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Abstract—This communication considers the issue of deriving
a model to describ how the inoperating level of a particular
system (a production unit, a transportation system, an energy
supply plant, etc.) of interconnected or interdependent systems
(neworking and interdependency are interchangeable in this com-
munication) will impact the operating level of other systems for
the purpose of analysis, simulation, prediction, risk assessment,
etc. The mechanism of such impacting process may be very
complex; for instance to impact the operating level of a system the
inoperability of another system may need to reach a certain level
(threshold), to combine (synergy) with other events or situations;
there may exist some preemptivity condition (that is to destabilize
a given system some particular conditions must be satisfied). The
main purpose of this communication is therefore to establish a
model of inoperability propagation in a networked systems when
taking into account as much as possible phenomena such as
thresholding, synergy, resilience, etc. Necessity of synergy appeals
for a synergetic aggregation operator; to this end, we propose
to consider using Choquet integral associeted with a weighted
cardinal fuzzy meaure (wcfm) as the appropriate aggregation
operator. Furthermore this association leads to a straightforward
formula to compute the integral.

Keywords—Inoperability Propagation, Networked Systems, Risk
Assessment and Management, Choquet Integral, WCFM, IIM.

I. INTRODUCTION

Capabilities of many systems (transportation infrastruc-
tures, energy and water supply infrastructures, communication
infrastructures, production infrastructures, financial infrastruc-
tures, etc.) that facilitate modern life in many ways result from
their highly interconnection. But, as interconnection increase
capability of each individual component system, it increases
by the way its vulnerability due to its dependence on the
operability level of other systems. Indeed, operations of water
supply systems, financial systems, communication systems,
for instance rely heavily on the operability level of energy
supply system and so on. Modeling adequately interactions
of these systems is therefore a fundamental issue for analysts
in order to dispose of tools that permit them to describe, to
analyze, to predict, to control, etc., as accurate as possible
the behavior of these systems. But, a sound modeling process
must rely on adequate and most representative scientific tools.
First approaches to address interactions modeling of large
scale systems come probably from works done by economists
among which input-output model (IOM) derived by Wassily
Leontief, see [4] [5] [6], to analyze American economy is
the most popular one. Indeed, the modeling capacities of this
model lead to its adaptation in other domains such as risk

assessment and management and dependability analysis, in
order to study how local perturbation propagate through a
large scale interconnected systems and estimating the resulting
operability level using the so called inoperability input-output
model (IIM), see [2] [7] [9].

Though models built upon IIM approach are widely used
in literature for modeling interactions between component
systems of many systems and do give good results, for
complex behavior and large scale systems, they may reveal
some modeling weakness due among other to how input
information are combined (aggregation) to produce output at
each component system. Some drawbacks of these approaches
for interconnected systems modeling and analysis are related to
lack of synergy and preemptivity consideration of some input
signals that are described below.

• There are no real interactions between inputs in the
transfer function (transformation of inputs to output
at each system) as just a weighted mean is realized
whereas sometime some synergy is needed between
inputs to produce an output.

• For some systems, their disturbance can not be trig-
gered if the global and/or individual effects of their
inputs do not exceed some given thresholds; this is
not taken into account in IIM approach nor in some
similar modeling tools such as fuzzy cognitive maps
(FCM), see [3] [13].

To attempt to overcome drawbacks enumerated previously,
and building on IIM approach we propose to aggregate input
signals using Choquet integral [1], an aggregation operator that
allows taking into account relationships between elements to
aggregate.

The remainder of this communication is organized as
following: the second section is devoted to presenting the main
problem and the modelling process as well as assumptions on
which the modelling process rely; section three presents an
example to show how the model can be used in real world
application situation and the fourth sections concludes the
communication.

II. STATEMENT OF THE PROBLEM AND MODELLING

We consider a system of n interconnected component
systems or entities (to be understood in a very large way
where a component system may be a physical infrastructure



asset such electrical energy plant, an economical sector such
as agriculture, a social sector such as education, or even a
component within a system such as battery in a car, etc.) which
structure is described by a directed graph that is a couple (N,
E) where N is the set of nodes, each node representing a
component system and E ⊆ N × N is the set of directed
arcs; an arc (i, j) ∈ E means that inoperability of node i will
impact the inoperability of node j. Without loss of generality,
we consider the state of a component system i to be determined
by the parameter or indicator xi(t) ∈ [ 0, 1 ] that represents
its inoperability level at time instant t meaning that the system
is operating at 1 − xi(t) of its capacity at time instant t;
xi(t) = 0 means that this system is fully operational at time
t and xi(t) = 1 signifies that the system is out of service.
The state of this almost system of systems (some component
systems may not be fully independent from others) at time
instant t is therefore determined by the vector x(t) defined by
equation (1)

x(t) = [ x1(t) x2(t) ... xn(t) ]
T
. (1)

From now the main purpose is to determine the evolution of
inoperability level x(t) of the system given actual conditions;
this process is obtained in two steps, obtaining the overall
destabilizing effect at the input of each node i and deriving
its dynamics that is how xi(t+ 1) will be obtained from xi(t)
and the overall destabilizing effect due to inoperability of its
input nodes. We consider that the overall effect of inoperability
conditions of other nodes on the actual node i is obtained by
aggregating their inoperability level. The aggregation process
may constitute a complex process depending on how the global
effect is obtained from individual inoperability levels xk(t).
In the case of destabilization, one can reasonably consider
that these effects behave in synergy that is, two destabilizing
events that happen simultaneously will have more effect than
the some of their effect if they happen separately; a well known
aggregation operator to take into account such behavior is the
so called Choquet integral associated to a synergetic fuzzy
measure or capacity. But, in practice, most of the time the
inoperability of an input may not have effect on the desta-
bilized node until it exceeds some thresholds: a phenomenon
we refer to as trigging process. The modeling process will
therefore consists in three steps namely modeling trigging
process, modeling aggregation process and finally modeling
dynamics of the behavior; these processes will be carried up
in the following paragraphs; assumptions upon which models
are derived will be embended in the text because of lack of
space.

A. Trigging process

In practical situation, trigging process is certainly a very
complex process; it may consist in global destabilizing effect
reaching some threshold or individual effect going beyond a
certain level. In a very simply way, let us denote by θi (x−i(t))
the trigging indicator of the inoperability process of node i at
time t defined by the following: θi (x−i(t)) = 1 if inoperability
of i triggered at time t and 0 if not where x−i(t) stands
for components of vector x(t) without xi(t). As expressed in
introduction section, different phenomena may influence how
effects combine at the input of a node; in this communication
we consider two main such interactions properties, namely

thresholding and synergy. Thresholding process take place at
the input of nodes and is related to the fact that for an input
to exerts its effect, its activity level must be beyond some
threshold; let us define these thresholds as follows, x0j,i is the
minimum inoperability level of node j required at the input of i
to trigger its inoperability process; we define by δj,i(xj(t)), the
indicator of trigging defined as: δj,i(xj(t)) = 1 if xj(t) ≥ x0j,i
and 0 otherwise. From this, we consider two extreme trigging
processes: independency for trigging at the input of a node
and simultaneity trigging procedure as defined in the following
items.

• Independent case: here the overall trigging do not
depend on simultaneous trigging of each input, that
is the trigging indicator is given by equation (2)

θi (x−i(t)) = 1 (2)

and therefore the vector x−i(t) at the input of node i
is given by equation (3)

[x−i(t)]k = δk,i(xk(t))xk(t) (3)

which ensures that the impact of a no trigged input at
a node is null.

• Simultaneous trigging case: in this case for the inop-
erability process of a node to trigger each of its input
must trigger; the trigging indicator θi (x−i(t)) will be
given in this case by equation (4)

θi (x−i(t)) =

∏
j,j 6=i

δj,i(xj(t))

 (4)

Of course many complex trigging processes may exist in
practice; once the trigging is operated, the aggregation that is
how effect combine at the input of a node can begin; this is
the purpose of the next paragraph.

B. Aggregation of the input impacts

We make an a priori assumption that when confronted
to destabilizing effect, the principle of the whole is more
than the sum apply so that the aggregation of effects at the
input of any node must be done in synergetic way. In this
situation the global effect at the input of a node does not
consist in just cumulating effect but much more in the sense
that the combine effect is beyond the sum of individual effect.
In this condition, aggregation process must take into account
this synergetic behavior of input effect. Among aggregation
operator that respect this issue, Choquet integral associated to
a synergetic or super additive fuzzy measure or capacity is well
suited here. In this paragraph this kind of aggregation operators
will be introduced with a particular emphasis on Choquet
integral associated to a weighted cardinal fuzzy measure (wcfm
for short) developed by the author and that leads to two
improvements:

• a straightforward formula to compute the integral;

• a practical intuitive way to determine the associated
fuzzy measure as opposed to difficulties encountered
for this purpose in the literature.

When a set N = {1, 2, ..., n} of attributes with numerical
measures vector x = [ x1 x2 ... xn ] must be aggregated



using Choquet integral, the first and primary thing to do is to
define a fuzzy measure or a capacity over the set N ; definition
of such fuzzy measure or capacity is given below.

Let N = {1, 2, ..., n} be a set of n elements. A capacity
or fuzzy measure over N is a set function µ : 2N → [0, 1]
verifying µ(∅) = 0, µ(N) = 1, and µ(A) ≤ µ(B) whenever
A ⊆ B.

From a capacity µ over N one can determine the interaction
indices Iij (that can be helpful in practice to derive such fuzzy
measure) between two elements i and j, see [11], with the
following meanings.

• Iij > 0 means that elements i and j considered indi-
vidually are not important whereas when considered
together they become important; thus there is synergy
or complementarity between them.

• Iij < 0 means that elements i and j are individually
important but taken together the importance does
not increase much more that is these attributes are
substitutable, there is redundancy.

• Iij = 0 means that elements i and j are independent.

Another interesting index associated with a fuzzy measure
and that measures the importance or power of a given element
i is the so called Shapley index φi, see [11].

Once an appropriate fuzzy measure is defined, one can
consider Choquet integral (defined below, see [1]) as an
aggregation operator.

Let µ be a capacity or fuzzy measure over N and x
the numerical values vector of elements of N . The Choquet
integral Cµ(x) of x with regard to µ is given by equation (5)

Cµ(x) =

n∑
i=1

(
xσ(i) − xσ(i−1)

)
µ(Ai); (5)

where σ is a permutation over N such that the order of
equation (6) is respected

xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n);xσ(0) = 0; (6)

and the subset Ai is given by equation (7)

Ai = {σ(i), σ(i+ 1), ..., σ(n)}. (7)

One can see immediately that difficulty of using Choquet
integral as an aggregation operator in practice comes from the
necessity to define a fuzzy measure that necessitates specifying
2|N |−2 coefficients representing the measure of subsets of N
other than ∅ and N . Thus, if the interaction nature (synergy,
redundancy or independence) between elements to aggregate
and/or their importance in terms of Shapley index or their
interaction indices for instance, are known, this can guide
fuzzy measure definition. Rightly, in systems dynamics next
state of a systems will results from synergetic aggregation of
the state of systems influencing its along with other possible
phenomena. Positioning this communication in this framework
we propose to use Choquet integral associated to a WCFM,
see [11], that is briefly recalled in the following paragraph.

1) Choquet integral associated to a WCFM: Generically,
let us consider as known a relative importance weight ωi (with
the condition

∑
i∈N ωi = 1) for each element i of the set N of

elements to aggregate that we compactly represent by vector
ω with ω(i) = ωi; a wcfm µω associated to vector ω is given
by equation (8), see [11].

µω(A) =
|A|
|N |

(∑
i∈A

ωi

)
,∀A ⊆ N. (8)

It is shown in [11] that a weighted cardinal fuzzy mea-
sure (WCFM) over N leads to interactions indices given by
Iij =

ωi+ωj

|N | so that instead of relative weighting vector if the
interaction matrix I is given then the associated wcfm denoted
µI, is defined by the following equation (9)

µI(A) =
1

2

∑
i∈A

∑
j∈A

Iij

 ,∀A ⊆ N. (9)

The interactions indices associated to this measure must verify
the following conditions:

• interactions indices associated to fuzzy measure de-
fined by equation (8) are symmetric, that is Iij = Iji;

• they must satisfy
∑
i∈N

∑
j∈N

Iij = 2 where N is the

universe of elements to aggregate.

In the same way Shapley indices are given by φi = ωi

2 +
1

2|N | (see [11]), so that if these indices satisfying φi ≥ 1
2|N | ∀

i are known (supplied by experts for instance), one can deduce
the corresponding relative importance degree as ωi = 2φi− 1

|N |
and so one can defined the corresponding wcfm as given by
equation (10)

µφ(A) =
|A|
|N |

(∑
i∈A

(
2φi −

1

|N |

))
(10)

where φ is the Shapley indices vector.

This is an interesting thing as in some situations, it may
be more convenient to experts to estimate the synergy of
interaction of elements at the input of a node. These parameters
can be obtained using, for instance, analytic hierarchy process
(AHP) approach, see [8], as sketched in the following. The
Choquet integral Cwcfmω (x) (when relative importance degrees
vector ω is known), or CwcfmI (x) (in the case where the matrix
of interaction indices I is available), or Cwcfmφ (x) (in the case
where the Shapley indices vector is given) of numerical vector
x associated to the corresponding WCFM is therefore given
by equations, (11)-(13)

Cwcfmω (x) =
n∑
k=1

{
µω(Ak)

(
xσ(k) − xσ(k−1)

)}
; (11)

CwcfmI (x) =
n∑
k=1

{
{µI(Ak)}

(
xσ(k) − xσ(k−1)

)}
; (12)

Cwcfmφ (x) =
n∑
k=1

{
{µφ(Ak)}

(
xσ(k) − xσ(k−1)

)}
; (13)



where σ and Ak are defined as in equations (6) and (7)
respectively; and µω(Ak), µI(Ak), and µφ(Ak) are given by
equations (8), (9), and (10) respectively.

In practical view point, among previous indices, namely,
relative importance weights ωi, interaction indices Iij , and
Shapley indices φi; relative importance degrees ωi and interac-
tion indices Iij are certainly those that can be easily estimated
by experts using techniques such as analytic hierarchy process
(AHP), see [8]. The task of estimating relative importance
degrees ωi is a classical AHP problem; in the following we
give an AHP based approach for estimating interaction indices
Iij .

a) Obtaining interaction indices Ijk from AHP: As
stated in previous section, experts may be more at their ease
to supply interaction index of two inputs at the input of a
given node using methods such as AHP, see [8]. Let us denote
by Ijk the interaction index of input signals j and k; using
AHP analysis, this index can be found as follows: for j, k,
l, let us define Φj(k, l) to be a degree measuring the extent
to which k is in synergy with j compared to l; this measure
can be obtained from AHP standard table [8] and then check
for consistent; the relative synergy importance degree υjk of
k with regards to j is therefore given by equation (14)

υjk =
1

|N |
∑
k∈N

(
Φj(k, l)∑

l∈N (Φj(k, l))

)
; (14)

alternatively one may choose a pivot p and compare all other
elements to it to get coefficients Φj(k, p) for any k ∈ N
by answering the question ”how important is element k in
synergy with element j compared to element p ?” and obtain
the Φj(k, l) by equations (15)-(16)

Φj(p, p) = 1; Φj(p, k) =
1

Φj(k, p)
(15)

Φj(k, l) = Φj(k, p)Φ
i
j(p, l) =

Φj(k, p)

Φj(l, p)
. (16)

The interaction index Ijk that fulfills requirements of previous
paragraph is then obtained from (14) as given by equation
(17)

Ijk =
υjk + υkj
|N |

. (17)

2) Aggregated destabilizing effect: Let us define by ωi(t)
the relative importance vector or eventually by Ii(t) the
interaction matrix associated with x(t) at the input of node i at
time instant t, then the global destabilizing effect di (x−i(t))
at the input of node i at time t is given by one of expressions
of equations (18) and (19)

di (x−i(t)) = CwcfmIi(t)
(θi (x−i(t))x−i(t)) (18)

di (x−i(t)) = Cwcfmωi(t)
(θi (x−i(t))x−i(t)) (19)

How input disturbance may affect the dynamics of the
corresponding component systems or entity may constitute a
complex mechanism; in this communication we make assump-
tion that the dynamics of the corresponding node let say node
i, in the network is a sort of combination of its actual inoper-
ability level xi(t) and its actual input global destabilizing effect
di (x−i(t)). How to obtain this combination is the purpose of
the forthcoming paragraph.

C. Dynamics model

Dynamics describe how actual operating situations will
influence future ones; basically, for a component system i, how
to determine its future inoperability level xi(t+1) from its ac-
tual inoperability level xi(t) and the overall impact di (x−i(t))
of the inoperability of its influencing nodes; basically xi(t+1)
will be given by equation such as (20)

xi(t+ 1) = fi (xi(t), di(x−i(t)) (20)

where fi is a function that should have some appropriate
properties that depend on the capacity of system i to support
disturbance or its weakness with regards to inoperability of
its influencing systems. In order to represent a realistic time
behavior of the inoperability of a system i, function fi must
fulfills some properties. It is obvious that, the operability
conditions of a system are affected by other systems, the
destabilization of one of them will increase its inoperability
level that will affect the systems which operation conditions
rely on its and so on; thus for long term all the network
may be completely destabilized (that is xi(t) → 1 when
t → ∞ ∀ i) or operating at a certain steady state level
different from its nominal operating level if corrective actions
are not taken; the function fi is therefore a non decreasing
time function; if global disturbance at the input of node i
is zero, this system inoperability dynamics will depend only
on its internal condition that we evaluate through its internal
vulnerability degree αi. The function fi is a transfert function
of a combination of internal effect and external disturbance as
given by equation (21)

fi (xi(t), di(x−i(t)) = Ti ((1 + αi)xi(t) + βidi (x−i(t)))
(21)

where 0 ≤ βi ≤ 1 measures the extent to which external
global inoperability will impact the inoperability of system
i and Ti is an appropriate transfert function. There exists
many transfert functions and the choice of the apropriate one
may be application dependent and expertise may be needed to
choose it; for instance Ti(x) = min(1, x) will lead to possible
complete destabilization whereas Ti(x) = tanh(x) may result
in systems reaching steady states.

Parameters αi and βi will play a great role on the behavior
of the system so that a sensitivity analysis with regards to
these parameters may be very interesting. How to obtain them
in a practical situation is also worth of investigation; risk
assessment approaches can be used for this purpose, see for
instance [12] and [10]. From the dynamic model described
by equations (20) and (21), many scenarios can be analyzed
to support sound decision making. For instance, given a shift
in the operation conditions of a particular systems, one may
consider evaluating how long it will take for another system
to become completely inoperable or its inoperability to be
increased by a certain amount ?

III. APPLICATION

The developed model can be used in almost any socioeco-
nomic domain when there is a need to analyze the effect of
interdependency between many systems, component systems,
sectors, components, etc. such as infrastructures, economic
sectors, social services, etc. for the purpose of monitoring, pol-
icy evaluation, prediction, etc.. One particular domain where



this model can be helpful is the domain of risk assessment and
management in terms of analyzing risk propagation because of
the interdependency. Large scale, social, economical, and tech-
nical, complex systems such as that of interdependent strategic
infrastructures or economic sectors systems need to be ad-
dressed in systems engineering perspectives in order to dispose
of tools to aid policy and public decision makers make sound
and adequate decisions. Thanks to computers performance
nowadays in terms of storage capacity and processing rapidity,
the possibility to study complex interconnected systems to
support sound and adequate decision process in many domains
becomes a reality. Furthermore, dynamics, in interconnected
systems are very important as future behavior of such systems
depend on the actual states of systems with which they are in
relations on network basis. For risk management of strategic
infrastructures purpose, decision makers may be interested to
evaluate how the disruption of an infrastructure will affect the
operations results of other infrastructures; see [9] for a study
on interdependent economic sectors for instance. Modeling
how disruptions of different infrastructures combine to affect
the operating level of other infrastructures is a challenging
tasks; nevertheless, one can consider in first approximation
that effects combine in a synergetic way. To do so, let us
consider a network of 5 infrastructures or systems (at a country
or a large region level), namely: gas and oil infrastructure
(S1); petroleum and coal infrastructure (S2); electricity supply
infrastructure (S3); water supply infrastructure (S4); and road
transport infrastructure (S5).

This application is extracted from [7] for illustrative pur-
pose; in the original study of [7], 7 infrastructures were
considered including banking and communication besides of
that considered here. The main purpose in that study was to
estimate the ripple impact risk (measured in terms of a certain
amount of financial loss by solving a static equation) on the
considered infrastructure of a scenario of attack on petroleum
and coal infrastructure with a certain amount of loss. The
estimated ”vulnerability coefficients” was done using a public
data from Australia; coefficients corresponding to our selected
5 infrastructures are given on the following Table 1.

S1 S2 S3 S4 S5

S1 0.0181 0.4571 0.0328 0 0.0001
S2 0.0051 0.0235 0.0132 0.0041 0.1274
S3 0.0036 0.0017 0.1700 0.0105 0.0030
S4 0.0001 0.0014 0.0065 0.0360 0.0202
S5 0.0012 0.0020 0.0049 0.0014 0.0472

Table 1: raw data from [7]

Here, our intention is to develop a dynamic model to
simulate scenarios such as ”how long it will take before the
whole system or some sub-systems will become completely
inoperating or operating at a steady state different from their
nominal operating levels given that one particular sub-system
operating capacity is reduced by a certain percentage?” From
the matrix of Table 1, we interpret, for our study, the coefficient
on the diagonal as the one step internal vulnerability coefficient
αi of the the corresponding infrastructure and the sum of the
rest of coefficients of the corresponding line as its one step
external vulnerability coefficient βi, so that they are given by

following equations (22) and (23)

α = [ 0.0181 0.0235 0.1700 0.0360 0.0472 ] (22)

β = [ 0.4900 0.1499 0.0188 0.0282 0.0095 ] (23)

To obtain the relative external influence matrix ω = [ωij ] ,
we normalize data of previous table when disregarding co-
efficients on the diagonal to obtain the matrix of following
equation (24)

ω =


0 0.9328 0.0669 0 0.0003

0.0343 0 0.0883 0.0275 0.8499
0.1910 0.0894 0 0.5577 0.1620
0.0039 0.0507 0.2312 0 0.7142
0.1285 0.2064 0.5176 0.1476 0

 (24)

where ωij is the relative importance degree of j on i; meaning
that:

• The external inoperability that will affect the in-
operabilities of gas and oil infrastructure (S1) are
petroleum and coal infrastructure (S2), electricity sup-
ply infrastructure (S3), and the road transportation
in the proportion 93.28%, 6.69%, and 0.03% re-
spectively; whereas water supply (S4) does not have
influence on gas and oil infrastructure.

• Petroleum and coal infrastructure (S2) will be mostly
influenced by road transportation (S5) for 84.99%,
followed by electricity supply infrastructure (S3) for
8.83%, gas and oil infrastructure for 3.43% and finally
by water supply for 2.75%.

• The inoperability of electricity supply infrastructure
(S3) will be increased by the inoperability of wa-
ter supply infrastructure (S4), gas and oil infras-
tructure (S1), road transportation infrastructure (S5),
and petroleum and coal infrastructure (S2), with the
relative importance of 55; 77%, 19.10%, 16.20%; and
8.94% respectively.

• Water supply infrastructure (S4) functioning condi-
tions will be degraded by inoperability of road trans-
portation infrastructure (S5, 71.42%), electricity sup-
ply infrastructure (S3, 23.12%), petroleum and coal
infrastructure (S2, 5.07%), and gas and oil infrastruc-
ture (S1, 0.39%).

• The inoperability of road transportation infrastructure
(S5) will be affected by the inoperability of electricity
supply infrastructure (S3, 51.76%), petroleum and
coal infrastructure (S2, 20.64%), water supply (S4,
14.76%), and gas and oil infrastructure (S1, 12.85%).

From dynamic model (21), many scenarios can be tested;
for instance how disruption on petroleum and coal infrastruc-
ture (S2) will affect the operating level of other infrastructure:
let us suppose that at t = 0, petroleum and coal supply is cut
by 20% of its nominal level, following Figure 1 shows how
the other infrastructures inoperability will behave.

One can analyze results shown on Figure 1 as following,
two infrastructures namely gas and oil infrastructure (S1)
and electricity supply infrastructure (S3) are very sensitive
to operating condition of petroleum and coal infrastructure;



Fig. 1. Inoperabilities behavior for 20% cut of petroleum supply with transfer functions: (a) Ti(x) = min(1, x) and (b) Ti(x) = tanh(x).

indeed 20% cut of operability of this one leads to gas and
oil infrastructure becoming inoperating after approximately
20 time units and electricity infrastructure fails after 40 time
units or reaching a very high steady state inoperability level
compared to the initial disturbed infrastructure. Water supply
and road transportation operating conditions seem to be less
sensitive to the reduction of the operating level of petroleum
and coal infrastructure. One should not consider this study as
a validation of the presented inoperability propagation model
as data as well as conditions and assumptions are probably
completely different. But results show that the model presented
so far can be able to predict (at least qualitatively in terms
of tendancies) sound behavior of networked systems if one
dispose of good data to derive different parameters and a good
analysis of interconnection relationships mainly to confirm
synergetic relationship assumption that underlies the model.

IV. CONCLUSION

The problem of analyzing and modeling the mechanism
of inoperability propagation within a networked or interde-
pendent systems has been considered in this communication.
The communication has developed some tools that can be
used to assess the strength of the impacts of interdependency
mainly in the case of synergetic behavior of those impacts
to reach a dynamic model of how inoperability propagate
in a such networked systems. Another issue raised in this
communication relate to the possibility of an impact to be
irrelevant for the destabilization of the impacted system if it
does not reached some thresholds, a phenomenon referred to as
the trigging process. The developed model is the beginning of
a research projects that should not only improve the modeling
process, but also verify or confirm the validity of assumptions
made, develop parameters estimation models and validate the
results on real world problem.
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