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Abstract 

To ensure good adhesion between a 200 nm silicon dioxide layer and a 4.5 μm thick hardcoat polymeric coating, a better 

understanding of mechanisms of adhesion at this interface is needed. To reach this purpose, quantification of adhesion is 

performed by analyzing SiO2 buckle morphologies generated under compressive stress. This adhesion test was chosen for its 

representativeness of defects observed in real life. Interfacial toughness can be determined by applying Hutchinson & Suo 

model. This analytical model involves accurate value of elastic modulus Ef of SiO2 thin film. Small dimensions at stake make 

characterization of elastic modulus challenging. First part of the study focuses on using both nano-indentation and AFM to 

attempt assessment of SiO2 thin film elastic modulus. Results showed significant influence of substrate for both techniques. 

Impact on mechanical properties between SiO2 thin films with different intrinsic stresses was also investigated and suggests 

that higher density of SiO2 thin film leads to higher elastic modulus. Compression tests resulted in formation of straight-sided 

buckles that evolve into telephone cords upon unloading. Numerical simulation and Digital Image Correlation were 

implemented to ensure homogeneous strain of substrate and favor regular distribution of buckles. Values of energy release 

rates of SiO2 / Hardcoat range from 2.7 J/m² to 8.9 J/m², depending on moduli values found on wafer or lens substrate. 
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1. Introduction

Ophthalmic lenses are made of plastic polymeric substrates usually coated with functional treatments composed 

of 5 to 15 layers, ranging from micrometers to nanometers. The first treatment consists of a primer, conferring 

impact resistance properties to the lens. A hardcoat with nanoparticles, is then deposited on top of this primer, 

bringing anti-scratch properties to the system. Both primer and hardcoat are within the micrometer scale and are 

deposited by wet chemical methods. Nanometric anti-reflective stacks are then evaporated onto the hardcoat by 

vapor deposition technology, to enhance wearers’ comfort. Interface quality is essential to ensure stability and 

durability of ophthalmic multi-layer. In fact, insufficient adhesion between layers causes higher susceptibility to 

emergence of defects or delamination. Occurrence of these phenomena affects wearers’ comfort and has 

tremendous impact on products’ lifetime. Therefore, it is essential to develop a method enabling quantitative 

assessment of interface quality, which will ultimately enable higher product reliability. 

General behavior of whole system must be fully characterized. To reduce the complexity of this characterization, 

focus is first placed on studying the interface between the anti-reflective stack and the hardcoat. More 

specifically, this paper centers around the SiO2 thin film / hardcoat interface, which is particularly sensitive 

because of mechanical and dimensional contrast between both parts.  

This entails studying both materials composing each layer and interface. Interface quality can be evaluated 

through quantification of adhesion energy. Over 300 adhesion tests are referenced in the literature by Mittal 

(1995). Techniques commonly used on similar structures – 200 nm thick rigid thin film on soft substrate – 



include cross cut, peel, scratch, 3-point and 4-point bending, Superlayer, Lasat, bulge, tensile and compression 

tests. Among these numerous techniques, several methods have been implemented to study adhesion of SiO2 thin 

film on polymeric substrate. Fateh (2013) performed cross-cut tests to rank adhesion of mixed metal oxide 

(TiO2/SiO2) thin films on polycarbonate substrate. Lian (1995) used a tape test to evaluate peel strength of SiO2 

(100 nm) on PMMA to be between 56 to 552 g.cm-1, depending on deposition conditions and surface treatments. 

Tadanaga (1996) also chose peel adhesion test, but was limited by fracture of Nylon-6 substrate before 

interfacial delamination. Amendola (2008) performed scratch tests to determine critical load of 3.4 mN ± 0.2 mN 

for a 100 nm SiO2 layer delamination from untreated polymeric AcryLite™ substrate. Letterier (1997) 

performed tensile tests on a 12 µm PET substrate coated with 100 nm SiOx (x = 1.6). Depending on occurrence 

of thermal treatment, interfacial shear strength of SiO2 / PET ranges from 66.8 MPa to 75.5 MPa. Litteken 

(2003) uses 4-point bending adhesion test to estimate energy release rate Gc of 200 nm thick SiO2 thin film 

deposited on 0.25 µm polymeric PAE SiLK™ substrate. The authors measured an adhesion value of 12 J/m², 

which is higher than bulk fracture resistance of SiO2 and suggests plastic deformation.  

Choice of appropriate method to access adhesion is made according to compatibility with system under study, 

repeatability, ease of implementation, cost effectiveness and representativeness of defects observed in real life 

versus defects generated by mechanical tests. Chosen method should not only allow ranking of adhesion, but 

also give information on critical interfacial stress or even adhesion energy. Preliminary testing consisted in 

attempting to generate spontaneous delamination of studied SiO2 thin film using a Zirconium Superlayer. This 

trial was ineffective, which attests a strong adhesion at SiO2 / Hardcoat interface. Pull-off tests and three-point 

bending experiments have also been performed. Results located weakest interface at SiO2 thin film / adhesive 

and SiO2 thin film / stiffener interface respectively. This exposes challenge of finding appropriate stiffener or 

adhesive for strong adhesion interface. This is the reason why pull-off tests and three-point bending experiments 

were not favored. Considering specifications required for choice of adhesion test and preliminary testing, 

compression tests appear to be the most promising to characterize our structure. Compression tests of metallic 

thin film on polymeric substrate are indeed largely used in the literature to characterize thin film adhesion, as 

studied by Coupeau (1999), Cleymand (2002), Xue (2014), Cordill (2014) or Jia (2013). Few authors have 

applied compression adhesion tests to non-metallic thin films. Abdallah (2006) studied buckle morphologies of 

400 nm thick Si3N4 deposited on hardcoat on top of AcryLite™ substrate. Evaluation of interfacial properties of 

oxide thin film deposited on polymeric substrate by compression tests have not been implemented yet and sets 

the framework of the present study. Buckling of SiO2 thin film has already been proven possible in the literature. 

Nicu (1999) and Fang (1999) have independently generated buckling of free-standing SiO2 micro-bridges in 

order to determine residual stress of thin film. Considering mechanical contrast between SiO2 thin film and 

polymeric substrate, inducing interfacial delamination of system under compressive stress is theoretically 

feasible. Besides, this technique has the advantage of applying uniaxial stress without mechanical contact in the 

area under observation. 

As mentioned earlier, emphasis is also placed on determining mechanical behavior of each material as 

mechanical properties are needed to fully understand fracture energies. Nano-indentation, largely influenced by 

Oliver and Pharr (1992) is widely used to determine mechanical properties of both bulk materials and thin films 

deposited on substrate. However, impact of substrate is inevitable for thin films of a couple of nanometers thick. 

To limit this effect, corrections of substrate’s influence using FEA exist, as studied by Li (2009) and Hay (2011). 

Another approach consists in using an alternative technique with better surface detection which results in a more 

confined interaction volume, which is expected to lead to a lower impact of substrate. AFM is a particularly well 

suited technique for topography and surface roughness information. Nevertheless, several studies have used 

AFM, Hopf (2014) and Trtik (2012), to extract mechanical properties of sample of interest. Elastic modulus can 

indeed be determined using DMT contact model with slope of retract curve. As mentioned earlier, this 

alternative method to characterize elastic modulus has the advantage of having higher sensitiveness to surface 

detection compared to nanoindenter. However, limitations of mechanical characterization by AFM include 

sensitiveness to topography, cantilever spring constant and tip contact area uncertainties. In the present study, 

elastic modulus of SiO2 thin film deposited on Si wafer and ophthalmic lens substrate are characterized by both 

nano-indentation and AFM Peak Force® method. Micro-compression results to quantify SiO2 / hardcoat 

adhesion, are also presented.  

2. Materials and Methods

2.1. Multilayer system under study 

SiO2 Type A and SiO2 Type B are deposited by evaporation under vacuum whether on silicon wafer (280 µm 

thick and 2 inches diameter wafers from ITME) or on top of standard ophthalmic structure: 4.5 μm composite 

polymer referred to as hardcoat, on a 2 mm polycarbonate substrate. That is a total of four sample configurations, 

as represented in Figure 1.  



Figure 1: Samples’ Configuration a) on polymeric substrate b) on Silicon Wafer substrate 

Deposition of both types of SiO2 layers is conducted under a pressure of 8.10−5 to 1.5×10−4 mbar, similarly to 

Roisin (2012). Difference between SiO2 Type A and B results from supply of gas during deposition: SiO2 Type A 

is deposited along with oxygen gas whereas SiO2 Type B deposition does not involve introduction of additional 

gas. This difference in process was proven to effectively generate different levels of intrinsic stress within SiO2 

layers, due to increase of porosity related to gas scattering during deposition, as suggested by Scherer (1996).  

2.2. Mechanical properties of SiO2 thin film 

 Determination of intrinsic stress

Compressive intrinsic stress of SiO2 Type A on glass strip (60 mm x 5 cm x 150 µm) was measured to be 

roughly -100 MPa, compared to -400 MPa for SiO2 Type B. Bending curvature of glass strip was measured 

before deposition of SiO2 thin film on KLA Tencor P16+. Glass strip was then placed into evaporation under 

vacuum chamber (glass strip being only clamped on one end, the other end remaining free) to receive deposition 

of SiO2 thin film. Another measurement of glass strip’s bending curvature was performed 2 hours after 

deposition. Compressive intrinsic stresses are then calculated using Stoney’s equation. Stoney (1909) uses 

bending curvature of glass strip before and after deposition of SiO2 thin film:  

σf = −𝐸𝑠
ℎ𝑠²

(1−𝜈𝑠)ℎ𝑓

1

𝑅
(1) 

Where Es is Young modulus of substrate, hs and hf are substrate and film thickness respectively, 𝜈𝑠 is substrate’s

Poisson coefficient and R is radius of curvature.  

 Nano-indentation

Four sample configurations were characterized with a Nanoscope XP III from MTS, using a DCM measuring 

head and Berkovich diamond tip. A matrix of 30 indents separated by 30 μm, was created for each configuration. 

Before carrying out nano-indentation tests, tip area was first calibrated with a sample of fused silica. Continuous 

Stiffness Mode (CSM) which consists in overlapping a small amplitude oscillation at 75 Hz to a load controlled 

system, was used. Using Oliver and Pharr (1992) model, both elastic modulus and hardness can be extracted 

directly from nano-indentation curve, plotting load versus displacement into surface.  

 AFM

Four sample configurations were characterized by AFM using Peak Force® QNM mode on a Bruker’s 

Dimension Icon. AFM tip radius has been calibrated using fused silica of known elastic modulus. Cantilever’s 

spring constant of 436 N/m has been given by tip provider. Cantilever with high spring constant has been chosen 

for its suitability with hard materials. Several Peak Force values have been tested to determine the optimal Peak 

Force to apply on this specific sample. Using DMT model, developed by Derjaguin et al. (1975), elastic modulus 

can be determined with slope of retract curve, Poisson coefficient of film 𝜈, radius of indenter R and indentation 

depth δ.  

(2) 𝐹 −  𝐹𝑎𝑑ℎ =
4

3

𝐸

(1 −  𝜈)
√𝑅 𝛿3/2
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2.3. Adhesion test 

2.3.1. Experimental set-up 

 Compression stage

Configuration of SiO2 Type A and B on lens structure was tested. Micro-compression tests were performed on a 

Deben stage with a 5 kN load cell, used under compression mode (Figure 2). Motor speed was set to 0.2 mm/min. 

Buckling phenomena were observed and recorded using an Olympus BX51W1 optical microscope with a 

magnification of 5. Observation area under these conditions was 1.7 x 2.3 mm². Since displacement 

measurement is not close to sample and test apparatus inevitably undergoes deformations, preliminary tests are 

needed to estimate true strain of substrate to generate buckling on sample SiO2 B. A strain of 5.3%, below 

softening point (Figure 2c), was measured by video extensometer from each clamping jaw and seems to be 

sufficient to buckle studied SiO2 thin film.  

 Dimensions of sample

Buckling of compressed beams analytical calculations were made to define geometries in order to avoid buckling 

of substrate. As reported by Fanchon (2016), slenderness 𝜆 is defined as followed:  

  𝜆 =  
𝐿

√
𝐼

𝑆

=  
𝐿

√ℎ2

12

 (3) 

With 𝐿, length of sample along the compression axis, 𝐼 moment of inertia equals 
𝑏ℎ3

12

For sample dimension of (Length: 15 mm, Width: 5 mm, Thickness: 2 mm), slenderness was calculated to be 

8.7, which was then compared to critical slenderness 𝜆𝑐  :

𝜆𝑐 =  𝜋√
𝐸

𝑅𝑒
 (4) 

With 𝐸, elastic modulus of polycarbonate substrate and 𝑅𝑒, its yield strength. Elastic modulus of polycarbonate

and yield strength was determined to be 2300 MPa and 34 MPa respectively, which gives a critical slenderness 

of 26. As 𝜆 < 𝜆𝑐, buckling of substrate is not expected with these sample dimensions. Samples were then

precision machined on a Charly Robot milling machine, with a 2 mm diameter milling cutter. 

 Homogeneity of deformation

Inhomogeneity on the surface can occur due to friction phenomenon between sample and clamping jaws. To 

determine homogeneous area of the examined surface, a finite element model of macroscopic polycarbonate 

substrate was built. A 3D quasi-static mechanical model was used to simulate full sample with infinite friction 

with clamping jaws (the most unfavorable case). Polycarbonate substrate is modeled with an elasto-plastic law 

(𝐸 = 2.3 𝐺𝑃𝑎, 𝜈 = 0.37, 𝜎𝑦 = 34 𝑀𝑃𝑎). Boundary displacement along 𝑦⃗ was used as load and applied on top face

while bottom face remained clamped. Part was meshed with 20-node quadratic brick with reduced integration 

elements (C3DR20 in Abaqus® FEM software). Results of numerical model (Figure 3) give deviation from 

b) 

c) 

a) 

Figure 2 : Experimental set-up of compression test a) Compression stage b) Compression sample c) compression curve

5,3% strain 



homogeneity of stress of less than 1 MPa within the area of interest. As stress state is sufficiently homogeneous, 

we could expect a regular distribution of buckles in the observed zone. 

 Figure 3: Stress along the compression axis (arrows represent direction of applied displacement, triangles represent clamping condition 

of bottom face and rectangles represent area of interest) 

 Determination of local strain with Digital Image Correlation

Strain field in substrate subjected to uniaxial compressive deformation is studied by Digital Image Correlation 

using 2M cameras coupled with ARAMIS software. A subset size of 20 pixels with a step of 10×10 pixels is 

chosen. Strain field within area of interest, marked in grey in Figure 4 is 5.2 ± 0.2 % at strain levels necessary to 

study buckling phenomenon. Small standard deviation measured ensures strain homogeneity of 95% in the 

observation area.  

Figure 4: Digital Image Correlation measured of strain homogeneity during a compression test. Maximum variation in the observation area 

reaches 0.2 % 

2.3.2. Analytical model for straight-sided buckles 

The critical compressive biaxial stress at the onset buckling σB0 is expressed as followed: 

𝜎𝐵0 =
 𝜋²

 12

𝐸𝑓

1−ѵ²
(

ℎ

𝑏
)

2

(5) 

where h is thickness of film, b is half width of buckle and Ef is plane strain modulus of film, as stated by Moon 

(2004). Energy release rate G along the sides of the buckle can be estimated by studying on one hand, the 

average energy per area in the unbuckled state U0 and on the other hand, the average energy per area in the 

buckled state U, through the relation: G = U0 – U. Expressed differently, the energy release rate G is the energy 

per area needed to separate SiO2 thin film from substrate over the width of buckle and is defined as: 

𝐺 =  𝐺0 (1 −
𝜎𝐵0

𝜎𝑟
)

2

(6) 

with G0, the available energy per area stored in the unbuckled film: 

𝐺0 =  
(1−ѵ𝑓

2)𝜎𝑟
2ℎ

2𝐸𝑓
(7) 

with 𝜎𝑟, the residual stress in the buckled plate:

𝜎𝑟 =  
3

4
 𝜎𝐵0 (

𝛿²

ℎ²
+ 1) (8) 

with 𝛿, height of buckle. 
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The total stress in the film is defined as the sum of internal residual stress due to process 𝜎𝑖 , and of externally

applied stress ∆σxx, generated during the experiment, as stated by Jia (2013): 

∆σ𝑥𝑥 =  
𝐸𝑓

𝐸𝑠

1−ѵ𝑓ѵ𝑠

ѵ𝑓
2 𝜎𝑒𝑥𝑡 (9) 

Where Ef and ѵf, Es and ѵs are elastic modulus and Poisson’s ratio of film and substrate respectively, σext the

external stress applied to substrate during testing.  

3. Results and Discussion

3.1. Elastic Modulus of SiO2 thin film

As shown in Figure 5, modulus of hardcoat is measured to be between 6 – 7 GPa by nano-indentation. It can be 

noted that modulus is relatively stable over a wide range of indentation depths; except for the first 10 nm, where 

surface detection can be particularly sensitive on a composite polymer. On the contrary, rapid evolution of 

modulus of SiO2 thin film as a function of displacement into surface is observed. This confirms that substrate’s 

influence has a considerable impact on SiO2 thin film’s modulus measurement.  

Figure 5: Moduli of SiO2 film deposited on hardcoat on polycarbonate substrate (a) and on silicon Wafer (b) 

Models to correct substrate’s impact relying on FEA to precisely determine contact radius, have not been 

implemented as it requires mechanical properties of material to characterize. It should be noted that moduli 

obtained for indentation depths below 20 nm are susceptible to surface detection errors. Above 30 nm indention 

depth, substrate’s influence becomes significant. Moduli are therefore averaged for indentation depths between 

20 and 30 nm, even though impact of substrate is already existent and acknowledged (Table 1).  

Table 1: Elastic moduli of SiO2 Type A and B deposited on Wafer and ophthalmic lens, obtained by nano-indentation 

Substrate 
         Young Modulus (GPa) 

 SiO2 A 

      Young Modulus (GPa) 

SiO2 B 

Silicon Wafer 46 ± 2 58 ± 1 

Ophthalmic lens 

(hardcoat on Polycarbonate) 
14 ± 1 17 ± 0 

On both Si wafer and lens substrates, SiO2 Type A and B are differentiable. Modulus of SiO2 Type B is 26% 

higher than modulus of SiO2 Type A on Si wafer. The same trend is observed for lens substrate, difference being 

slightly lower (21%). Scherer (1996) showed that intrinsic stress is linked to local density – without porosity 

taken into account - through Si-O-Si deformation; diminution of bond angle at the O atom site, being related to 

increase in intrinsic stress. This could explain difference observed between SiO2 Type A and B; change of 

material density leads to a higher intrinsic stress and also to the modification of mechanical properties. Even 

a)



though this range is extremely wide, we can conclude that true value SiO2 lies somewhere between 14 GPa and 

46 GPa for SiO2 Type A and between 17 GPa and 58 GPa for SiO2 Type B. Scherer (1996) also determined 

moduli of 120 nm SiO2 thin film deposited by electron-beam evaporation on glass substrate. Values range from 

35 GPa for deposition without additional gas (similar to SiO2 Type A) to 48 GPa (similar to SiO2 Type B) for 

deposition with oxygen, which is within the range of moduli measured.  

Moduli of SiO2 thin film measured on Si wafer are significantly higher (~250%) than those on lens. According to 

curves presented on Figure 5, elastic moduli of SiO2 are overestimated on Si wafer and underestimated on lens 

substrate. Aside from contribution of substrate’s influence, outgassing of lens substrate may explain lower 

moduli compared to those found on Si wafer. Moreover, during deposition, thermal stress could be generated on 

polymer substrate due to heat load of electron beam. Given that coefficient of thermal expansion of SiO2 and 

polymer are significantly different, this may result in change of dimension of polymeric substrate, which might 

ultimately impact SiO2 modulus value. Another explanation could come from difference of microstructure 

between SiO2 layers deposited on two substrates of different nature.  

Characterization of mechanical properties by AFM were performed using a Peak Force value  of 1000 nN, which 

has been chosen to have an elastic deformation value around 2 nm, corresponding to 1% thickness of SiO2 layer. 

Deformation depth was estimated to be 1.9 ± 0.3 nm. This was obtained by analyzing deformation map over the 

same 1 µm² area. Modulus and its standard deviation for each sample configuration are summarized in Table 2.  

Table 2: Elastic moduli of SiO2 Type A and B deposited on Wafer and ophthalmic lens, obtained by AFM 

Substrate 
    Young Modulus (GPa) 

 SiO2 A 

      Young Modulus (GPa) 

SiO2 B 

Silicon Wafer 48 ± 9 64 ± 14 

Ophthalmic lens 

(hardcoat on Polycarbonate) 
22 ± 3 23 ± 3 

Mean values are calculated for each four conditions from 262144 (512x512) approach-retract curves. Modulus of 

SiO2 Type B is 33% (48 ± 9 GPa) higher than modulus of SiO2 Type A (64 ± 14 GPa) on Si wafer when 

modulus of SiO2 Type B is 5% (22 ± 3 GPa) higher than modulus of SiO2 Type A (23 ± 3 GPa) on polymeric 

lens substrate. Taking into account the high standard deviation values due to surface heterogeneities at the 

nanometer scale, moduli of SiO2 A and B, could be considered similar. The higher standard deviations on moduli 

values could come from topographic crosslink modifying the effective contact area, resulting in erroneous calculi 

from DMT model. Roughness (Ra) of SiO2 film on Si wafer was measured to be below 1 nm. On the other hand, 

SiO2 moduli on silicon wafer are significantly higher than SiO2 moduli on ophthalmic lens. This suggests that 

moduli of thin film are still impacted by substrate, even though deformation depth was found to be roughly 2 nm. 

Hypothesis can be made on AFM tip’s oscillation at 1 kHz, which may affect behavior of viscoelastic hardcoat 

underneath SiO2 thin film on lens structure, causing differences observed on moduli between the two substrates.   

3.2. Mechanical adhesion of thin films by micro-compression 

3.2.1.     Phenomenological aspects 

Initiation and instantaneous propagation of buckles, as well as cracking, were observed during application of 

compressive stress on SiO2 Type B on lens sample. During the unloading phase, a progressive conversion from 

straight-sided buckles into telephone cords morphologies was observed. The occurrence of telephone cords 

during unloading is commonly seen, as reported by Moon (2004) and is consistent with stability diagram of 

unilateral buckling patterns established by Parry (2006). Concomitance of buckling and cracking (Figure 6) during 

testing can be explained with hypothesis on mechanisms of their initiations. It is assumed that given sufficient 

energy, initiation of buckling, followed by its widening, seems to be the logical sequence of events. However, in 

areas where adhesion is stronger, buckle enlargement seems more difficult than growth of buckle height. This is 

likely to generate important bending curvatures that eventually lead to cracking. Therefore, we can formulate the 

hypothesis that occurrence of buckle or cracking can give information on adhesion at a very local level. Ratio of 

buckles to cracks populations was estimated to be approximately 2 over an observation area of 1.7 x 2.3 mm².  



Figure 6: (a) Concomitance of buckles and cracks observed on SiO2 Type B, (b) measurement of a buckle width, (c) example 

of a telephone cord associated to the unloading of sample

As for SiO2 Type A, observation of buckle morphologies was hindered by inhomogeneous strain of substrate. 

Higher compressive stress was indeed needed to see emergence of buckles. At this strain level, polycarbonate 

substrate is well past softening point, causing strain localization and making results difficult to analyze. This 

behavior conforms with smaller compressive intrinsic stress being unfavorable to generation of buckles.  

3.2.2.     Identification of delaminated area 

Identification of layer that buckles has been made on a specimen where telephone cords have been removed by 

tape, in order to release the interface. Step height of delaminated areas, identified with AFM, was found to be 

200 nm which corresponds to thickness of SiO2. Profile analysis of chemical composition over a delaminated 

area shows increased quantity of silicon and oxygen and decreased quantity of carbon on higher zones (Figure 7). 

These analyses strongly suggest delamination at the SiO2 / Hardcoat interface and support validation of micro-

compressive testing as an effective adhesion test to solicit interface of interest.  

3.2.3.     Quantification of adhesion 

Half-width of uncracked buckles averaged over 15 measurements is b = 18±2 µm, using ImageJ software. 

Height of telephone cord observed in post-mortem specimen was estimated to be 2.2 µm by AFM (Figure 8). The 

measured height after unloading is underestimate which results in a minimization of calculated energy release 

rate according to equation (8). This gives values of energy release rates ranging from 2.7 J/m² to 8.9 J/m². This 

underestimated fracture energy is in the same order of magnitude as bulk fracture resistance of SiO2, between 5 

and 8 J/m² as reported by Litteken (2003), which could suggest contribution of plastic energy. Calculated energy 

release rates are within the range of adhesion energies found in the literature by Xue (2014), for example, 0.8 to 

1.2 J/m² for Au on PI and 6.5 J/m² for ITO on Acrylite™.  

a) 

b) 

c) 

Buckle width 

18 µm 

Figure 7: EDS characterization of a delaminated area (Carbon: Red curve, Oxygen: Green curve and Silicon: Blue curve)



Figure 8: AFM characterization of a telephone cord obtained after unloading 

Conclusion 

Elastic moduli of SiO2 Type A and B were determined by nano-indentation, giving results ranging between 46 

and 58 GPa for Si wafer substrate and 14 and 17 GPa for polymeric lens substrate. Same measurements were 

carried out using AFM. Moduli found are 48 and 64 GPa for Si wafer substrate and 22 and 23 GPa for polymeric 

lens substrate. Modulus of SiO2 Type B was found to be roughly 20% higher than SiO2 Type A, by nano-

indentation. Regarding the high standard deviation of moduli measured by AFM, no significant difference 

between elastic moduli of SiO2 Type A and B was observed by AFM on both substrates. However, an important 

difference between moduli of SiO2 on lens and on Si wafer was observed. This exposes unexpected influence of 

substrate on mechanical measurements using AFM, which has been hypothetically attributed to impact of Peak 

Force high frequency oscillations on viscoelastic substrates. Step height of delaminated areas measured by AFM 

along with EDS profiles over delaminated area obtained after micro-compressive tests, strongly suggest that 

delamination occurred at the interface of interest. This gives values of energy release rates ranging from 2.7 J/m² 

to 8.9 J/m², depending on moduli values found on wafer or lens substrate. Despite wide variation range, values 

are compatible with bibliographical results. Broader perspectives consist of simulating the micro-compressive 

adhesion test. Simulation is indeed the only method known to access information such as plastic dissipation or 

local strain, allowing better analysis of fracture energies.  
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