appear already in [AS11].

Let q : U → M be a submersion. Then C∞(U) becomes a left C∞(M)-
module with

f · φ = (q∗f)φ

for all φ ∈ C∞(U) and f ∈ C∞(M).
a) A properly supported q-fibred distribution is a continuous linear map

a : C∞(U)→ C∞(M); φ 7→ (a, φ)

which is C∞(M)-linear with respect to the above C∞(M)-structure
on C∞(U).

b) The space of properly supported q-fibred distributions on U is denoted
E ′q(U). We equip E ′q(U) with the topology inherited as a closed sub-
space L(C∞(U), C∞(M)) with the topology of uniform convergence
on bounded subsets.

c) Let x ∈M . By C∞(M)-linearity, the value of (a, φ) at x depends only
on the restriction of φ on the fibre q−1(x), and this defines a compactly
supported distribution ax ∈ E ′(q−1(x)). The q-fibred distribution a is
uniquely determined by the family of distributions (ax)x∈M .

d) Let V ⊆ U be open. The q-fibred distribution a vanishes on V if
(a, φ) = 0 whenever supp(φ) ⊆ V . The support of a, denoted by
supp(a), is the complement of the largest open subset of U on which
a vanishes. For any a ∈ E ′q(U), the support supp(a) is a q-proper set,
meaning that restriction q : supp(a)→M is a proper map.

Example 3.1. Let S ⊂ U be a local section of q : U →M , meaning that S
is a locally closed submanifold of U and q|S is a diffeomorphism of S onto
an open subset of M . Fix also a smooth function c ∈ C∞c (M) with support
in q(S). The q-fibred Dirac distribution on S (with coefficient c), denoted
c∆S ∈ E ′q(U), is the q-fibred distribution defined by the formula

(c∆S , φ)(x) =

{
c(x)(φ ◦ q|−1

S )(x), if x ∈ q(S)

0, otherwise,

for φ ∈ C∞(U). In other words, upon identifying S with its image q(S) ⊂M ,
c∆S is given by evaluating φ on S and then multiplying by c (to ensure the
result is smooth). For any x ∈ q(S), the restriction of c∆S to the fibre q−1(x)
is the multiple c(x)δx̃ of the Dirac distribution at the preimage x̃ = q|−1

S (x).

We end this section with two operations on fibred distributions which will
be heavily used in what follows.
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3.1.1. Pushforward, or integration along fibres.

Definition 3.2. Let q : U → M and q′ : U ′ → M be submersions and let
π : U ′ → U be a smooth morphism of submersions, meaning that q′ = q ◦ π.
There is an induced linear map π∗ : E ′q′(U ′)→ E ′q(U), called pushforward or
integration along the fibres, defined by

(π∗a, φ) := (a, π∗φ)

for a ∈ E ′q◦π(U ′) and φ ∈ C∞(U).

Example 3.3. Let U ′ be an open subset of a bisubmersion U . The inclusion
map ι : U ′ → U is a morphism of bisubmersions. The pushforward ι∗ :
E ′q(U ′) → E ′q(U) corresponds to extension by zero. We can thus identify
E ′q(U ′) as a subspace of E ′q(U).

Lemma 3.4. If the morphism of submersions π : U ′ → U is a surjective
submersion, then π∗ : E ′q′(U ′)→ E ′q(U) is surjective.

Proof. We begin with the case where U ′ = U × Rk for some k ∈ N and π is
the projection onto the first variable. Fix a positive function ω ∈ C∞c (Rn)
with

∫
Rn ω(ξ) dξ = 1. If a ∈ E ′q(U), then we define a a′ ∈ E ′q′(U ′) by the

pairing

(a′, φ) = (a,
∫
Rk φ( · , ξ)ω(ξ) dξ) φ ∈ C∞(U × Rk).

Then π∗a′ = a, as desired.
The general case follows by from the above by using a partition of unity

argument. �

3.1.2. Pullback over a base map. The following construction is described in
[LMV17, Proposition 2.15].

Definition 3.5. Let p : N → M be any smooth map, and consider the
pullback diagram

Np×q U
prU //

prN
��

U

q

��
N

p // M.

There is an associated linear map p∗ : E ′q(U) → E ′prN
(Np×q U), called the

pullback along p, which is uniquely characterized by the property

(3.1) (p∗a,pr∗U φ) = p∗(a, φ)

for all a ∈ E ′q(U), φ ∈ C∞(U). Explicitly, p∗a is defined on the fibres of prU
by (p∗a)y = ap(y), where y ∈ N and we are using the canonical identification
pr−1
N (y) = q−1(p(y)).

Lemma 3.6. Let q : U → M be a submersion and p : N → M a smooth
map, as above.

a) If q′ : U ′ → M is a submersion and π : U ′ → U a morphism of
submersions, then for any a ∈ E ′q′(U ′),

p∗(π∗a) = (id× π)∗(p
∗a).

b) Let p′ : N ′ → N be a smooth map, then (p ◦ p′)∗ = p′∗ ◦ p∗.
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Proof. a) Let φ ∈ C∞(U). One has

((id× π)∗p
∗a,pr∗U φ) = (p∗a, (prU ◦(id× π)))∗φ)

= (p∗a, (π ◦ prU ′)
∗φ)

= p∗(a, π∗φ)

= p∗(π∗a, φ).

The result then follows from uniqueness in Equation (3.1).
b) Let pr′U : N ′p◦p′×qU → U be the natural projection, φ ∈ C∞(U). One

has

(p′
∗
(p∗a), (pr′U )∗φ) = p′∗(p∗a,pr∗U φ) = p′

∗
p∗(a, φ) = (p ◦ p′)∗(a, φ).

The result then follows from uniqueness in Equation (3.1). �

Finally, we remark that pushforward and pullback are continuous with
respect to the topologies on fibred distributions.

3.2. Convolution of fibred distributions on bisubmersions. Now we
consider fibred distributions on a bisumbersion U for a foliation (M,F).
Thus we have two submersions r, s : U → M and we can define the spaces
E ′r(U) and E ′s(U) of linear maps from C∞(U) to C∞(M). For a ∈ E ′s(U), we
will write ax for the distribution on the s-fibre s−1(x) and for b ∈ E ′r(U) we
write bx for the distribution on the r-fibre r−1(x).

Recall that if U and V are bisubmersions over M , then their composition
is U ◦ V = U s×r V with range and source maps rU◦V (u, v) = r(u) and
sU◦V (u, v) = s(v). Therefore, given b ∈ E ′r(V ) we can define a pullback
distribution s∗Ub ∈ E ′prU

(U ◦V ) as in point d) above, and hence the following
definition.

Definition 3.7. Let U , V be bisubmersions for (M,F). We define the con-
volution product of a ∈ E ′r(U) and b ∈ E ′r(V ) to be the r-fibred distribution

a ∗ b := a ◦ s∗Ub ∈ E ′r(U ◦ V ).

Similarly, the convolution product of a ∈ E ′s(U) and b ∈ E ′s(V ) is the s-fibred
distribution

a ∗ b := b ◦ r∗V a ∈ E ′s(U ◦ V ).

The transpose at ∈ E ′s(U t) of an rU -fibred distribution a ∈ E ′r(U) is at := a
but viewed as an sUt-fibred distribution on the inverse bisubmersion U t = U .
Likewise, the transpose of an s-fibred distribution b ∈ E ′s(U) is bt = b ∈
E ′r(U t).

Note that convolution E ′r(U)×E ′r(V )→ E ′r(U ◦V ) is separately continuous,
since it is built from the continuous operations of pullback and composition.
Likewise for convolution of s-fibred distributions and transposition.

Remark 3.8. In the definition of convolution, we should not exclude the
possibility of the empty bisubmersion (∅, r∅, s∅) where r∅ and s∅ are the
empty maps. Here, convention says that C∞(∅) = {0}, so that E ′r(∅) and
E ′s(∅) contain only the zero map. This comes into play when considering a
convolution of r-fibred distributions a ∈ E ′r(U) and b ∈ E ′s(V ) such that s(U)
and r(V ) are disjoint, since then U ◦ V = ∅ and hence a ∗ b = 0.
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This is a particular case of the following lemma.

Lemma 3.9. For any a ∈ E ′r(U) and b ∈ E ′r(V ) we have

supp(a ◦ b) ⊆ supp(a) ◦ supp(b).

In particular, if s(supp(a)) ∩ r(supp(b)) = ∅ then a ∗ b = 0.
Analogous statements hold for a ∈ E ′s(U), b ∈ E ′s(V ).

The convolution product is associative. It is also compatible with integra-
tion along fibres in the following sense.

Lemma 3.10. If π : U → U ′ and ρ : V → V ′ are submersive morphisms
of bisubmersions then π × ρ : U ◦ V → U ′ ◦ V ′ is a submersive morphism of
bisubmersions and we have (π∗a) ∗ (ρ∗b) = (π × ρ)∗(a ∗ b) for all a ∈ E ′r(U),
b ∈ E ′r(V ) .

Proof. Let φ ∈ C∞(U s×r V ). Using the functorial properties of Lemma 3.6
and Equation (3.1), we have

((π∗a) ∗ (ρ∗b), φ) = (π∗a, (s
∗
U (ρ∗b), φ))

= (π∗a, ((id× ρ)∗(s
∗
Ub), φ))

= (a, π∗(s∗Ub, (id× ρ)∗φ))

= (a, (s∗U ′b, (π × id)∗(id× ρ)∗φ))

= ((π × ρ)∗(a ∗ b), φ) �

Lemma 3.11. For any a ∈ E ′r(U) and b ∈ E ′r(V ) we have

(a ∗ b)t = bt ∗ at

as elements of E ′s(U ◦ V ).

Proof. We calculate (a ∗ b)t = (a ◦ s∗Ub)t = at ◦ r∗U (bt) = bt ∗ at. �

4. The convolution algebra of fibred distributions on the
holonomy groupoid

In this section, we will define the convolution algebra E ′r(F) of properly
supported r-fibred distributions on the holonomy groupoid of a singular fo-
liation. In §5, we will show that E ′r(F) acts by continuous linear operators
on the spaces C∞(M), via a representation which we call Op. These are
what we refer to, informally, as the ‘Schwartz kernel operators’ associated to
a singular foliation.

There is likewise a convolution algebra E ′s(F) of properly supported s-
fibred distributions. This algebra admits a representation as operators on
the distribution space E ′(M). For an algebra which acts at once on all
four spaces C∞(M), C∞c (M), D′(M), E ′(M), we will need to add further
conditions, which we deal with in §7.

4.1. The convolution algebra of r-fibred distributions. Let (M,F) be
a foliation and U a maximal atlas of bisubmersions.

Definition 4.1. The space E ′r(U) denotes the vector space of all families
(aU )U∈U that are r-locally finite. This means that for every compact K ⊆M
there are only finitely many U ∈ U with

r(supp(aU )) ∩K 6= ∅.
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If U0 ∈ U , then we will naturally identify E ′r(U0) with the subspace of
E ′r(U) consisting of (aU )U∈U such that aU = 0 if U 6= U0.

We will also represent an element a = (aU )U∈U ∈ E ′r(U) as a sum a =∑
U aU .

Proposition 4.2. The convolution defined by
∑
aU ◦

∑
bU =

∑
U,V aU ◦ bV

is well defined.

Proof. By this we mean that
∑

U,V aU ◦ bV is r-locally finite. Let K ⊆M be
compact, and denote by Vi the bisubmersions such that r(supp(bVi))∩K 6= ∅.
Since a is r-locally finite and supp(bVi) ∩ r−1(K) is compact, there exists a
finite number of Uj such that there exists i with r(supp aUj )∩ s(supp(bVi)∩
r−1(K)) 6= ∅. The set of bisubmersions Uj ◦ Vi includes all those U ◦ V for
which r(supp(aU ◦ bV )) ∩K 6= ∅. The result follows. �

We equip E ′r(U) with the following topology. A generalized sequence ai =
(ai,U ) converges to a = (aU ) if the families ai are uniformly r-locally finite—
meaning that for every compact K ⊆M there are only finitely many U ∈ U
for which r(supp(ai,U ))∩K 6= ∅ for some i ∈ I—and ai,U → aU for every U .

Now let us focus on the path-holonomy atlas Uhol.

Definition 4.3. We define Nr ⊆ E ′r(Uhol) to be the closure of the ideal
generated by all elements of the form a − π∗a, where a ∈ E ′r(Uhol) for some
bisubmersion U ∈ Uhol and π : U → V is a morphism of bisubmersions. For
elements a ∈ E ′r(U), b ∈ E ′r(V ) we will write a ≡ b when a − b ∈ Nr. We
define

E ′r(F) = E ′r(Uhol)/Nr.
We define spaces Ns and E ′s(F) = E ′s(U)/Ns analogously.

Remark 4.4. It is necessary to take a closure in the definition of the ideal
Nr in order to allow the equivalences in E ′r(Uhol) to take place on an infinite
(but r-locally finite) family of bisubmersions.

The point of quotienting by the ideal Nr is that, as we will see in Section
5, the r-fibred distributions a and π∗a will induce the same kernel operators
on C∞(M). For a simple example, if ι : U ′ → U is the inclusion of an
open set of a bisubmersion, then every kernel a ∈ E ′r(U ′) is identified in the
quotient with its extension by zero ι∗a ∈ E ′r(U).

Proposition 4.5. a) The convolution product on E ′r(Uhol) descends to a
seperately continuous associative product on the quotient space E ′r(F).
Similarly for E ′s(F).

b) Transposition descends to a bijective anti-algebra isomorphism
E ′r(F)→ E ′s(F).

Proof. a) It follows from Lemma 3.10 that Nr is a closed two-sided ideal
in E ′r(Uhol), which proves the first statement. The statement for E ′s(F)
is proven similarly.

b) It is clear that transposition defines a continuous linear isomorphism
from E ′r(Uhol) to E ′s(Uhol) and that Nr maps to Ns. The result then
follows from Lemma 3.11.

�
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5. Action on smooth functions

The most important feature of the convolution algebra E ′r(F) is that it
acts by continuous linear operators on C∞(M).

From this point all bisubmersions will be considered in the maximal path
holonomy atlas Uhol.

Proposition 5.1. Let U ⇒M be a bisubmersion and a ∈ E ′r(U).
a) The formula

Op(a)f = (a, s∗Uf)

defines a continuous linear operator Op(a) on C∞(M).
b) If b ∈ E ′r(V ) for another bisubmersion V ⇒M , we have

Op(a) Op(b) = Op(a ∗ b).

c) If π : U → U ′ is a morphism of bisubmersions then Op(a) = Op(π∗(a)).

Proof. The linear maps s∗U : C∞(M) → C∞(U) and a : C∞(U) → C∞(M)
are continuous, which proves a).

The statement in b) follows from the calculation

Op(a ∗ b)f = (a ◦ s∗Ub, s∗U◦V f)

= (a, (s∗Ub,pr∗V s
∗
V f))

= (a, s∗U (b, s∗V f)) (by Eq. (3.1))
= Op(a) Op(b)f.

Finally, by the definition of a morphism of bisubmersions we have

Op(π∗(a))(f) = (a, π∗s∗U ′f) = (a, s∗Uf) = Op(a)(f),

which proves c). �

If a =
∑

U aU ∈ E ′r(Uhol), then for any f ∈ C∞(M) we define

Op(a)f =
∑

U∈Uhol

(aU , s
∗
Uf).

The sum is well-defined by r-local finiteness. As an immediate consequence
of Proposition 5.1, we have the main theorem of this section.

Theorem 5.2. The map Op : E ′r(Uhol)→ L(C∞(M)) descends to a contin-
uous representation of E ′r(F) on C∞(M). �

Example 5.3. Let S be a local bisection of a bisubmersion U , as in item (e)
of §2.1, and let ΦS = r|S ◦ s|−1

S be the local diffeomorphism that it carries.
Fix also a smooth function c ∈ C∞(M) with support contained in r(S).
Recall from Example 3.1 that the r-fibred Dirac distribution supported on
S with coefficient c is defined such that its pairing with φ ∈ C∞(M) is
given by restriction to S ∼= r(S) and then multiplication by c. We will use
the notation c∆S for this, with S in superscript to indicate it is an r-fibred
Dirac distribution.

We claim that for all x ∈ r(S) we have

(Op(c∆S)f)(x) = c(x)f(Φ−1
S (x)),
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and (Op(c∆S)f)(x) = 0 when x /∈ r(S). Indeed, if x ∈ r(S) then

(Op(c∆S)f)(x) = (c∆S , s∗f)(x) = c(x)f(s(r|−1
S (x)).

In particular, if X ⊆ s(S) is a closed subset and if c ∈ C∞(M) is a smooth
bump function with c|ΦS(X) ≡ 1 and c|M\r(S) ≡ 0, then for all f supported
in X we have

(Op(c∆S)f) = f ◦ Φ−1
S .

For instance, using a path-holonomy bisubmersion, we obtain flows along
vector fields tangent to F in this way.

In particular, this example shows that the quotient algebra E ′r(F) is not
trivial.

5.1. Propagation of supports. To describe propagation of supports under
the action of Op(a), we introduce some further notation.

Definition 5.4. Let U ⇒ M be a bisubmersion. For subsets N ⊆ M and
V ⊆ U we define the following subsets of M :

V ◦N = {r(v) : v ∈ V with s(v) ∈ N},
N ◦ V = {s(v) : v ∈ V with r(v) ∈ N}.

Proposition 5.5. Let U ⇒ M be a bisubmersion and a ∈ E ′r(U). For any
f ∈ C∞(M) we have

supp(Op(a)f) ⊆ supp(a) ◦ supp(f).

Proof. The support of Op(a)f lies in rU (supp(a)∩ s−1
U (supp f)) = supp(a) ◦

supp(f). �

Definition 5.6. Let U be a bisubmersion. A subset X ⊆ U is called proper
if it is both r- and s-proper.

Corollary 5.7. If a ∈ E ′r(U) has proper support, then Op(a) maps C∞c (M)
into itself.

Proof. If supp(a) is s-proper and supp(f) is compact, then supp(a) ∩
s−1
U (supp(f)) is compact so supp(Op(a)f) is compact. �

The algebra E ′s(F) of s-fibred distributions acts naturally on the distribu-
tion space E ′(M) via the transpose: if b ∈ E ′s(U), we define Õp(b) ∈ L(E ′(M))
by

(Õp(b)ω, f) = (ω,Op(bt)f),

for all ω ∈ E ′(M), f ∈ C∞(M). It follows from Proposition 4.5 that this
defines an algebra representation of E ′s(F) on E ′(M). Moreover, if b ∈ E ′s(U)

has r-proper support, then Õp extends to an action on D′(M).
Ultimately, we will want an algebra of distributions that acts on all four

of the spaces C∞(M), C∞c (M), E ′(M) and D′(M). This requires the notion
of proper distributions, which we treat in Section 7.
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6. The ideal of smooth fibred densities

Inside the algebra of continuous operators on C∞(M) is the right ideal
of smoothing operators which map D′(M) into C∞(M). This consists of
Schwartz kernel operators with kernels in C∞(M) ⊗̂C∞c (M ; |Ω|). The gen-
eralization of this in our context is the right ideal of smooth r-fibred densities.

Let q : U →M be a submersion. Let |Ωq| denote the bundle of 1-densities
along the longitudinal tangent bundle of the q-fibration ker(dq) ⊆ TU . Let
us write C∞q (U ; |Ωq|) for the space of smooth sections of |Ωq| with q-proper
support. Any such section a defines a q-fibred distribution on U by the
formula

(a, φ)(x) =

∫
u∈q−1(x)

a(u)φ(u).

We call these elements smooth q-fibred densities.
In particular, if (U, r, s) is a bisubmersion for F then we have the subspaces

C∞r (U ; |Ωr|) ⊂ E ′r(U) and C∞s (U ; |Ωs|) ⊂ E ′s(U).
We note the following.

Lemma 6.1. Let π : U ′ → U be a submersive morphism of bisubmersions.
Integration along the fibres restricts to a map

π∗ : C∞r (U ′; |Ωr|)→ C∞r (U ; |Ωr|).
Moreover, if π is onto then this map is surjective.

Analogous statements hold with s in place of r throughout.

Proof. The proof that integration along the fibres preserves smoothness is
essentially contained in [AS09], see the comments after Definition 4.2. For
surjectivity, observe that the lifting process in the proof of Lemma 3.4 sends
smooth r-fibred densities to smooth r-fibred densities. �

Definition 6.2. We write

C∞r (Uhol; |Ωr|) = {a = (aU ) ∈ E ′r(Uhol) : aU ∈ C∞r (U ; |Ωr|) for all U ∈ Uhol},
and define C∞r (F ; |Ωr|) to be the image of C∞r (Uhol; |Ωr|) in the quotient
E ′r(F).

We define C∞s (F) ⊆ E ′s(F) similarly.

The main result of this section is the following.

Theorem 6.3. The space C∞r (F ; |Ωr|) is a right ideal in the algebra E ′r(F).
Likewise, C∞s (F ; |Ωs|) is a left ideal in E ′s(F).

The rest of this section is dedicated to proving Theorem 6.3 for C∞s (F ; |Ωs|).
The result for C∞r (F ; |Ωr|) follows from this by applying the transpose and
using Proposition 4.5(b).

By linearity, it suffices to treat the case where a and b each live on a single
bisubmersion, i.e., taking a ∈ E ′s(U) and b ∈ E ′s(V ) for some bisubmersions
U and V .

We begin with the special case where U = V is a minimal path holonomy
bisubmersion at some point x0 ∈ M . Therefore, let X = (X1, . . . , Xm) be
a minimal generating family at x0 ∈ M and let U be an associated path
holonomy bisubmersion. This means we fix a small enough neighbourhood
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M0 ⊆M of x0 and a small enough neighbourhood U ⊆ Rm×M0 of {0}×M0

so that we can define source and range maps on U by

s(ξ, x) = x, r(ξ, x) = ExpX(ξ, x),

see Definition 2.1 for notation.
By Proposition 2.7 of [AS11], there is a neighbourhood U ′ ⊆ U of (0, x0)

which admits a submersive morphism of bisubmersions

π : U ′ ◦ U ′ → U

with π((0, x), (0, x)) = (0, x) for all x ∈M0. Recall that

U ′ ◦ U ′ = {(η, y), (ξ, x) ∈ U ′ × U ′ : y = ExpX(ξ, x)}.

The coordinate y is superfluous, so let us henceforth make the identification

U ′ ◦U ′ = {(η, ξ, x) ∈ Rm×Rm×M0 : (ξ, x) ∈ U ′ and (η,ExpX(ξ, x)) ∈ U ′},

with range and source maps

s(η, ξ, x) = x, r(η, ξ, x) = ExpX(η,ExpX(ξ, x)).

Let π1 : U ′ ◦ U ′ → Rm be the function determined by

π(η, ξ, x) = (π1(η, ξ, x), x).

If we fix ξ = 0 then we have π1(η, 0, x) = η for all (η, 0, x) ∈ U ′, so the
derivative Dηπ1 of π1 with respect to the η variables is the identity at all
(η, 0, x) ∈ U ′. Therefore, the map

Π : U ′ ◦ U ′ → Rm × Rm ×M0

Π(η, ξ, x) = (π1(η, ξ, x), ξ, x),

has invertible derivative at every (η, 0, x) ∈ U ′. By further restricting the
neighbourhood U ′ of (0, x) in U , the map Π is a diffeomorphism onto its
image. We thus have a smooth function θ : Rm×Rm×M0 → Rm such that

Π(θ(η, ξ, x), ξ, x) = (η, ξ, x)

for all (η, ξ, x) in Π(U ′ ◦ U ′), or equivalently

π(θ(η, ξ, x), ξ, x) = (η, x).

Lemma 6.4. Let U be a minimal path holonomy bisubmersion at x0 ∈ M .
With the above notation, there exists a neighbourhood U ′ of (0, x0) in U
such that the map Π is a diffeomorphism onto its image. Then for any
a ∈ C∞s (U ′; |Ωs|), and b ∈ E ′s(U ′) we have

π∗(a ∗ b) ∈ C∞s (U ; |Ωs|).

Proof. The existence of the neighbourhood U ′ was proven in the discussion
preceding the lemma. Let φ ∈ C∞(U ′ ◦ U ′). We have

(π∗(a ∗ b), φ) = (b ◦ r∗a, π∗φ).

Let us write a = a0(ξ, x)dξ where a0 is some s-properly supported smooth
function on U ′ and dξ is Lebesgue measure on Rn. For every (η, ξ, x) ∈ U ′◦U ′
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we have π(η, ξ, x) = (π1(η, ξ, x), x), so that

(r∗a0, π
∗φ)(ξ, x) =

∫
η∈Rm

r∗a0(η, ξ, x)φ(π1(η, ξ, x), x) dη

=

∫
η∈Rm

r∗a0(θ(η, ξ, x), ξ, x)φ(η, x)|Dηθ(η, ξ, x)| dη,

where in the last line we have used the change of variables η → θ(η, ξ, x).
Let us write

ã0(η, ξ, x) = r∗a0(θ(η, ξ, x), ξ, x)|Dηθ(η, ξ, x)|,

which is a smooth function on Π(U ′ ◦ U ′) ⊆ Rm × Rm × M0. Using the
formal notation

∫
ξ b(ξ, x)ψ(ξ, x) dξ to denote the value of (b, ψ)(x), Fubini’s

Theorem for distributions gives

(π∗(a ∗ b), φ)(x) =

∫
ξ∈Rm

b(ξ, x)

(∫
η∈Rm

ã0(η, ξ, x)φ(η, x) dη

)
dξ

=

∫
η∈Rm

(∫
ξ∈Rm

b(ξ, x)ã0(η, ξ, x) dξ

)
φ(η, x) dη.

The integral in brackets in the last line is a smooth function of (η, x) ∈
Rm ×M0. Since π∗(a ∗ b) is automatically s-properly supported, the result
follows. �

Lemma 6.5. Let V,W ∈ Uhol and suppose S ⊆ V and T ⊂ W are local
identity bisections. For every v ∈ S and w ∈ T there exist open neighbour-
hoods Vv ⊆ V of v (depending only on v) and Wv,w ⊆ W of w (depending
on both v and w) such that for any a ∈ C∞s (Vv; |Ωs|) and b ∈ E ′s(Wv,w) we
have a ∗ b ∈ C∞s (F ; |Ωs|).

Proof. Let us put x0 = sV (v) = rV (v). Let U be a minimal path-holonomy
bisubmersion at x0 and let U ′ ⊆ U be a neighbourhood of (0, x0) of the kind
described in Lemma 6.4. Since S is an identity bisection at v, Proposition
2.10 of [AS09] shows that we can find a submersive morphism πV : Vv → U ′

with πV (v) = (0;x0) for some neighbourhood Vv of v.
Now put y0 = sW (w) = rW (w). To define Wv,w, we consider two cases:
• Suppose y0 /∈ sV (Vv). Then we can find a neighbourhood Wv,w of w
such that rW (Wv,w)∩sV (Vv) = ∅. In this case, Lemma 3.9 shows that
for all a ∈ C∞s (Vv; |Ωs|) and b ∈ E ′s(Wv,w) we have a ∗ b = 0, which
proves the claim.
• Suppose y0 ∈ sV (Vv). Let Ũ be a minimal path-holonomy bisubmer-
sion at y0. Given that we have identity bisubmersions T ⊂W passing
through w and {0} × M0 ⊂ U passing through (0, y0), Proposition
2.10 of [AS09] shows that there exist submersive morphisms

πW : Wv,w → Ũ with πW (w) = (0, y0),

πU : Uv,w → Ũ with πU (0, y0) = (0, y0),

for some neighbourhoods Wv,w ⊆ W of w and Uv,w ⊆ U ′ of (0; y0).
Moreover, by reducing Ũ sufficiently, we may assume that πU is sur-
jective. Now, given a ∈ C∞s (Vv; |Ωs|) and b ∈ E ′s(Wv,w), Lemma 3.4
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shows that we can find b̃ ∈ E ′s(Uv,w) such that πU∗b̃ = πW∗b. Then
Lemma 6.4 shows that

a ∗ b ≡ πV ∗a ∗ b̃ ∈ C∞s (F ; |Ωs|),

which again proves the claim.
�

In order to extend this result to general bisubmersions, we use translations
by bisections.

Definition 6.6. Let U, V ∈ Uhol be bisubmersions. Let S ⊂ V be a local
bisection, and let ΦS = r|S ◦ s|−1

S be the local diffeomorphism induced by S.
We define the right-translate of (U, rU , sU ) by S to be (US , rUS

, sUS
) with

US = s−1
U (rV (S)) ⊆ U, rUS

= rU , sUS
= Φ−1

S ◦ sU .

Likewise, the left-translate of (U, rU , sU ) by S is (US , rUS , sUS ) with

US = r−1
U (sV (S)) ⊆ U, rUS = ΦS ◦ rU , sUS

= sU .

Using the fact that the local diffeomorphism ΦS preserves the foliation F ,
we see that US and US satisfy the bisubermsion axioms. We want to further
check that they belong to the maximal path-holonomy atlas.

For this, consider the subset U ◦ S = U s×r S of U ◦ V . The projection
prU : U ◦ S → U is a diffeomorphism onto US which intertwines the range
and source maps, and it follows that the embedding

(6.1) ιS : US
pr−1

U−→ U ◦ S ↪→ U ◦ V

is a morphism of bisubmersions. This proves that US is adapted to Uhol.
The proof for US is similar, using the morphism of bisubmersions

(6.2) ιS : US
pr−1

U−→ S ◦ U ↪→ V ◦ U

defined in the analogous way.
Next, we want to introduce the left and right translates of an s-fibred

distribution.
We note that on the open subset US ⊆ U the fibres of the two source

maps sU and sUS
= Φ−1

S ◦ sU are the same, although the maps themselves
are different. Therefore, if a ∈ E ′s(U) has supp(a) ⊆ US , then a also defines
an s-fibred distribution on US , which we denote by aS and call the right
translate of a by S. Explicitly, aS is determined by

(aS , φ|US
)(x) =

{
(a, φ)(ΦS(x)), if x ∈ sV (S)

0, otherwise,

for all φ ∈ C∞(U).
A similar definition can be made for the left translate, and in fact is even

easier since sUS = sU on US . In this case, for b ∈ E ′s(U) with supp(b) ⊆ US
we define

(bS , φ|US ) = (b, φ),

for all φ ∈ C∞(U).
We collect some basic facts about left and right translates.
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Lemma 6.7. Let U , V , W be bisubmersions and let S ⊂ V be local bisec-
tions. If a ∈ E ′s(U) with supp(a) ⊆ US then:

a) We have (W ◦U)S = W ◦US, and for any b ∈ E ′s(W ) we have (b∗a)S =
b ∗ aS.

b) The right translate aS is a smooth s-fibred density if and only if a is.
Similarly, if a ∈ E ′s(U) with supp(a) ⊆ US then:

c) We have (U ◦ W )S = US ∩ W , and for any b ∈ E ′s(W ) we have
(a ∗ b)S = aS ∗ b.

d) The left translate aS is a smooth s-fibred density if and only if a is.

Proof. For (a), note that

(W ◦ U)S = {(w, u) ∈W s×r U : sU (u) ∈ rV (S)} = W ◦ US .
Thus, the right translate (b ∗ a)S makes sense, and its restrictions to the
s-fibres of W ◦US are identical to those of b ∗a, and hence to those of b ∗aS .
Part (b) follows immediately from the fact that the restrictions of a and aS
to the fibres of US are identical.

The other two statements are analogous. �

Lemma 6.8. Let V,W ∈ Uhol. For every v ∈ V and w ∈ W there exist
open neighbourhoods Vv ⊆ V of v (depending only on v) and Wv,w ⊆ W
of w (depending on both v and w) such that for any a ∈ C∞s (Vv; |Ωs|) and
b ∈ E ′s(Wv,w) we have a ∗ b ∈ C∞s (F ; |Ωs|).

Proof. Let S ⊂ V be a local bisection passing through v. Note that St is a
local bisection of V t, so we may consider the left translate V St of V by St.
In this bisubmersion, the set S is an identity bisection, since

rUSt (z) = ΦSt ◦ rU (z) = sU (z) = sUSt (z)

for all z ∈ S.
Likewise, if T ⊂W is a bisection passing through w, then T is an identity

bisection in the right translate WT t .
Therefore, by Lemma 6.5, we can find neighbourhoods Vv of v in V St and

Wv,w of w in WT t verifying the conditions of Lemma 6.5.
Let a ∈ C∞s (V ; |Ωs|) with supp(a) ⊆ Vv and b ∈ E ′s(W ) with supp(b) ⊆

Wv,w. By Lemmas 6.5 and 6.7 (a) and (c) we have

aS
t ∗ bT t = ((a ∗ b)St

)T t ∈ C∞s (F ; |Ωs|).
By Lemma 6.7 (b) and (d), this implies a∗b ∈ C∞s (F ; |Ωs|), as claimed. �

Proof of Theorem 6.3. Let a ∈ C∞s (V ; |Ωs|) and b ∈ E ′s(W ) for some V,W ∈
Uhol.

For each v ∈ V , pick an open neighbourhood Vv of v as in Lemma 6.8.
Using a smooth locally finite partition of unity subordinate to the cover
(Vv)v∈V , we can reduce to the case where a is supported on Vv for some
v ∈ V .

Next, for each w ∈ W , pick an open neighbourhood Wv,w of w as in
Lemma 6.8. Again, using a partition of unity we can reduce to the case
where b is supported in Wv,w for some w ∈ W . Then Lemma 6.8 completes
the proof. �
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7. Proper distributions

We now want to consider Schwartz kernels which are both r- and s-fibred.
As defined above, the spaces E ′r(U) and E ′s(U) are not comparable, so we
must put both of them into the usual space of distributions D′(U).

Throughout this section, we will fix a choice of nowhere-vanishing smooth
1-density on the base space, µ ∈ C∞(M ; |Ω|). As we will show, the particular
choice of µ ultimately will not affect the results.

Definition 7.1. Let U be a bisubmersion and µ a nowhere-vanishing smooth
density on M . We define maps

µr : E ′r(U) ↪→ D′(U); µr(a) = µ ◦ a,
µs : E ′s(U) ↪→ D′(U); µs(b) = µ ◦ b.

The maps µr and µs are continuous injective linear maps. The image
µr(E ′r(U)) ⊆ D′(U) coincides with the space of distributions (with r-proper
support) transversal to the submersion r, as defined in [AS11, §1.2.1]; see
also [LMV17]. This shows that the image is independent of the choice of
smooth density µ. Analogous statements hold for µs, of course.

Definition 7.2. Let U be a bisubmersion.
a) A distribution in D′(U) is called proper if it belongs to µr(E ′r(U)) ∩

µs(E ′s(U)). The space of proper distributions on U is denoted D′p(U).
b) An r-fibred distribution a ∈ E ′(U) is called proper if µr(a) is proper.

The space of proper r-fibred distributions on U is denoted E ′r,s(U).
c) An s-fibred distribution b ∈ E ′(U) is called proper if µs(b) is proper.

The space of proper s-fibred distributions on U is denoted E ′s,r(U).

Since r-fibred distributions have r-proper support, and s-fibred distribu-
tions have s-proper support, we see that proper distributions of any kind
have proper support in the sense of Definition 5.6.

Let us write C∞p (U) for the space of properly supported functions on U
and C∞p (U ;E) for the space of properly supported sections of any bundle E
over U . Note that

µr(C
∞
p (U ; |Ωr|)) = C∞p (U ; |Ω|) = µs(C

∞
p (U ; |Ωs|)),

so that properly supported smooth r-fibred densities are automatically proper
as r-fibred distributions, and likewise for properly supported smooth s-fibred
densities.

Lemma 7.3. Let U and V be bisubmersions and let a ∈ E ′r,s(U) and b ∈
E ′r,s(U) be proper r-fibred distributions, so that there exist ã, b̃ ∈ E ′s(U) with
µr(a) = µs(ã) and µr(b) = µs(b̃). Then

µr(a ∗ b) = µs(ã ∗ b̃).

In particular, the convolution product of two proper r-fibred distributions is
again proper, and likewise for proper s-fibred distributions.

Proof. We first claim that for any ã ∈ E ′s(U) and b ∈ E ′r(V ) we have ã◦s∗Ub =
b ◦ r∗V ã as maps C∞(U ◦ V ) → C∞(M). Note that both these maps are
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C∞(M)-linear with respect to the ‘middle’ submersion,

q : U ◦ V →M ; q(u, v) = sU (u) = rv(V ),

that is, we have
(ã ◦ s∗Ub, (q∗f)φ) = f(ã ◦ s∗Ub, φ)

for all φ ∈ C∞(U ◦V ) and f ∈ C∞(M), and similarly for b◦r∗V ã. The q-fibre
at x ∈M is q−1(x) = Ux × V x, and we calculate

(ã ◦ s∗Ub, φ)(x) = (ãx ⊗ bx, φ|Ux×V x) = (b ◦ r∗V ã, φ)(x),

which proves the claim.
Finally, we obtain

µr(a ∗ b) = µ ◦ a ◦ sU ∗ b = µ ◦ ã ◦ s∗Ub

= µ ◦ b ◦ r∗V ã = µ ◦ b̃ ◦ r∗V ã = µs(ã ◦ b̃).

�

Definition 7.4. We define E ′r,s(F) to be the subspace of E ′r(F) consisting
of classes of proper r-fibred distributions on U, and E ′s,r(F) as the subspace
of E ′s(F) consisting of classes of proper s-fibred distributions on U.

Proposition 7.5. The subspace E ′r,s(F) is a closed subalgebra of E ′r(F) and
C∞p (F ; |Ωr|) is a two-sided ideal.

Similarly for E ′s,r(F) and C∞p (F ; |Ωs|).

Proof. The fact that E ′r,s(F) is closed under convolution follows from Lemma
7.3. Theorem 6.3 shows immediately that C∞p (F ; |Ωr|) is a right ideal, and
also that it is a left ideal if we take advantage of Lemma 7.3. �

We note the relationship of the transpose map from Definition 3.7 with
the maps µr and µs:

µr(a)t = µs(a
t)

It follows that the transpose of a proper r-fibred distribution is a proper
s-fibred distribution, and so by Proposition 4.5, transposition gives an anti-
isomorphism of convolution algebras t : E ′r,s(F)→ E ′s,r(F).

Although properness is a crucial property for kernels of pseudodifferential
operators (see [vEY], as well as Section 8 below), it can be difficult to check
directly. We therefore conclude this section by giving a convenient sufficient
condition for the properness of a distribution using the wavefront set. This
result is due to Lescure-Manchon-Vassout [LMV17]. Of course, the idea that
wavefront sets can be used to detect smooth and non-smooth directions in
distributions is Hörmander’s.

Proposition 7.6. Let S be a bisection in a bisubmersion U , and suppose
that a ∈ D′(U) is a distribution with
• proper support,
• singular support contained in S,
• wavefront set contained in TS⊥ = {η ∈ T ∗U : (η, ξ) = 0 for ξ ∈ TS}.

Then a is a proper distribution.



20 IAKOVOS ANDROULIDAKIS, OMAR MOHSEN, AND ROBERT YUNCKEN

Proof. We claim that TS⊥∩ker(dr)⊥ = ∅ = TS⊥∩ker(ds)⊥. For if η ∈ T ∗Ux
lies in TS⊥x ∩ ker(dr)⊥x then (η, ξ) = 0 for all ξ ∈ ker(dr)x + TSx = TUx,
and hence η = 0. Similarly with s in place of r. The result now follows from
[LMV17, Proposition 2.9]. �

8. The action on generalized functions

According to Section 5, the properly supported r-fibred distributions act
on C∞(M) and C∞c (M), while properly supported s-fibred distributions
act on E ′(M) and D′(M). If we fix a nowhere vanishing smooth density µ
on M , then by Lemma 7.3 we obtain an algebra isomorphism µ−1

s ◦ µr :
E ′r,s(U) → E ′s,r(U), and hence an action of E ′r,s(E)on all four of the above
spaces. However, the action of E ′r,s(E) on D′(M) which is obtained in this
way depends upon the choice of µ. To obtain a canonical action, we need to
work with generalized functions instead of distributions.

Remark 8.1. This issue wouldn’t arise if we had followed the operator
algebraists’ strategy of using half-densities throughout. We have chosen to
avoid this because we will ultimately want to apply these results to classical
PDE problems.

Definition 8.2. Let |Ω| denote the bundle of 1-densities on M . We write
C−∞(M) for the continuous linear dual of C∞c (M ; |Ω|), and refer to its ele-
ments as generalized functions onM . We also write C−∞c (M) = C∞(M ; |Ω|)∗
for the compactly supported generalized functions.

The space of smooth functions C∞(M) admits a canonical embedding as
a dense subspace of C−∞(M). Given a choice of nowhere vanishing 1-density
µ on M , we obtain a linear isomorphism

C∞(M)→ C∞(M ; |Ω|); f 7→ fµ,

and this extends by density to an isomorphism

C−∞(M)→ D′(M)

which we denote formally by k 7→ kµ for k ∈ C−∞(M).

Definition 8.3. Fix a nowhere-vanishing smooth density µ on M . Let
a ∈ E ′r,s(U) be a proper r-fibred density on the bisubmersion U , which means
there is ã ∈ E ′s,r(U) with µs(ã) = µr(a). We define the operator Op(a) on
C−∞(M) by the formula

(Op(a)k)µ = (Õp(ã))(kµ)

where k ∈ C−∞(U) and Õp is the representation of E ′s,r(U) on D′(M) defined
at the end of Section 5.

Proposition 8.4. The map Op : E ′r,s(U) → L(C−∞(M)) defined above is
independent of the choice of smooth nowhere-vanishing density µ. It induces
a continuous linear representation of E ′r,s(F) on generalized functions which
extends the representation Op on C∞(M).
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Proof. Let k ∈ C∞(M). If we use the definition of Op(a)k from Definition
8.3, we get, for all f ∈ C∞(M),

((Op(a)k)µ, f) = (Õp(ã)(kµ), f)

= (kµ,Op(ãt)f)

=

∫
x∈M

(ãt, r∗Uf)(x)k(x)µ(x)

=

∫
x∈M

(ãt, (r∗Uf)(s∗Uk))(x)µ(x)

= (µs(ã), (r∗Uf)(s∗Uk)),

where the second last equality uses the C∞(M)-linearity of ãt as an r-fibred
distribution. On the other hand, using the definition of Op(a)k from Pro-
postion 5.1 gives

((Op(a)k)µ, f) =

∫
x∈M

(a, s∗Uk)(x)µ(x)f(x)

=

∫
x∈M

(a, (r∗Uf)(s∗Uk))(x)µ(x)

= (µs(ã), (r∗Uf)(s∗Uk)),

where the second equality uses the C∞(M)-linearity of a as an r-fibred
distribution. This proves that the two definitions of Op(a)k agree when
k ∈ C∞(M). The definition of Op(a)k from Proposition 5.1 clearly does not
depend on the choice of µ, so neither does Definition 8.3 in this case. By
density, the same must be true for all k ∈ C−∞(M).

For a ∈ E ′r,s(U) and b ∈ E ′r,s(V ), Lemma 7.3 plus the fact that Õp is an
algebra representation of Es,r(F) gives

(Op(a ∗ b)k)µ = Õp(ã ∗ b̃)(kµ) = Õp(ã)Õp(b̃)(kµ) = (Op(a) Op(b)k)µ,

so Op is indeed a representation. �

Therefore, representation Op defines an action of E ′r,s(F) on each of the
four spaces C∞(M), C∞c (M), C−∞(M) and C−∞c (M).
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