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1. Introduction

We are delighted to share with you our sixth Journal Club and highlight some of the most
interesting papers published recently. We hope to keep you up-to-date with non-coding RNA research
works that are outside your study area. The Non-Coding RNA Scientific Board wishes you an exciting
and fruitful read.

2. Special Delivery from Plants to Pathogens

Highlight by Hua Xiao and Patrick K. T. Shiu

Although it is known that hosts can send small RNAs (sRNAs) to pathogens to inhibit their
virulence, the mechanism of this transfer is unclear. In a recent issue of Science, Qiang Cai and
coworkers showed that extracellular vesicles are involved in the process [1].

In this study, the authors purified fungal (Botrytis cinerea) cells from infected Arabidopsis tissues
and identified 42 host-originated sRNAs (most of which could also be detected in extracellular vesicles
isolated from apoplastic fluids). In animals, microRNAs are transferred via exosomes, which are
derived from multivesicular bodies (MVBs). Tetraspanins (TET) are exosome markers in mammals,
and Arabidopsis TET8 accumulates at the infection sites. At these sites, MVBs fuse with the plasma
membrane to release vesicles (which can be readily uptaken by fungal cells), further supporting the
notion that plants secrete exosomes to deliver sRNAs to their pathogens. Half of the transferred sRNAs
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have predicted targets, with a bias towards vesicle-trafficking pathways (which are important for
fungal virulence). The target genes are down-regulated after an infection, unless the plant host is
deficient in trans-acting small interfering RNA (tasiRNA) production. The cleavage of mRNAs could
be detected in the fungus, suggesting that the transferred sRNAs silence the target genes through a
transcript destruction.

This work showed that plant sRNAs are delivered to fungal cells via pathogen-induced exosomes.
Future studies should shed light on how these defensive sRNAs are selectively packaged and
transported and if this weapon delivery system is universal in cross-kingdom RNA interference
(RNAi).

3. Connecting Myofibroblasts and Cardiomyocytes via Extracellular Vesicle-Associated
microRNA: A Short-Distance Affair

Highlight by Jun Shu and Gaetano Santulli

The expression of the small ubiquitin-like modifier 1 (SUMO1) has been reported to be significantly
reduced in both human and murine heart failure (HF). However, the molecular mechanisms underlying
SUMO1 upregulation had not been investigated, hitherto. Changwon Kho and colleagues identified a
specific microRNA (miR) as a key factor in the pathophysiology of HF [2]. The authors demonstrated
that miR-146a is a SUMO1-targeting miR, in failing human and mouse hearts. In a model of
pressure overload, overexpression of miR-146a reduced SUMO1 expression, whereas miR-146a
inhibition normalized SUMO1 expression and improved the cardiac function. Intriguingly, the authors
demonstrated that miR-146a was not directly produced by cardiomyocytes, but it was first synthesized
by activated fibroblasts (myofibroblasts), following an injury, and then transferred via extracellular
vesicles to cardiomyocytes. This discovery has major implications in the clinical scenario, since
targeting miR-146a might provide a novel therapeutic approach for the treatment of HF.

4. Size-Dependent Export of Circular RNAs from the Nucleus

Highlight by Mohammad K. Gheybi and Simon J. Conn

While circular RNAs are co-transcriptionally synthesized in the nucleus, they are almost
exclusively sequestered into the cytoplasm. This suggests circular RNAs (circRNAs), like other RNAs,
are actively exported from the nucleus. In a recent issue of Genes & Development, Chuan Huang and
co-workers illuminated a size-dependent mechanism of nuclear transport for circRNAs [3].

Using a targeted, small-interfering RNA (siRNA) screen against proteins involved in nuclear RNA
export in Drosophila, the authors identified an RNA helicase—Hel25E—which caused nuclear retention
of nascent circRNAs, longer than 800 nt. However, depletion of the principal mRNA nuclear export
factor, the NXF1:NXT1 complex, had no quantifiable effect on circRNA transport. Extrapolating these
results to human cells, targeting the two Hel25E homologs in HeLa cells, URH49 (DDX39A), and UAP56
(DDX39B), resulted in a nuclear retention of short (<356 nt) and long (>1298 nt) circRNAs, respectively.

This study identified the catalytic ATPase and helicase domains, of these human RNA helicases,
as critical factors in defining circRNA export-size preference. Future studies could illuminate factors
contributing to the nuclear export of intermediate-sized circRNAs and the possible involvement of
distinct nucleoporins within the nuclear pore complex.

5. A New Bifunctional RNA at the Origin of Tumor Metastasis

Highlight by Baptiste Bogard and Florent Hubé

PNUTS (Phosphatase 1 Nuclear Targeting Subunit) was originally identified as a modulator of
the PP1 phosphatase on Retinoblastoma protein (Rb). PNUTS is up-regulated in cancer cells where it
acts as a potential oncogene through sequestration of the tumor-suppressor PTEN in an inactive state,
in the nucleus.
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Grelet and colleagues identified an alternatively spliced isoform of PNUTS mRNA generated
through an alternative acceptor splice site, in exon 12. The resulting frame-shift disrupted the
translation capacity of the transcript, hence producing a long non-coding RNA (lncRNA-PNUTS) [4].
The authors identified heterogeneous nuclear ribonucleoprotein (hnRNP) E1 as being required to
prevent alternative splicing of PNUTS precursor RNA and favor the formation of the PNUTS mRNA.
They showed that the lncRNA-PNUTS acts as a sponge for miR-205, a negative regulator of genes
involved in epithelial-to-mesenchymal transition (EMT), limiting its bioavailability. They tested
the consequences on tumor progression and showed a temporary increase in the expression of the
ZEB proteins, a family of transcription factors that regulate EMT, which in turn trigger downstream
EMT events.

This study reported an example of a mammalian lncRNA—produced by an originally
protein-coding gene—through alternative splicing, which is involved in the early stages of EMT
and possibly cancer progression.

6. Screening for Long Non-Coding RNA Mediators of Chemotherapy Resistance

Highlight by Joseph H. Taube and Sendurai A. Mani

Forward genetic screens have yielded fantastic insights into gene-phenotype relationships,
for decades. Bester and colleagues have adopted this strategy to identify long non-coding RNAs
(lncRNAs), as well as protein-coding genes, which, when over-expressed, confer altered sensitivity
to Ara-C, a deoxycytidine analog used to treat acute myeloid leukemia [5]. As lncRNAs exert
their function through both trans and cis mechanisms, endogenous loci, rather than transgenes,
were activated using a CRISPRa-SAM [6]. This was achieved by linking a deactivated Cas9 to
the VP64 co-activation domain, expressing a synthetic co-activator, and then applying a library of
aptamer-tagged single guide RNA (sgRNA) specific to the known lncRNA and coding gene promoters.

The authors identified hundreds of candidate lncRNAs, either associated with Ara-C sensitization,
or resistance. They further confirmed the role of several lncRNA, including the GAS6 antisense
transcript (GAS6-AS2). GAS6-AS2 was further shown to act in cis mechanisms to upregulate the
expression of its cognate protein-coding gene (GAS6), and in trans mechanisms to alter the DNA
methylation at AXL. Validating this strategy, a higher expression of GAS6-AS2, as well as AC008073.2,
were associated with poor prognosis and decreased disease-free survival, in acute myeloid leukemia
(AML) patients treated with Ara-C. This approach showed the power of forward genetic approaches
to capture key regulators among lncRNA-encoding genes.

7. Long Non-Coding RNA “Entrap” Tumor Suppressor microRNAs to Promote Cancer Growth
and Migration

Highlight by Luo Song, George A. Calin and Shuxing Zhang

We have a deep interest in modeling RNA–protein [7], RNA–RNA [8], and RNA–small molecule
interactions [9]. Such profundity will significantly help us elucidate novel molecular mechanisms
of tumorigenesis and provide insights for therapeutics discovery and development. Herein,
we are delighted to share one of the interesting papers we published recently on ncRNA–ncRNA
interactions [8].

The transcribed ultraconserved regions (T-UCRs) had been proven to play an important role in
human carcinogenesis, but there is still a large blank in the mechanisms and the consequences of
their expression dysregulation in cancers. Recently, our colleagues revealed a new pathway of the
transcribed ultraconserved region 339 (uc.339) to explain how uc.339 promotes carcinogenesis [8].

In this article, the authors assessed the related data from The Cancer Genome Atlas (TCGA)
database and found that, in 210 non-small cell lung cancer (NSCLC) patients, the high expression of
uc.339 was positively correlated with the low survival. Furthermore, the authors showed that with
upregulation of the transcribed uc.339 in archival NSCLC samples, tumor suppressor microRNAs, such
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as miR-339-3p, -663b-3p, and -95-5p, were suppressed, which led to an increased level of a cell-cycle
regulation protein, cyclin E2. As a result, cancer growth and migration was promoted. Additionally,
the result suggested that either overexpression or suppression of these microRNAs had limited effects
on the uc.339 level. Based on their modeling studies, the authors named this type of interaction as
“entrapping”. This study further revealed structural details of how lncRNAs play roles in human
carcinogenesis, and also provided a novel concept for cancer therapy and drug discovery.
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