M Nasri 
  
F Abbassi 
  
C Garnier 
  
A R Labanieh 
email: ahmad.labanieh@ensait.fr.
  
O Dalverny 
email: olivier.dalverny@enit.fr.
  
A Zghal 
  
Numerical models of fabric behaviour using hybrids discrete elastic and hypoelastic modelling

This paper present two hybrids discrete continuous models for the simulation of woven fabric reinforcement preforming via explicit finite element analysis. There approaches are based 1D elements on a beam or nonlinear connectors, and 2D element account for shearing resistance of the fabric. The first developed model is built using linear and nonlinear connectors to take into account the tensile stiffness of the fabric, and a shell elastic isotropic element. The second model is based on nonlinear elements and the hypoelastic behaviour. The determination of the material parameters is straightforward from tensile and bias extension tests. These proposed approaches have been implemented in the ABAQUS explicit finite element programs via subroutine VUMAT. There models allows the simulation of industrial part forming in a reasonable computational time. Simulations of the hemispherical shape of woven fabric 48600 C1300 have been implemented to highlight the performance of these models.

Introduction

The composite forming materials with woven reinforcements are generally obtained by stamping or preforming. Their use in the automotive and aerospace industries requires the realisation of a range of simulation on reinforcements: To predict the feasibility of shaping reinforcements, there are several meso and macro numerical structural model. The investigation of the numerical shear behaviour and stiffness of technical woven fabric are essential to guarantee the performance of the final product. Different approaches used for the simulation of woven reinforcement, using a geometric, continuous, discrete or semi-discrete [START_REF] Boisse | Simulation of wrinkling during textile composite renforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[END_REF]. The geometric approach consists to place a net on a surface along geodesic linens. The result is the same regardless of the used material [START_REF] Van Der Weeën | Algorithms for draping fabrics on doubly-curved surfaces[END_REF] .Indeed, although the result of the shaping depends on the mechanical characteristics of the reinforcement. Moreover, the boundary conditions in terms of forces, that is to say, for example, the forces created by the tools (blank holder in particular), are not taken into account [START_REF] Van Der Weeën | Algorithms for draping fabrics on doubly-curved surfaces[END_REF]. In the continuous approach, the woven fabric is considered a continuous medium juxtaposed and the mechanical behaviour of which is equivalent to those of the textile reinforcements. Three continuous approaches are described within a membrane and shell assumption (continuous non-orthogonal elastic, continuous hypoelastic and continuous hyperplastic) [START_REF] Khan | Preforming simulation of the reinforcements of woven composites: continuous approach within a commercial code[END_REF]. The discreet approach represents the reinforcement as an elementary physical cell, which uses finite elements of bars, beams, membranes or shells. In several publications, the focus of the simulation is on representing the arrangement and interaction of the discrete of woven [START_REF] Sidhu | Finite element analysis of textile composite preform stamping[END_REF]. Ben Boubaker et al. [START_REF] Boubaker | Discrete models of fabric accounting for yarn interactions: Simulations of uniaxial and biaxial behaviour[END_REF] proposed a modelling of woven reinforcements based on massspring system modelling the different behaviours. In [START_REF] Sharma | A simplified finite element model for draping of woven material[END_REF][START_REF] Jauffrès | Discrete mesoscopic modelling for the simulation of woven-fabric reinforcement forming[END_REF][START_REF] Harrison | Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments[END_REF] Sharma et al. proposed a model based on an elementary cell constructed only with elastic bars on the sides and elasto-plastic bar positioned according to one of the diagonals to model the nonlinear shear behaviour. Finally, the semi-discreet approach is a combination of the continuous and discreet approach. This approach is based on the virtual work theorem, which links internal, external and acceleration works in the virtual displacement field [START_REF] Boisse | hyperplastic, discrete and semi-discrete approaches for textile composite reinforcement forming[END_REF]. The present paper aims to present a comparison of two hybrids discrete models for finite element modelling of woven fabrics. The first one is using elastic isotropic shell elements and axial connectors used by W. Najjar [START_REF] Najjar | Conference paper A novel simulation model for textile renforcement preforming[END_REF]. The second using hypoelastic elements reinforced by specialised connectors to show the effect of the non-linearity of the yarns behaviour, thus the anisotropy of the carbon reinforcements. Four hypotheses have been issued about the behaviour of dry woven reinforcements: The stiffness's of the reinforcements in tension is important, the low shear stiffness. The flexural and compressive stiffness are negligible, and the variation between yarns is important. The following aspects are presented in this paper: -Mathematical description of their models -Validation of the models on a more complex state of deformation (i.e. bias-extension test and forming simulation of a three-dimensional shape).

Numerical description models of woven fabric

Hybrid discrete continuous elastic model

The hybrid discrete elastic model description of the fabric is built using a mesh of 1D and 2D elements of unit cell of the fabric (figure 1). This model includes the following parameters: 0 l is the element dimension and K0 (in the case of linear approach) or (Fc, Uc) are the stiffness of the connectors associated with the connectors, in the case of nonlinear approach. E11, E22,  and e are respectively the stiffness, Poisson's ratio and thickness of woven fabric of elastic continuous elements. In the case of tension, the total force exerted on the cell decomposes it in two terms; the force supported by the connectors and shell expressed by:
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Where E the Young's modulus, v is the Poisson's ratio and e is the thickness of the element. In the case of shear. The shear angle is given as a function of displacement d and the length of connector l0 by:
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The hypothesis of elastic large deformation behaviour is adopted; the law of shear behaviour can be calculated:
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Where G is the modulus of rigidity and L  is the logarithmic shear strain:
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The maximum shear angle is determined by the angle between two connectors each characterising a yarn direction. A VUMAT algorithm was developed to determine the logarithmic shear strain, thus the shear angle given by the expression (4). A numerical test, as shown in the figure 3, was carried out on a hybrid element. The parameters used for the continuous element are length l0 = 1 mm , E = 20 MPa, v = 0.3, e = 0.1 mm. The value of the rigidity of the connector k0 = 500N / mm 

1D 1inear elements

According to the linear or non-linear case, a uniaxial tensile test is identified, in either each direction in the case of unbalanced reinforcements, a constant stiffness K, or a force / displacement law. The uniaxial tensile test consists of identifying the stiffness of KF fabric (see Figure 4). This parameter modulus is easily found from the slope of the experimental tensile loud displacement data of the fabric. After discretization by finite element of the sample, the local stiffness K0 is deduced according to the number of connectors according to the length and according to the number of connectors according to the width. This stiffness can also be written according to the dimensions of the samples and the size of the element l0. The figure 6 shows the typical load-displacement curve for the weft tensile test of 48600 C 1300 woven fabric. The tensile test, made on woven reinforcements of carbon, reveal three phases: the first Setting up of the woven, reducing the crimp phenomenon. In the second the tension of fabric until the maximum load.

Finally the progressive deterioration of the specimen. The stiffness of the fabric Kf is calculated using the mean slope in the second part. In this case, Kfabric0° = 4897 N/mm. The connector stiffness K0 can the directly identified as per following:
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N and n: the number of connectors in direction length and the width of the specimen. l0: Size of the element This approximation seems insufficient to characterise the tensile behaviour of the 48600 C1300 reinforcement: The tensile curve of this reinforcement shows a significant nonlinearity at the beginning of the test. In order to account for this phenomenon, a polynomial model of connector behaviour is adopted to describe initial woven fabric behaviour Figure 5. The method of establishing the experimental trend curve and identifying the coefficients of the polynomial.
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The nonlinear stiffness associated with the connector level is calculated from the resulting behaviour based on the equivalent model of the test specimen Fc=Kuc ; where K=f(uc). The limits of the force and displacement of the connectors ) , ( c c U F are defined from the following formulations: 
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Hybrid hypo elastic discrete continuous elastic model

In 
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) Hypo elastic model has been proposed for 2 D element material that take into consideration large shear strain and nonlinear behaviour:
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Where   , D and C are the objective derivative of the 2nd Eulerian order tensor of  Cauchy stress, and the strain rate tensor and the constitutive tensor oriented alongthe fibre directions, respectively. This constitutive tensor is referenced to the fibre directions, it is necessary to update the current fibre directions throughout the analysis 

In the current configuration, the unit vectors in the warp and weft fibre directions .
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Where   
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The first angel is 1
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Then, the in-plane shear angle is defined to be the change in the angle between the warp and weft yarns. The constitutive law can be calcluled for each warp and weft fibre direction   i f d , and solved for incremental stress in the fibre frames using:
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Where ( 11E , 22 E ) and 12 G are the elastic tensile modulus and the in-plane shear modulus. Next, In order to calculate the new fibres stresses, at the end of the current time increment,   1

11 1  n f  ,   1 22 2  n f  ,   1 12  n 
, a midpoint integration scheme is applied where the incremental fibre stresses from equation ( 15) are added to the fibres stresses from the previous increment,   n
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 . Finally, the stresses in the two directions of the fibres are calculated and then projected into the GN base by the transformation.
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The working code is Abaqus/Explicit, and the formulations developed for stress computation algorithms are written in FORTRAN code and implemented through a user material subroutine VUMAT

Bias-extension

In order to validate these two approaches and to compare the results, a test bias test used to characterise the shear mechanisms of woven reinforcement 48600 C 1300. During this test, which is often performed on a traction machine, the rectangular test specimen is cut in such a way that the locks in the two warp and weft directions are oriented at 45 ° to the direction of the tensile force. The specimen is cut with a lengthto-width ratio greater than or equal to two, to reveal the three deformation zones A, B and C. Full details of this test is in [START_REF] Cao | Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results[END_REF]. For a quantitative comparison, the shear angles in the center zone were averaged and plotted versus crosshead displacement in Figure 8. The comparison of the experimental and simulation shear-displacement curves for woven fabric shows good agreement at large displacement, suggesting that the sliding is less marked for this fabric. This sliding phenomenon is particularly marked during biasextension test but may not necessarily be as high during an actual stamping process [START_REF] Jauffrès | Discrete mesoscopic modelling for the simulation of woven-fabric reinforcement forming[END_REF]. comparison of hybrid discrete hypo elastic and hybrid discrete elastic approaches with experimental. The Hybrid elements were automatically generated using python script. Figure 9 shows an exploded view of the simulation assembly using the quarter symmetry blank (for -45°/45°). The modelling cas was created using four parts: the punch, holder, blank and die. The Total force applied on the holder is 238.45 N; and the friction coefficient between the fabric and die is set to 0.2 N. The contact conditions are general (where all bodies are prevented from penetrating other bodies according to the 'general' contact rules in Abaqus). 
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The simulation results are compared with experimental using reel thickness and nonlinear in plane shear. The shear angles are measured in 4 points and the draw-in are measured in 4 points with marker tracking method of surface woven fabric. Figure 10 shows that the hypoelastic discrete model manages the shear behavior even more realistic than the discrete elastic model. 

Conclusion

Two mesoscopic models have been developed for modeling the woven reinforcement. These models based on the combination of linear and nonlinear elastic content element (shear) with specific connectors (linear and non-linear tension rigidity). The nonlinear hypoelastic discrete able to predict the stresses at the level of the fibres and also to determine, with height precision, the shear angles based on the modification of the orientation of the wires in great deformation. A numerical modeling of fabric forming process using hemispherical punch was presented in the last section of this paper which provided close results to the experimental ones, which it shows the comparison ability of this two approaches to describe the composite behavior and the height accuracy of shear angle prediction
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 1 Figure 1: Principle of the hybrid discrete mesoscopic modelling using a combination of 1-D and 2-D element
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 2 Figure 2: Simplified digital models of cells: Tension and shear behaviour
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 3 Figure 3:Pure shear test
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 4 Figure 4: Comparison of uniaxial tensile warp direction (experimental, linear digital)

Figure 5 :

 5 Figure 5: Comparison of uniaxial tensile warp direction (experimental, nonlinear digital)
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 6 Figure 6: Principle of inverse identification on a bias shear test
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 7 . Once the directions of the fibres are updated, it becomes possible to transform the deformations from the Green Naghdi i gn base specific to the Abaqus / Explicit calculation code. The current configuration is updated from the initial orientation axes,

  f are assumed to coincide initially.
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 7 Figure 7. Material axes and GN axes after deformation

1 gn and 1 f . The second 2  is the angle between 2 gn and 2 f . Next, the increments of deformations 1 f d and 2 f

 11222 d are provided by Abaqus at the end of each loop, which makes it possible to calculate the deformation increments with respect to the two bases )
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 8 Figure 8: Comparison of the average shear angles in the Zone B for woven fabric
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 9 Figure 9: Deep drawing simulation models : (a) tooling geometry;(b) numerical hemispherical model
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 10 Fig 10: Numerical Results (45°) and experimental: (a) hybrid discrete Hypoelastic model, (b) hybrid discrete elastic model,(c) experimental outputs Hemispherical stamping with 45° initial orientations

  this section nonlinear connectors are used. This model takes into account the nonlinearity of behaviour of the fabric in tension during modelling.
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Table 1 :

 1 Model parameters

		Hybrid discrete elastic model	Hybrid discrete hypo elastic model		
	1D	Non-linear elastic Fc = f (uc)	Non-linear elastic Fc = f (uc) eq. (9)		
	elements	eq. (9)									
	2D	Elastique isotrope :	Hypo-élastique:						
	elements	E=3.9	G=f() of 48600 C 1300				
		V=0.3 e= 0.01mm	12	 	. 9438 , 22	4	. 9304 , 23	3	. 0399 , 9	2	. 3447 , 1	0829 , 0
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