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ABSTRACT
Quantification of adhesion between a 200 nm silicon dioxide layer and a 4.5 μm thick polymeric
coating was performed by analysing the SiO2 buckle morphologies generated under
compressive stress. Impacts of mechanical properties of SiO2 layers, as well as a surface
pretreatment on adhesion, are shown. Interfacial toughness of both configurations are
assessed using the Hutchinson and Suo model, which involves buckle dimensions
determined in situ by an optical profilometer, and elastic modulus Ef, of the SiO2 thin films,
characterised by nanoindentation. The surface pretreatment led to initiation of buckling at a
higher strain. The same trend is observed for a layer with a lower stiffness and residual stress.

KEYWORDS

Oxide thin film; polymer 
substrate; mechanical 
properties; adhesion

Introduction

Besides its main function of providing vision correc-
tion, ophthalmic lenses offer additional benefits, such
as anti-scratch and anti-reflective properties, in order
to optimise visual comfort. These features are brought
by coatings deposited on top of the plastic polymeric
substrate constituting the lens. More specifically, an
anti-scratch hard coat of a few microns thick is depos-
ited by wet chemical methods, followed by the evapor-
ation of an anti-reflective stack within the nanometric
scale. The challenge is to ensure interface quality
between layers. Considering their small dimensions,
assessment of mechanical adhesion within the stack
is mostly performed qualitatively to this day. The aim
of this research is to provide a quantitative estimate
of the mechanical adhesion at the most sensitive inter-
face of the structure, located between the SiO2 thin film
and the hard coat. Among the 300 adhesion tests
described in the literature, several methods have been
implemented to study the adhesion of rigid thin films
on soft substrates such as scratch tests, tensile tests
and interfacial indentation tests [1–5]. The chosen
method should not only allow ranking of adhesion
but also give information on critical interfacial stresses
or even adhesion energy. Considering these require-
ments and preliminary testing, compression tests
appear to be the most promising for characterising
our structure. Buckling morphologies generated by
compressive stress are often used to characterise met-
allic thin films on polymeric substrates [6–9]. Few
authors have applied compression adhesion tests to
non-metallic thin films. Abdallah et al. studied buckle
morphologies of 400 nm thick Si3N4 deposited on a
hard coat on top of AcryLite™ substrate [10].

Evaluation of the interfacial properties of an oxide
thin film deposited on a polymeric substrate by com-
pression tests has not yet been reported and therefore
sets the framework for this research. In this study, we
present the results of adhesion characterisation of
200 nm SiO2 thin films on polymeric substrates
under compressive stress and provide quantitative esti-
mates of interface quality. Difference in adhesion
between coatings can be explained by the surface pre-
treatment, mechanical properties of layers, such as
their stiffness or residual stress.

Materials and methods

The multilayer system under study

SiO2 thin films were deposited by evaporation under
vacuum on top of a standard ophthalmic structure.
This particular ophthalmic structure consists of a
4.5 μm thick composite polymer, referred to as a
hard coat, on a 4 mm thick polycarbonate substrate.
Depositions of three types of SiO2 layers were con-
ducted at a pressure of 8 × 10−5 to 1.5 × 10−4 mbar,
which is similar to the procedure used by Roisin and
Thomas [11]. SiO2 Type A and B are resulting from
different gas supply conditions during deposition; no
surface pre-treatment was applied before deposition.
SiO2 Type A is deposited along with oxygen gas,
whereas SiO2 Type B deposition does not involve the
introduction of an additional gas. This difference in
processing has been shown to effectively generate
different levels of residual stress within the SiO2 layers
because gas scattering during deposition increases por-
osity [12]. SiO2 Type C was deposited under the same
conditions as SiO2 Type B but received a surface
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pretreatment before deposition consisting of an ionic
pre-cleaning by argon ion bombarding [11,13–15].

Compressive test experimental setup

Compression stage
The configurations of SiO2 Type A, B, and C on a lens
structure were tested. Micro-compression tests were
performed on a Deben stage with a 5 kN load cell
under compression mode. The motor speed was set
to 0.2 mm min−1. Buckling phenomena were observed
and recorded using a Wyko NT1100 optical profil-
ometer. Video extensometer was used to estimate
true strain in the substrate to generate buckling. Slen-
derness calculations were made to define the geome-
tries of compressed beams to avoid buckling of the
substrate [16]. Calculated slenderness was then com-
pared to the critical slenderness lc.

lc = p

���
E
Re

√
(1)

where E is the elastic modulus of the polycarbonate
substrate and Re is its yield strength. The elastic mod-
ulus of the polycarbonate and yield strength were
determined to be 1872 and 80 MPa, respectively,
which gives a critical slenderness of 15. For a sample
dimension of 5 × 15 × 4 mm3, l , lc, therefore buck-
ling of the substrate is not expected.

Development of the test protocol
Inhomogeneity of deformation can occur due to fric-
tion between the sample and clamping jaws. To deter-
mine the homogeneity of the examined surface, a finite
element model of the macroscopic polycarbonate sub-
strate was built. A three-dimensional quasi-static
mechanical model was used to simulate a full sample
with infinite friction with the clamping jaws. The poly-
carbonate substrate was modelled with an elasto-plastic
law (E = 1.8 GPa, n = 0.37, sy = 80 MPa). A bound-
ary displacement along the y-axis was used as the
load and was applied to the top face while the bottom
face remained clamped. This boundary condition rep-
resents the most unfavourable case regarding strain
homogeneity in the observation area. Part of the

model was meshed with 20-node quadratic brick with
reduced integration elements (C3DR20 in Abaqus®
FEM software). The results of the numerical model
give a deviation from homogeneity of strain of 0.1%
within the area of interest for a 5.0% applied strain
(Figure 1). Because the stress state is sufficiently homo-
geneous, we could expect a regular distribution of
buckles in the region being observed.

The strain field in the polycarbonate substrate sub-
jected to uniaxial compressive deformation was also
studied by digital image correlation using 2M cameras
coupled with ARAMIS software. A subset of 20 pixels
with a step of 10 × 10 pixels is chosen. The strain
field within the area of interest is marked in grey and
is determined to be 4.8 ± 0.3% at the strain level
necessary to study buckling phenomenon (Figure 2),
which is on the same order of magnitude as the
numerical results. The small calculated standard devi-
ations (0.3%) indicate strain homogeneity of 94% in
the observation area.

The observation area under the optical profilometer
is 1.8 × 2.4 mm2, which is similar to the area studied,
therefore providing a strain homogeneity close to 94%.

Analytical model for straight-sided buckles
The analytical model is derived from studying linear
elastic fracture mechanics of the buckling of a perfect
rectangular plate. The Hutchinson model was
improved upon by Griffith’s crack propagation cri-
terion, which took mode-mixity into account [17].
The critical compressive biaxial stress at the onset
buckling (sB0) is calculated as follows:

sB0 = p2

12

Ef
(1− n2)

h
b

( )2

(2)

where h is the thickness of the film, b is half the width
of the buckle and Ef is the plane strain modulus of the
film and n its Poisson’s ratio [18]. The energy release
rate (G) along the sides of the buckle can be estimated
by studying the average energy per area in the
unbuckled state (U0) or the average energy per area
in the buckled state (U), which are related by the fol-
lowing equation: G = U0 − U . Expressed differently,

Figure 1. Strain along the compression axis at deformation scale factor of 1 (arrows represent the direction of applied displacement,
triangles represent the clamping condition of bottom face and rectangle represents an area of interest).



the energy release rate (G) is the energy needed per
area to separate SiO2 thin film from substrates over
the width of the buckle, and this relationship is
defined by the following equation:

G = G0 1− sB0

sr

( )2

(3)

where G0 is the available energy per area stored in the
unbuckled film. G0 is given by Equation (5).

G0 =
(1− n2f )s

2
r h

2Ef
(4)

where sr is the residual stress in the buckled plate,
which is given by Equation (6).

sr = 3
4
sB0

d2

h2
+ 1

( )
(5)

where d is the height of the buckle.
Localisation of delamination was performed using a

Hitachi S-3400 N Scanning electron microscope
coupled with energy dispersive X-ray (EDS) analysis.
The buckle dimensions were determined using a
Wyko NT1100 optical profilometer.

Results

Phenomenological aspects

For SiO2 Type A, initiation, and propagation of buckles
was observed during the application of compressive
stress on the sample, after a strain of 3.1 ± 0.8%, aver-
aged over three samples, is reached. Buckle width pro-
gressively widens with an increase of loading until its
degradation, often caused by transverse cracks appear-
ing on the buckle (Figure 3). For SiO2 Type B on the
lens, a strain of 2.1 ± 0.4% was sufficient to see the
emergence of buckle morphologies. Similar scenario
was observed with buckle growth followed by degra-
dation with an increase of strain. Buckle density stea-
dily increases after instantaneous appearance of the

first buckle, with a number of buckles significantly
higher than that of SiO2 Type A. For SiO2 Type C, aver-
age initiation strain was 3.4 ± 0.4% and followed an
identical sequence of events as SiO2 Type B.

During the unloading phase, a progressive conver-
sion from straight-sided buckles into telephone cord
morphologies was observed (Figure 4). The occurrence
of telephone cords during unloading is common and is
consistent with the stability diagram of unilateral buck-
ling patterns established by Parry et al. [18–20].

Identification of delaminated interface

A layer containing buckles has been identified in a
specimen where buckles have been removed by tape
to release the interface. The step height of the delami-
nated areas identified with AFM was found to be
200 nm, which corresponds to the thickness of the
SiO2 layer. Profile analysis of the chemical composition
of a delaminated area shows that in the lower zones, the
quantity of silicon and oxygen are lower and the quan-
tity of carbon is higher (Figure 5). These analyses

Figure 2. Digital Image Correlation measured of strain homogeneity during a compression test. Maximum variation in the obser-
vation area, marked in grey, reaches 0.2%.

Figure 3. Initiation and evolution of buckles with an increase of
strain. The initiation marks the emergence of the first buckle
while the evolution pictured represents the strain at which cal-
culations of energy release rates are performed, before degra-
dation of buckles.



strongly suggest delamination at the SiO2/hard coat
interface and validate the micro-compressive test as
an effective technique for acquiring information on
the adhesion at the interface of interest.

Quantification of adhesion

The total number of buckles measured on three different
samples per configuration is, respectively, 9, 31 and 23 for
sample type A, B and C. Width and height of buckles are
measured at a strain before degradation of buckles, that is
a strain of 4.5% for sample A, 3.3% for sample B and 4.9%
for sample C. Calculated energy release rates using
Hutchinson and Suo model range from 0.1 to 1 J m−2

for SiO2 Type A, 1.5 to 3.5 J m−2 for SiO2 Type B and
from 1.7 to 3 J m−2 for SiO2 Type C , which is in the
same order of magnitude as adhesion energies found in
the literature; for example, 1.9 to 2.7 J m−2 for Tung-
sten-Titanium (WTi) film on borophosphosilicate glass
(BPSG) substrates or 4.3 to 6.3 J m−2 for ITO layers on
Hard coat on Acrylite substrate [21,22].

Discussion

Difference in initiation strain between samples B and C
should be mainly linked to surface pre-treatment since

both layers were deposited under the same conditions.
However, difference in response between samples A
and B after the application of compressive stress, do
not seem to result from variation of surface treatment
since both configurations underwent similar prep-
aration process. It had been shown in the literature
that deposition conditions such as additional gas
during evaporation could affect the mechanical proper-
ties of layers [12]. Therefore, we are focusing on deter-
mining residual stress and elastic modulus for SiO2

Type A and B; mechanical properties of SiO2 Type C
being assumed identical to that of SiO2 Type A.

Compressive residual stresses of SiO2 Type A and B
were evaluated using specific bi-metallic glass strips
(60 mm × 50 mm × 150 µm) and the equation devel-
oped by Stoney [23,24].

ss = −Es
h2s

(1− ns)hf

1
R

(6)

Figure 4. (a) Example of buckles observed for SiO2 Type B, (b) example of a buckle and its evolution to a telephone cord after
unloading of sample (c).

Figure 5. EDS characterisation of a delaminated area (Carbon: Bottom curve, Silicon: Middle curve and Oxygen: Upper curve).

Table 1. Elastic moduli of SiO2 Type A and B deposited
ophthalmic lens, using the Hay and Crawford model.

Substrate

Young’s Modulus
(GPa)

Young’s Modulus
(GPa)

SiO2 A SiO2 B

Hard coat on
Polycarbonate

33 ± 1 50 ± 0



where Es is Young’s modulus of the substrate; hs and hf
are the substrate and film thickness, respectively; ns is
the Poisson’s ratio of the substrate, and R is the radius
of curvature. The compressive residual stresses were
estimated to be roughly +16 and –100 MPa, respect-
ively for SiO2 type A and B.

The Young’s moduli of the two sample configur-
ations were characterised with a Nanoscope XP III
from MTS using continuous stiffness mode with a
DCM measuring head and Berkovich diamond tip.
A matrix of 30 indents separated by 30 μm was cre-
ated for each configuration. The elastic modulus of
the hard coat was measured to be between 6 and
7 GPa by nanoindentation using the model developed
by Oliver and Pharr between 20 and 30 nm [25].
Moduli of SiO2 thin films are highly dependent on
substrate; thus, Hay and Crawford’s model was used
to take into account the influence of the substrate
(Table 1) [26]. This model has been chosen because
of its applicability for soft substrates within
Ef /Es ,10, which is in line with the configurations
on polymeric substrate.

As seen before, difference of strain threshold for
initiation of buckling phenomenon shows SiO2 type
B’s suitability with regard to buckling. This could be
explained by a higher elastic mismatch between film
and substrate that can make it easier for the film to
buckle when strain is applied, leading to a lower strain
for initiation.

Moreover, higher compressive residual stress in
SiO2 Type B after deposition can add up to com-
pressive stress applied during the experiments to
reach the stress threshold for interfacial debonding
faster (Figure 6). Finally, the debonding stress
seems identical for the SiO2 Type A and B, which

is consistent with the fact that surface pretreatment
is similar.

As said previously, SiO2 Type C underwent a similar
deposition process as SiO2 Type B resulting in identical
mechanical properties, that is, a higher stiffness and
residual stress compared to SiO2 Type A. Therefore,
the difference in stress threshold required for debonb-
ing between SiO2 Type B and C could directly be attrib-
uted to surface pretreatment. As we can see in Figure 6,
the range of debonding stress between SiO2 Type B and
C is dissimilar, with an average decohesion value at a
compressive stress of 1.1 and 1.8 GPa, for layers with-
out and with surface pretreatment, respectively. This
suggests that surface pre-treatment allows the interface
to withstand an additional 700 MPa compressive stress
before fracturing.

Conclusion

Calculated energy release rates are compatible with
bibliographical results. It ranges from 0.1 to 1 J m−2

for the SiO2 layer deposited with oxygen (Type A),
1.5 to 3.5 J m−2 for the SiO2 deposited without oxygen
(Type B) and from 1.7 to 3 J m−2 for the layer deposited
after an ionic pre-cleaning by argon ion bombarding
(Type C). Future work consists of simulating the
adhesion test by compression for a better analysis of
fracture energies with plastic dissipation and local
strain taken into account.
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