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Ambiguity Cancellation for Wire Fault Location based on Cable Life Profile

Although reflectometry is an efficient method to diagnose simple topologies (such as transmission line, Y shape network), it remains limited in the case of complex branched networks due to multipath fading of the test signal during its propagation. Generally, the knowledge of the environment in which the cable operates gives an additional idea about the fault location. The current paper proposes to introduce the cable life profile (such as environmental stress, type, age, noise, etc.) to detect and cancel diagnosis ambiguities and provide a precise location of the fault. Bayesian Network (BN) seems to be a suitable solution to offer a coherent representation of knowledge domain (reflectometry method, cable characteristics and network heterogeneity) under uncertainties (fault(s) location, systems reliability and measurement precision). In this work, a two-stages BN model for diagnosis using reflectometry in branched networks is proposed and simulation results are discussed.

INTRODUCTION

The growing need for wiring in avionics, automotive, telecommunications, nuclear plants, buildings, etc., has caused the increase of the cable length. The type of cable (coaxial, twisted pair, fiber optic, etc.) depends on the nature of the propagating signal (data and energy) into network, the corresponding voltage level and the environment (noise, temperature, vibration, etc.) in which the cable is implemented. One day or another, a cable will show signs of damage resulting in fault appearance (short and open circuit, aging, etc.). These faults can be a consequence of environmental stress (heat, moisture, chafes, etc.). Therefore, a wiring diagnosis system is needed to detect and locate faults as early as possible. Reflectometry is a suitable diagnosis technique as it requires a single access point to inject a test signal into the cable network. During its propagation, a part of its energy is reflected back to the access point for each impedance discontinuity met (fault, junction, etc.). Then, the analysis of the reflected signals, commonly called "Reflectogram", permits to characterize this discontinuity. In the literature, several reflectometry methods have been proposed depending on the studied domain and the type of test signal [START_REF] Auzanneau | Wire troubleshooting and diagnosis: Review and perspective[END_REF]. Although standard reflectometry has proven its efficiency in wire fault detection, it suffers from ambiguity problems related to fault location in branched networks. As a solution, a distributed diagnosis strategy has been proposed [START_REF] Ben Hassen | Diagnosis Sensor Fusion for Wire Fault Location in CAN Bus Systems[END_REF]. It consists in a diagnosis system made of several sensors also called "reflectometers", to make reflectometry measurements at different ends of the cable network. Here, the major issue is related to the reflectometer's reliability, number and location, signal processing, resource allocation, communication protocol, etc.

Based on the uncertainty regarding reflectometer's failure, measurement precision and fault location, the use of BNs is motivated by the combination of deterministic and stochastic behaviors of such diagnosis systems [START_REF] Villeneuve | Hybridization of Bayesian Networks and Belief Functions to Assess Risk. Application to aircraft Disassembly[END_REF]. In previous works [START_REF] Ben Hassen | A Distributed Diagnosis Strategy using Bayesian Network for Complex Wiring Networks[END_REF] and [START_REF] Ben Hassen | Optimisation de capteurs de diagnostic de defauts par reflectometrie dans les reseaux filaires complexes en utilisant les reseaux bayesiens[END_REF], reflectometers' number reduction in branched networks and its impact on the diagnosis quality have been studied. Firstly, a deterministic case implementation was considered with a reflectometer implemented at each end of a cable network. Secondly, one or more reflectometer(s) was/were removed and the diagnosis uncertainty was estimated at each time. Finally, communication among reflectometers was included to guarantee a good diagnosis quality. However, this communication imposes further challenges related to bandwidth allocation, communication protocol and noise interference mitigation. In this work, the cable life profile is included to overcome ambiguity problems related to the fault location in complex branched networks. This permits to reduce the diagnosis cost by avoiding the use of too many reflectometers in the network. The rest of this paper is organized as follows. In section 2, the fault location ambiguity problem in branched networks is presented. Then, the formalism of BNs is introduced in section 3. In section 4, the diagnosis strategy approach using Bayesian Networks is proposed. To prove the proposed strategy's efficiency, simulation results are studied in section 5. Finally, a conclusion with a brief recall of the proposed strategy and future works is presented.

FAULT LOCATION AMBIGUITY PROBLEMS IN COMPLEX BRANCHED NETWORKS

Accurate models can be used to simulate and understand the propagation of signals in transmission lines.

The description of Telegrapher's equations based models can be found in [START_REF] Clayton | Analysis of Multiconductor Transmission Lines[END_REF]. This kind of model can be used In this case, it is possible to add another reflectometer at the end of L 2 . Although, the ambiguity problem is resolved for the fault on L 3 , it would remain inevitable if another fault appeared on L 4 . So, another reflectometer should be added to overcome this ambiguity but with the consequences we know in terms of diagnosis cost. As a solution, we propose to introduce the cable life profile aiming at canceling the fault location ambiguity without raising the diagnosis cost. Considering the uncertainty related to fault location, measurement precision and reflectometer reliability, the use of BN seems a suitable candidate to combine these deterministic and stochastic behaviours.

BAYESIAN NETWORKS PRINCIPLE

A Bayesian Network (BN, also referred to as belief network, probabilistic network, or causal network) is a member of the probabilistic Graphical Models (GM) family, known as Directed Acyclic Graph (DAG) [START_REF] Verron | Using Bayesian networks for decision in the simultaneous faults case[END_REF]. It is represented by two sets: the set of nodes (qualitative part) and the set of edges (quantitative part) Knox and [START_REF] Knox | Diagnosis and Reconfiguration using Bayesian Networks: An Electrical Power System Case Study[END_REF]. The nodes represent variables of interest, noted as X i . The edges represent direct dependences among these variables. An arrow from node X i to X j represents a probabilistic relation between the corresponding values where X i is defined as a parent (or ascendant) of X j and similarly X j is referred to as a child (or descendant) of X i . Following the above discussion, the BN B is defined by a pair B = {G, Θ} where G is the DAG whose nodes X 1 , X 2 , • • • , X n represent variables of interest and for which edges represent the direct dependencies between them. The parameter Θ denotes the set of parameters of the network which contains the parameter θ xi|πi = P B (x i |π i ) for each realization x i of X i conditioned on π i . Then, the BN B defines a joint probability distribution over a set of variables of interest where:

P B (X 1 , X 2 , • • • , X n ) = n i=1 P B (X i |π i ) = n i=1 θ Xi|πi . (1)

PROPOSED DIAGNOSIS PROCEDURE FOR AMBIGUITY CANCELLATION

The procedure of the proposed diagnosis is shown on Fig. 3.

Fig. 3. Diagnosis Procedure in Wiring Networks

First, the complex wiring network is divided into subnetworks where each sub-network is diagnosed at least by one reflectometer. Second, each reflectometer performs the local diagnosis in each sub-network based on the observed symptoms and calculates the conditional probabilities on each branch of the sub-network using BNs. Here, the cable life profile is considered to compute the probability of the presence of the detected fault on each cable. This procedure permits to locate the fault on the sub-network with a reduced uncertainty. Then, the diagnosis system performs the global diagnosis in the whole network by merging the previously defined sub-systems results to locate the fault in the whole network. 

Local Diagnosis based on Bayesian Networks

Here, we propose to decompose the diagnosis system into simple sub-systems and model them individually in order to reduce the system complexity Przytula [START_REF] Wojtek | Construction of Bayesian networks for diagnostics[END_REF]. A BN is modelled for each cable taking into account its life profile. The variables of interest, represented in the BN by nodes, are summarized in Table 1. They are classified into groups: reflectometer, diagnosis method, cable, environment, diagnosis procedure and fault. These groups depend on each other and may impact on the fault diagnosis results. In fact, the reflectometer's reliability in terms of injection or reception impacts on the fault characterisation. For example, in the case of an unreliable reflectometer, an erroneous test signal may be injected. Then, a false interpretation of the reflectogram is made involving unnecessary intervention. Moreover, the choice of the diagnosis method is crucial since some methods being more robust than others to the interference and noise presence such as mutli-carrier methods Ben Hassen et al. [2013], [START_REF] Lelong | On Line Wire Diagnosis using Multicarrier Time Domain Reflectometry for Fault Location[END_REF]. In addition to that, the cable's characteristics (type, age, length, noise) impact on the test signal behaviour during its propagation. For example, a Shielded Twisted Pair (STP) or a coaxial cable is more robust to external electromagnetic interference and cross-talk than an Unshielded Twisted Pair (UTP). Furthermore, the environmental stress (temperature, vibration, moisture, etc.) promotes the appearance of cable weaknesses or aging. Taking all these parameters, referred to as cable life profile, into account permits to characterize the fault location uncertainty and then, cancel the ambiguity problem.

In this case, BN's variables are divided into three sets which are:

• χ r set of nodes representing the real state of the studied system.

• χ h set of nodes representing the hidden symptoms of the studied system. • χ o set of nodes representing the observed symptoms of the studied system.

Fig. 4 represents the BN dedicated to local diagnosis. It permits to locate the fault on each branch. Let us note that probabilities are given by an expert in the proposed BN. For each reflectometer, the conditional probability on each branch is given by: P (X 15 /X 3 , X 4 , X 5 , X 8 , X 14 ) = P (X 15 ; X 3 , X 4 , X 5 , X 8 , X 14 ) P (X 3 , X 4 , X 5 , X 8 , X 14 ) .

where P (X 15 ; X 3 , X 4 , X 5 , X 8 , X 14 ) represents the joint probability and P (X 3 , X 4 , X 5 , X 8 , X 14 ) represents the a priori probability. The same process is repeated for all reflectometers implemented in the target network.

Global Diagnosis using Bayesian Networks

In this step, we integrate the results obtained by each reflectometer on each cable in a global BN to locate the fault in the whole network. The variables of interest are summarized in Table 2. The conditional probability related to the presence of the fault on the branch m depends on the gathered information from the reflectometers. This information is obtained by the local diagnosis previously established related to reflectometer R i and R j . It is given as follows:

P (Y m /Y i,m , Y j,m ) = P (Y m ; Y i,m , Y j,m ) P (Y i,m , Y j,m ) . (3) 
In order to prove the efficiency of the proposed approach, simulation results are presented in the next section. The difference between healthy and faulty reflectograms Fig. 6. Fault detection at distance 4.5 ± 0.3m from R 1 R 1 , the fault on Branch B 3 cannot be distinguished from a possible fault on B 2 as shown by the corresponding reflectogram in Fig. 6. Moreover, it cannot be distinguished from a possible one on branch B 3 or B 6 for reflectometer R 2 as shown by Fig. 7. Moreover, it can not be distinguished from a fault on branch B 3 for R 3 . Supposing that cable B 3 is submitted to aggressive thermal stress (near to a hot unit), it can age quicker and become faulty due to the cable insulation chafing. This knowledge is integrated in the proposed BN presented in Fig. 4 and then propagated into the network. This thermal stress is the origin of noise whose amplitude N is given by N (dBW ) = 10 log(kT B)

where k is the Boltzmann constant (k = 1.38e -23 J/K), T is the temperature (K) and B is the bandwidth (Hz). The increase of the temperature T causes not only the The difference between faulty and healthy reflectograms Fault detection at 11.5±0.3m from R 2 Fig. 7. Fault detection at distance 11.5 ± 0.3m from R 2 channel noise and cable aging increase, but also the measurement precision decrease as shown on Fig. 8. This latter is demonstrated by the uncertainty related to the fault position. For example, for R 1 , the fault is located at 4.5±0.3m from the injection point. These probabilities are obtained for P(X 9 ='UPP')=100%, P(X 14 ='Yes')=100%, P(X 4 ='Low')=100% and P(X 5 ='Wide')=100%. Moreover, that thermal noise may increase the uncertainty related to the fault presence and then trigger false alarms.

In this work, all the cables have the same characteristics in terms of impedance, propagation velocity, etc. As described previously on Fig. 3, the diagnosis procedure If we look at the results for the local diagnosis, we tend to conclude that the fault is on the branch B 2 for reflectometer R 1 as P (X 15 ='Yes')=91.9% on B 2 and P (X 15 ='Yes')=89.8% on B 3 . This ambiguity is caused Symptom Probability Result Probability P (X 10 ='High')=100 % P (X 15 ='Yes')=89.8% P (X 6 ='NoNoise')=55.9 % P (X 3 ='Low' )=6.33 % P (X 8 ='New' )=80 % P (X 14 ='Yes' )=100 % 

Symptom Probability

Result Probability P (X 10 ='Low')=100 % P (X 15 ='Yes')=91.9% P (X 6 ='NoNoise')=82.9 % P (X 3 ='Low' )=2.88 % P (X 8 ='New' )=96 % P (X 14 ='Yes' )=100 % 

Symptom Probability

Result Probability P (X 10 ='Low')=100 % P (X 15 ='Yes')=0.09% P (X 6 ='NoNoise')=82.9 % P (X 3 ='Low' )=2.88 % P (X 8 ='New' )=96 % P (X 14 ='Yes' )=0 % by the presence of the thermal noise stress on B 3 that impacts badly on the measurement precision and then the fault location. Therefore, we do not limit our study to local diagnosis, as is usually done in conventional methods, but we propose to gather the obtained information by each reflectometer in a global diagnosis.

In the global diagnosis, the results obtained by each diagnosis system on each branch are integrated in a global BN. Fig9 shows that the probability of the presence of the fault on branch B 3 is equal to 91.6% and is obtained as follows: The same process is applied for all the branches of the network. Here, we are interested only by the ambiguous branches B 3 , B 2 , B 5 and B 3 . Table 6 summarizes the probability of the presence of the fault in each of them.

P (Y B3 /Y R1,B3 , Y R2,B3 , Y R3,B3 ) = P (Y B3 ; Y R1,B3 , Y R2,B3 , Y R3,B3 ) P (Y R1,B3 , Y R2,B3 , Y R3,B3 ) . ( 
Based on the obtained probabilities, we may conclude that the fault is on branch B 3 with probability 91.6 %.

The proposed two-stages approach is applied in each branch of the bus CAN as shown on Fig. 10. It is obvious that the fault on B 1 is located with high uncertainty as R 2 and R 3 do not detect it due to its distance from these reflectometers. Moreover, the thermal stress influences badly on the fault location. Fig. 10. Fault location probability in each branch of the CAN bus. Simulation results demonstrate that the introduction of life profile cable permits to efficiently diagnose the network at a low cost (only 3 reflectometers are implemented). Moreover, it permits to reduce the uncertainty related to fault location in complex wiring network. One can notice that the reliability of the reflectometer in emission and reception is considered in the obtained statistics. This reliability differs from a reflectometer to another and impacts on the fault location. In this paper, all reflectometers R 1 , R 2 and R 3 are considered reliable with P (X 1 ='High')=97.4% and P (X 2 ='High')=92.4% for R 1 , P (X 1 ='High')=96.4% and P (X 2 ='High')=91.4% for R 2 and P (X 1 ='High')=96.2% and P (X 2 ='High')=91.3% for R 3 . A deep study on the reflectometers reliability and its impact on the obtained results will be the purpose in further works.

CONCLUSION

In this paper, a new strategy based on the cable life profile has been proposed for the diagnosis of complex topology wiring networks, and applied to a CAN bus. Our main objective was to find a good compromise between the system cost (diagnosis systems number) and the diagnosis quality. Here, the use of BNs was motivated by the uncertainty regarding diagnosis system reliability, measurement precision, and wire faults characterization. The proposed strategy includes two steps: (1) local diagnosis based on BNs, (2) global diagnosis for the whole network to locate the detected fault(s). In local diagnosis, each reflectometer introduces the cable life profile to calculate the conditional probability of the presence of the fault on each branch. Then, the obtained results for each reflectometer are integrated into a global BN to locate the fault in the whole network. Simulation results prove the efficiency of the proposed strategy to help cancel the ambiguity for fault location in a branched network. In this context, a deep study on the reflectometers reliability and its impact on the obtained results will be the purpose in further works. In addition to that, other influential factors (such as chafing, attenuation, bandwidth, etc.) may affect the diagnosis quality and then should be also considered. Finally, in-depth works based on experience feedback would improve the conditional probabilities tables quality thanks to learning Bayesian Networks.

  Fig. 1. Fault location ambiguity in a branched network.
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 2 Fig. 2. Reflectogram using TDR method.
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 4 Fig. 4. Bayesian Network dedicated to local diagnosis on each cable
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  Fig. 5. A simplified CAN bus 5. SIMULATION RESULTS Controller Area Network (CAN) bus is widely used in automotive, aircraft, energy distribution, etc., as a mean for enabling robust serial communication between several embedded functions. In this work, a simplified CAN bus is considered where three reflectometers R 1 ,R 2 and R 3 are used for the diagnosis of the whole network as shown on Fig.5. Here, an Unshielded Twisted Pair (UTP) is considered. The network is made of a main bus whose length is 40m and 6 transmissions lines whose lengths are equal to 2.5m to link the electronic boards to the bus. They are represented by B i where i ∈ {1, 2, • • • , 6}. The extremities of the bus are loaded by 120Ω loads to avoid interference and multi-path fading. The main CAN bus is divided into multiple sections called B 1 to B 7 . An open circuit fault is simulated on branch B 3 at distance 4.5m from R 1 , 11.5m from R 2 and 22.5m from R 3 . TDR method is used for the network diagnosis. The idea is to inject,

Fig. 8 .

 8 Fig. 8. The Temperature impact on the measurement precision, cable age, channel noise and fault location. includes two steps: local and global diagnosis. In local diagnosis, each reflectometer calculates the conditional probability of the presence of the fault on each branch using equation (2). For simplicity, we present some interesting results as shown on Tables 3,4 and 5.
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 49 Fig. 9. Global Diagnosis Modelling on B 3 .

Table 1 .

 1 Variables of interest of local diagnosis modelling

	Classification	Variable	Notation	Description
	Reflectometer	EmissionReliability	X 1 ∈ χ h	Reliability of the reflectometer in terms of signal injection.
		ReceptionReliability	X 2 ∈ χ h	Reliability of the reflectometer in terms of signal
				reception.
		MeasurementPrecision	X 3 ∈ χ h	Accuracy of the obtained measurement.
	Diagnosis Method	Attenuation	X 4 ∈ χ h	Attenuation of the test signal during its propagation.
		Bandwidth	X 5 ∈ χo	Bandwidth of the channel ( The wider the Bandwidth,
				the narrower the peak.)
		ChannelNoise	X 6 ∈ χ h	Noise level in the cable. It impacts on the reflected
	Cable	CableLength	X 7 ∈ χo	signal reception and the measurement precision. Length of the cable. It impacts on the attenuation of
				the test signal
		CableAge	X 8 ∈ χo	Age of the cable. It impacts on the fault characteristic.
		CableType	X 9 ∈ χo	Type of the cable. It impacts on the noise on the cable,
				the length, the attenuation and the corresponding
				bandwidth.
	Environment	Temperature	X 10 ∈ χo	Exposure of the cable to a heat source promotes its aging and increases its noise level.
		Chafing	X 11 ∈ χo	Chafing causes the cable aging.
	Diagnosis Procedure	SignalInjection RSignalReception	X 12 ∈ χo X 13 ∈ χo	Injection of a test signal into the cable network. Reception of a reflected signal at the injection port.
	Fault	PeakPresence	X 14 ∈ χo	Each impedance discontinuity (fault or junction) is identified by a peak in the corresponding reflectogram.
		FaultonBranch	X 15 ∈ χr	Detected fault exists in the studied branch.

Table 2 .

 2 Variables of interest of the Global Bayesian Network

	Variable(s)	Modality	Notation	Description
	R			

i F aultonBm Yes/No Y i,m Presence of the fault on branch Bm according to the reflectometer i. R j F aultonBm Yes/No Y j,m Presence of the fault on branch Bm according to the reflectometer j. F aultonBm Yes/No Ym Presence of the fault on branch Bm.

Table 3 .

 3 R 1 : Local diagnosis dedicated to B 3

Table 4 .

 4 R 1 : Local diagnosis dedicated to B 2

Table 5 .

 5 R 1 : Local diagnosis on B 3 and B 6

Table 6 .

 6 Global Diagnosis for Fault Location

	Probability of the presence of the fault on ambiguous branches
			P (Y B 3 ='Yes')=91.6 %
			P (Y B 3	='Yes')=61.1 %
			P (Y B 6 ='Yes')=27.2 %
			P (Y B 2 ='Yes')=26.8%
		120	P(Temperature='Low')=100%
			P(Temperature='High')=100%
		100
	P(FaultonB i ='Yes')%	40 60 80
		20
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			Faulty Branches
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